Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240260

RESUMO

UDP-glucose (UDPG) pyrophosphorylase (UGPase) catalyzes a reversible reaction, producing UDPG, which serves as an essential precursor for hundreds of glycosyltransferases in all organisms. In this study, activities of purified UGPases from sugarcane and barley were found to be reversibly redox modulated in vitro through oxidation by hydrogen peroxide or oxidized glutathione (GSSG) and through reduction by dithiothreitol or glutathione. Generally, while oxidative treatment decreased UGPase activity, a subsequent reduction restored the activity. The oxidized enzyme had increased Km values with substrates, especially pyrophosphate. The increased Km values were also observed, regardless of redox status, for UGPase cysteine mutants (Cys102Ser and Cys99Ser for sugarcane and barley UGPases, respectively). However, activities and substrate affinities (Kms) of sugarcane Cys102Ser mutant, but not barley Cys99Ser, were still prone to redox modulation. The data suggest that plant UGPase is subject to redox control primarily via changes in the redox status of a single cysteine. Other cysteines may also, to some extent, contribute to UGPase redox status, as seen for sugarcane enzymes. The results are discussed with respect to earlier reported details of redox modulation of eukaryotic UGPases and regarding the structure/function properties of these proteins.


Assuntos
Cisteína , Uridina Difosfato Glucose , Sequência de Aminoácidos , Uridina Difosfato Glucose/metabolismo , Cisteína/metabolismo , Plantas/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/genética , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Glucose , Oxirredução
2.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330832

RESUMO

UDP-glucose pyrophosphorylase 2 (UGP2), the enzyme that synthesizes uridine diphosphate (UDP)-glucose, rests at the convergence of multiple metabolic pathways, however, the role of UGP2 in tumor maintenance and cancer metabolism remains unclear. Here, we identify an important role for UGP2 in the maintenance of pancreatic ductal adenocarcinoma (PDAC) growth in both in vitro and in vivo tumor models. We found that transcription of UGP2 is directly regulated by the Yes-associated protein 1 (YAP)-TEA domain transcription factor (TEAD) complex, identifying UGP2 as a bona fide YAP target gene. Loss of UGP2 leads to decreased intracellular glycogen levels and defects in N-glycosylation targets that are important for the survival of PDACs, including the epidermal growth factor receptor (EGFR). These critical roles of UGP2 in cancer maintenance, metabolism, and protein glycosylation may offer insights into therapeutic options for otherwise intractable PDACs.


Assuntos
Carcinoma Ductal Pancreático/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glicogênio/biossíntese , Neoplasias Pancreáticas/enzimologia , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glicosilação , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais , Neoplasias Pancreáticas/patologia , Fatores de Transcrição de Domínio TEA/genética , Fatores de Transcrição de Domínio TEA/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
3.
Dis Markers ; 2020: 3231273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733617

RESUMO

Hepatocellular carcinoma (HCC) is a malignant tumour associated with a high mortality rate and poor prognosis worldwide. Uridine diphosphate-glucose pyrophosphorylase 2 (UGP2), a key enzyme in glycogen biosynthesis, has been reported to be associated with the occurrence and development of various cancer types. However, its diagnostic value and prognostic value in HCC remain unclear. The present study observed that UGP2 expression was significantly downregulated at both the mRNA and protein levels in HCC tissues. Receiver operating characteristic (ROC) curve analysis revealed that UGP2 may be an indicator for the diagnosis of HCC. In addition, Kaplan-Meier and Cox regression multivariate analyses indicated that UGP2 is an independent prognostic factor of overall survival (OS) in patients with HCC. Furthermore, gene set enrichment analysis (GSEA) suggested that gene sets negatively correlated with the survival of HCC patients were enriched in the group with low UGP2 expression levels. More importantly, a significant correlation was identified between low UGP2 expression and fatty acid metabolism. In summary, the present study demonstrates that UGP2 may contribute to the progression of HCC, indicating a potential therapeutic target for HCC patients.


Assuntos
Carcinoma Hepatocelular/diagnóstico , Regulação para Baixo , Neoplasias Hepáticas/diagnóstico , UTP-Glucose-1-Fosfato Uridililtransferase/genética , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Análise Serial de Tecidos , Adulto Jovem
4.
Pathog Dis ; 76(7)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30215741

RESUMO

Streptococcus pneumoniae, the most common cause of bacterial pneumonia, has developed a wide range of virulence factors to evade the immune system of which the polysaccharide capsule is the most important one. Formation of this capsule is dependent on the cps gene locus, but also involves other genes-like galU. The pyrophosphorylase encoded by galU plays a role in the UDP-glucose metabolism of prokaryotes and is required for the biosynthesis of capsular polysaccharides. In this paper, the effect of a galU mutation leading to a dysfunctional UDP-glucose pyrophosphorylase (UDPG:PP) on in vitro biofilm biomass, adherence to lung epithelial cells and macrophage phagocytosis is studied. Last, in vivo virulence using a Galleria mellonella model has been studied. We show that the mutation improves streptococcal adherence to epithelial cells and macrophage phagocytosis in vitro, while there is no definitive correlation on biofilm formation between parent and mutant strains. Moreover, in vivo virulence is attenuated for all mutated strains. Together, these results demonstrate that a galU mutation in S. pneumoniae influences host cell interactions in vitro and in vivo and can strongly influence the outcome of a streptococcal infection. As such, UDPG:PP is worth investigating further as a potential drug target.


Assuntos
Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Proteínas Mutantes/genética , Mutação , Fagocitose , Streptococcus pneumoniae/enzimologia , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Animais , Cápsulas Bacterianas/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Humanos , Lepidópteros , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Proteínas Mutantes/metabolismo , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/patologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/fisiologia , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
World J Microbiol Biotechnol ; 34(1): 11, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29255943

RESUMO

Pullulan produced by Aureobasidium pullulans presents various applications in food manufacturing and pharmaceutical industry. However, the pullulan biosynthesis mechanism remains unclear. This work proposed a pathway suggesting that heavy oil and melanin may correlate with pullulan production. The effects of overexpression or deletion of genes encoding apolipoprotein, UDPG-pyrophosphorylase, glucosyltransferase, and α-phosphoglucose mutase on the production of pullulan, heavy oil, and melanin were examined. Pullulan production increased by 16.93 and 8.52% with the overexpression of UDPG-pyrophosphorylase and apolipoprotein genes, respectively. Nevertheless, the overexpression or deletion of other genes exerted little effect on pullulan biosynthesis. Heavy oil production increased by 146.30, 64.81, and 33.33% with the overexpression of UDPG-pyrophosphorylase, α-phosphoglucose mutase, and apolipoprotein genes, respectively. Furthermore, the syntheses of pullulan, heavy oil, and melanin can compete with one another. This work may provide new guidance to improve the production of pullulan, heavy oil, and melanin through genetic approach.


Assuntos
Apolipoproteínas/genética , Apolipoproteínas/fisiologia , Ascomicetos/genética , Ascomicetos/metabolismo , Glucanos/biossíntese , Melaninas/biossíntese , Óleos/metabolismo , Ascomicetos/enzimologia , Metabolismo dos Carboidratos , Ativação Enzimática , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Genes Fúngicos/fisiologia , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transformação Genética , UTP-Glucose-1-Fosfato Uridililtransferase/genética , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo
6.
Int J Med Microbiol ; 305(8): 893-901, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26481693

RESUMO

Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections (UTI). These bacteria are equipped with an arsenal of virulence factors, such as siderophores and adhesins enabling UPECs to sufficiently colonize the urinary tract of humans and animals. Such virulence factors manipulate and impair the recognition of UPECs by the host's innate immune system. Among those, factors like the TIR domain containing proteins in E. coli (TcpC) have been described to interfere with the Toll-like receptor 4 signaling cascade. Nevertheless, some UPECs such as strain UTI89 lack TcpC, but also manipulate the innate immune response. By a random mutant-library approach we identified the galU gene of strain UTI89 to be responsible for a reduced immune response of macrophages. Consequently, we created a site directed knockout mutant of the galU gene in strain UTI89. This mutant caused a significantly increased cytokine response when co-incubated with J774A.1 macrophages. This phenotype could be recomplemented in trans by insertion of a galU-expressing plasmid. No differences in the viability of macrophages co-incubated with either the wild-type (WT) or the ΔgalU mutant strain could be observed. Nor could any growth impairment be detected in the ΔgalU mutant compared to WT strain. Hence, the increased cytokine response was not due to differences in the bacterial cytotoxicity or bacterial counts in the assay. Our results also demonstrated a reduction of intracellular counts of UTI89ΔgalU in the infection model. We were able to show a loss of the O-polysaccharide side chain of the ΔgalU mutant LPS. A comparable LPS structure could be generated by the deletion of the waaL gene in the UTI89. This also caused an impaired immune modulation. In contrast, purified LPS was not sufficient to impair cytokine release of macrophages. Moreover, no differences could be detected by applying bacteria inactivated with heat or formalin treatment. From this, we assume that the aberration of the LPS structure caused by the knockout of the galU gene is an important but not the exclusive cause for the loss of UPEC's immune modulating properties.


Assuntos
Proteínas de Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Escherichia coli Uropatogênica/imunologia , Animais , Linhagem Celular , Proteínas de Escherichia coli/genética , Deleção de Genes , Teste de Complementação Genética , Camundongos , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Escherichia coli Uropatogênica/genética
7.
FEBS Lett ; 589(18): 2409-16, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26188548

RESUMO

Ugp1, a UDP-glucose pyrophosphorylase, is essential for various cellular activities in Saccharomyces cerevisiae because its product, UDP-glucose, is a sole glucosyl donor in several metabolic pathways. Here, we report that Msn2/4 play a crucial role in the regulation of UGP1 expression. Msn2/4 bound to three stress response elements in the UGP1 promoter in a protein kinase A (PKA)-dependent manner. Several stresses induced UGP1 transcription, suggesting that the regulation of UGP1 mediated by Msn2/4 is involved in general stress response. Furthermore, the phosphate response (PHO) pathway also controlled Msn2/4-dependent regulation of UGP1, providing a novel link between the PKA and PHO pathways. Our data suggest that signals of the PKA, PHO and stress response pathways regulate UGP1 expression via Msn2/4 in S. cerevisiae.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Fosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glucose/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/genética
8.
Biochim Biophys Acta ; 1850(1): 13-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25277548

RESUMO

BACKGROUND: Mycobacterium tuberculosis is a pathogenic prokaryote adapted to survive in hostile environments. In this organism and other Gram-positive actinobacteria, the metabolic pathways of glycogen and trehalose are interconnected. RESULTS: In this work we show the production, purification and characterization of recombinant enzymes involved in the partitioning of glucose-1-phosphate between glycogen and trehalose in M. tuberculosis H37Rv, namely: ADP-glucose pyrophosphorylase, glycogen synthase, UDP-glucose pyrophosphorylase and trehalose-6-phosphate synthase. The substrate specificity, kinetic parameters and allosteric regulation of each enzyme were determined. ADP-glucose pyrophosphorylase was highly specific for ADP-glucose while trehalose-6-phosphate synthase used not only ADP-glucose but also UDP-glucose, albeit to a lesser extent. ADP-glucose pyrophosphorylase was allosterically activated primarily by phosphoenolpyruvate and glucose-6-phosphate, while the activity of trehalose-6-phosphate synthase was increased up to 2-fold by fructose-6-phosphate. None of the other two enzymes tested exhibited allosteric regulation. CONCLUSIONS: Results give information about how the glucose-1-phosphate/ADP-glucose node is controlled after kinetic and regulatory properties of key enzymes for mycobacteria metabolism. GENERAL SIGNIFICANCE: This work increases our understanding of oligo and polysaccharides metabolism in M. tuberculosis and reinforces the importance of the interconnection between glycogen and trehalose biosynthesis in this human pathogen.


Assuntos
Glucofosfatos/metabolismo , Glicogênio/biossíntese , Redes e Vias Metabólicas , Mycobacterium tuberculosis/metabolismo , Trealose/biossíntese , Regulação Alostérica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Glucose-6-Fosfato/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Cinética , Modelos Biológicos , Mycobacterium tuberculosis/enzimologia , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , UTP-Glucose-1-Fosfato Uridililtransferase/genética , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo
9.
Biochim Biophys Acta ; 1850(1): 88-96, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25316289

RESUMO

BACKGROUND: Giardia lamblia is a pathogen of humans and other vertebrates. The synthesis of glycogen and of structural oligo and polysaccharides critically determine the parasite's capacity for survival and pathogenicity. These characteristics establish that UDP-glucose is a relevant metabolite, as it is a main substrate to initiate varied carbohydrate metabolic routes. RESULTS: Herein, we report the molecular cloning of the gene encoding UDP-glucose pyrophosphorylase from genomic DNA of G. lamblia, followed by its heterologous expression in Escherichia coli. The purified recombinant enzyme was characterized to have a monomeric structure. Glucose-1-phosphate and UTP were preferred substrates, but the enzyme also used galactose-1-phosphate and TTP. The catalytic efficiency to synthesize UDP-galactose was significant. Oxidation by physiological compounds (hydrogen peroxide and nitric oxide) inactivated the enzyme and the process was reverted after reduction by cysteine and thioredoxin. UDP-N-acetyl-glucosamine pyrophosphorylase, the other UTP-related enzyme in the parasite, neither used galactose-1-phosphate nor was affected by redox modification. CONCLUSIONS: Our results suggest that in G. lamblia the UDP-glucose pyrophosphorylase is regulated by oxido-reduction mechanism. The enzyme exhibits the ability to synthesize UDP-glucose and UDP-galactose and it plays a key role providing substrates to glycosyl transferases that produce oligo and polysaccharides. GENERAL SIGNIFICANCE: The characterization of the G. lamblia UDP-glucose pyrophosphorylase reinforces the view that in protozoa this enzyme is regulated by a redox mechanism. As well, we propose a new pathway for UDP-galactose production mediated by the promiscuous UDP-glucose pyrophosphorylase of this organism.


Assuntos
Galactosefosfatos/metabolismo , Giardia lamblia/enzimologia , Proteínas de Protozoários/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Sequência de Aminoácidos , Biocatálise , Clonagem Molecular , Cisteína/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Giardia lamblia/genética , Glucofosfatos/metabolismo , Cinética , Dados de Sequência Molecular , Oxirredução , Proteínas de Protozoários/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Tiorredoxinas/metabolismo , Fatores de Tempo , UTP-Glucose-1-Fosfato Uridililtransferase/genética
10.
Int J Mol Sci ; 14(5): 9703-21, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23648478

RESUMO

In bacteria, glycogen or oligosaccharide accumulation involves glucose-1-phosphate partitioning into either ADP-glucose (ADP-Glc) or UDP-Glc. Their respective synthesis is catalyzed by allosterically regulated ADP-Glc pyrophosphorylase (EC 2.7.7.27, ADP-Glc PPase) or unregulated UDP-Glc PPase (EC 2.7.7.9). In this work, we characterized the UDP-Glc PPase from Streptococcus mutans. In addition, we constructed a chimeric protein by cutting the C-terminal domain of the ADP-Glc PPase from Escherichia coli and pasting it to the entire S. mutans UDP-Glc PPase. Both proteins were fully active as UDP-Glc PPases and their kinetic parameters were measured. The chimeric enzyme had a slightly higher affinity for substrates than the native S. mutans UDP-Glc PPase, but the maximal activity was four times lower. Interestingly, the chimeric protein was sensitive to regulation by pyruvate, 3-phosphoglyceric acid and fructose-1,6-bis-phosphate, which are known to be effectors of ADP-Glc PPases from different sources. The three compounds activated the chimeric enzyme up to three-fold, and increased the affinity for substrates. This chimeric protein is the first reported UDP-Glc PPase with allosteric regulatory properties. In addition, this is a pioneer work dealing with a chimeric enzyme constructed as a hybrid of two pyrophosphorylases with different specificity toward nucleoside-diphospho-glucose and our results turn to be relevant for a deeper understanding of the evolution of allosterism in this family of enzymes.


Assuntos
Escherichia coli/enzimologia , Glucose-1-Fosfato Adenililtransferase/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Streptococcus mutans/enzimologia , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli/química , Escherichia coli/genética , Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/genética , Glucofosfatos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Streptococcus mutans/química , Streptococcus mutans/genética , UTP-Glucose-1-Fosfato Uridililtransferase/química , UTP-Glucose-1-Fosfato Uridililtransferase/genética
11.
Korean J Parasitol ; 50(4): 361-4, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23230337

RESUMO

The mature cyst of Acanthamoeba is highly resistant to various antibiotics and therapeutic agents. Cyst wall of Acanthamoeba are composed of cellulose, acid-resistant proteins, lipids, and unidentified materials. Because cellulose is one of the primary components of the inner cyst wall, cellulose synthesis is essential to the process of cyst formation in Acanthamoeba. In this study, we hypothesized the key and short-step process in synthesis of cellulose from glycogen in encysting Acanthamoeba castellanii, and confirmed it by comparing the expression pattern of enzymes involving glycogenolysis and cellulose synthesis. The genes of 3 enzymes, glycogen phosphorylase, UDP-glucose pyrophosphorylase, and cellulose synthase, which are involved in the cellulose synthesis, were expressed high at the 1st and 2nd day of encystation. However, the phosphoglucomutase that facilitates the interconversion of glucose 1-phosphate and glucose 6-phosphate expressed low during encystation. This report identified the short-cut pathway of cellulose synthesis required for construction of the cyst wall during the encystation process in Acanthamoeba. This study provides important information to understand cyst wall formation in encysting Acanthamoeba.


Assuntos
Acanthamoeba castellanii/enzimologia , Amebíase/parasitologia , Parede Celular/metabolismo , Celulose/biossíntese , Proteínas de Protozoários/metabolismo , Acanthamoeba castellanii/genética , Acanthamoeba castellanii/crescimento & desenvolvimento , Celulose/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicogênio Fosforilase/genética , Glicogênio Fosforilase/metabolismo , Proteínas de Protozoários/genética , UTP-Glucose-1-Fosfato Uridililtransferase/genética , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo
12.
PLoS One ; 7(5): e35707, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22563467

RESUMO

We previously reported that A. hydrophila GalU mutants were still able to produce UDP-glucose introduced as a glucose residue in their lipopolysaccharide core. In this study, we found the unique origin of this UDP-glucose from a branched α-glucan surface polysaccharide. This glucan, surface attached through the O-antigen ligase (WaaL), is common to the mesophilic Aeromonas strains tested. The Aeromonas glucan is produced by the action of the glycogen synthase (GlgA) and the UDP-Glc pyrophosphorylase (GlgC), the latter wrongly indicated as an ADP-Glc pyrophosphorylase in the Aeromonas genomes available. The Aeromonas glycogen synthase is able to react with UDP or ADP-glucose, which is not the case of E. coli glycogen synthase only reacting with ADP-glucose. The Aeromonas surface glucan has a role enhancing biofilm formation. Finally, for the first time to our knowledge, a clear preference on behalf of bacterial survival and pathogenesis is observed when choosing to produce one or other surface saccharide molecules to produce (lipopolysaccharide core or glucan).


Assuntos
Aeromonas/metabolismo , Proteínas de Bactérias/metabolismo , Glucanos/metabolismo , Ligases/metabolismo , Uridina Difosfato Glucose/metabolismo , Aeromonas/genética , Aeromonas/fisiologia , Aderência Bacteriana , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Sequência de Carboidratos , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida , Teste de Complementação Genética , Glucanos/química , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Humanos , Ligases/genética , Lipopolissacarídeos/metabolismo , Viabilidade Microbiana , Dados de Sequência Molecular , Mutação , Antígenos O/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/genética , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo
13.
J Bacteriol ; 194(6): 1485-93, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22210767

RESUMO

Streptomyces coelicolor exhibits a major secondary metabolism, deriving important amounts of glucose to synthesize pigmented antibiotics. Understanding the pathways occurring in the bacterium with respect to synthesis of oligo- and polysaccharides is of relevance to determine a plausible scenario for the partitioning of glucose-1-phosphate into different metabolic fates. We report the molecular cloning of the genes coding for UDP- and ADP-glucose pyrophosphorylases as well as for glycogen synthase from genomic DNA of S. coelicolor A3(2). Each gene was heterologously expressed in Escherichia coli cells to produce and purify to electrophoretic homogeneity the respective enzymes. UDP-glucose pyrophosphorylase (UDP-Glc PPase) was characterized as a dimer exhibiting a relatively high V(max) in catalyzing UDP-glucose synthesis (270 units/mg) and with respect to dTDP-glucose (94 units/mg). ADP-glucose pyrophosphorylase (ADP-Glc PPase) was found to be tetrameric in structure and specific in utilizing ATP as a substrate, reaching similar activities in the directions of ADP-glucose synthesis or pyrophosphorolysis (V(max) of 0.15 and 0.27 units/mg, respectively). Glycogen synthase was arranged as a dimer and exhibited specificity in the use of ADP-glucose to elongate α-1,4-glucan chains in the polysaccharide. ADP-Glc PPase was the only of the three enzymes exhibiting sensitivity to allosteric regulation by different metabolites. Mannose-6-phosphate, phosphoenolpyruvate, fructose-6-phosphate, and glucose-6-phosphate behaved as major activators, whereas NADPH was a main inhibitor of ADP-Glc PPase. The results support a metabolic picture where glycogen synthesis occurs via ADP-glucose in S. coelicolor, with the pathway being strictly regulated in connection with other routes involved with oligo- and polysaccharides, as well as with antibiotic synthesis in the bacterium.


Assuntos
Glucose-1-Fosfato Adenililtransferase/metabolismo , Glucofosfatos/metabolismo , Glicogênio Sintase/metabolismo , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/isolamento & purificação , Glicogênio Sintase/genética , Glicogênio Sintase/isolamento & purificação , Cinética , Polissacarídeos/metabolismo , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , UTP-Glucose-1-Fosfato Uridililtransferase/genética , UTP-Glucose-1-Fosfato Uridililtransferase/isolamento & purificação
14.
J Bacteriol ; 194(3): 653-62, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22139502

RESUMO

Yersinia pestis is able to survive and replicate within murine macrophages. However, the mechanism by which Y. pestis promotes its intracellular survival is not well understood. To identify genes that are important for Y. pestis survival in macrophages, a library comprised of ∼31,500 Y. pestis KIM6+ transposon insertion mutants (input pool) was subjected to negative selection in primary murine macrophages. Genes underrepresented in the output pool of surviving bacteria were identified by transposon site hybridization to DNA oligonucleotide microarrays. The screen identified several genes known to be important for survival of Y. pestis in macrophages, including phoPQ and members of the PhoPQ regulon (e.g., pmrF). In addition, genes predicated to encode a glucose-1-phosphate uridylyltransferase (galU), a UDP-N-acetylglucosamine 2-epimerase (wecB) and a UDP-N-acetyl-d-mannosamine dehydrogenase (wecC) were identified in the screen. Viable-count assays demonstrated that a KIM6+ galU mutant and a KIM6+ wecBC mutant were defective for survival in murine macrophages. The galU mutant was studied further because of its strong phenotype. The KIM6+ galU mutant exhibited increased susceptibility to the antimicrobial peptides polymyxin B and cathelicidin-related antimicrobial peptide (CRAMP). Polyacrylamide gel electrophoresis demonstrated that the lipooligosaccharide (LOS) of the galU mutant migrated faster than the LOS of the parent KIM6+, suggesting the core was truncated. In addition, the analysis of LOS isolated from the galU mutant by mass spectrometry showed that aminoarabinose modification of lipid A is absent. Therefore, addition of aminoarabinose to lipid A and complete LOS core (galU), as well as enterobacterial common antigen (wecB and wecC), is important for survival of Y. pestis in macrophages.


Assuntos
Proteínas de Bactérias/metabolismo , Desidrogenases de Carboidrato/metabolismo , Elementos de DNA Transponíveis , Macrófagos/microbiologia , Peste/microbiologia , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Yersinia pestis/enzimologia , Animais , Proteínas de Bactérias/genética , Desidrogenases de Carboidrato/genética , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Linhagem Celular , Regulação Bacteriana da Expressão Gênica , Camundongos , Viabilidade Microbiana , Mutagênese Insercional , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Yersinia pestis/genética , Yersinia pestis/crescimento & desenvolvimento
15.
Biochimie ; 93(2): 260-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20888387

RESUMO

Amoebiasis is an intestinal infection caused by the human pathogen Entamoeba histolytica and representing the third leading cause of death by parasites in the world. Host-parasite interactions mainly involve anchored glycoconjugates localized in the surface of the parasitic cell. In protozoa, synthesis of structural oligo- and polysaccharides occurs via UDP-glucose, generated in a reaction catalyzed by UDP-glucose pyrophosphorylase. We report the molecular cloning of the gene coding for this enzyme from genomic DNA of E. histolytica and its recombinant expression in Escherichia coli cells. The purified enzyme was kinetically characterized, catalyzing UDP-glucose synthesis and pyrophosphorolysis with V(max) values of 95 U/mg and 3 U/mg, respectively, and affinity for substrates comparable to those found for the enzyme from other sources. Enzyme activity was affected by redox modification of thiol groups. Different oxidants, including diamide, hydrogen peroxide and sodium nitroprusside inactivated the enzyme. The process was completely reverted by reducing agents, mainly cysteine, dithiothreitol, and thioredoxin. Characterization of the enzyme mutants C94S, C108S, C191S, C354S, C378S, C108/378S, M106S and M106C supported a molecular mechanism for the redox regulation. Molecular modeling confirmed the role of specific cysteine and methionine residues as targets for redox modification in the entamoebic enzyme. Our results suggest that UDP-glucose pyrophosphorylase is a regulated enzyme in E. histolytica. Interestingly, results strongly agree with the occurrence of a physiological redox mechanism modulating enzyme activity, which would critically affect carbohydrate metabolism in the protozoon.


Assuntos
Entamoeba histolytica/enzimologia , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Clonagem Molecular , Espaço Intracelular/enzimologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/química , UTP-Glucose-1-Fosfato Uridililtransferase/genética
16.
Mol Biol Rep ; 38(7): 4291-302, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21113669

RESUMO

OsUgp2, a rice UDP-glucose pyrophosphorylase gene, has previously been shown to preferentially express in maturing pollens and plays an important role in pollen starch accumulation. Here, a 1943 bp promoter fragment (P1943) of OsUgp2 was characterized by 5' deletion and gain-of-function experiments. P1943 and its 5' deletion derivatives (P1495, P1005, P665 and P159) were fused to GUS reporter gene and stably introduced into rice plants. Histochemical analyses of different tissues and pollens at different developmental stages of the transgenic plants showed that P1943 could only direct GUS expression in binucleate pollens. P1495 and P1005 could still drive GUS expression in binucleate pollens but at a lower level. On the other hand, neither P665 nor P159 transformant exhibited any GUS activity in pollens. Gain-of-function analyses showed that the region (-1005 to -665 relative to translation start site) combined with a minimal CaMV 35S promoter could direct GUS expression in pollens. Further analysis of 5' deletion truncated at -952, -847 and -740 delimited a 53 bp region (-1005 to -952) essential for pollen-specific expression. The 53 bp sequence contains two motifs of TTTCT and TTTC, which were known to be pollen-specific cis-elements. In addition, the same P1943-GUS fusion construct was introduced into tobacco to analyze its specificity in dicotyledon. Interestingly, the GUS expression pattern in transgenic tobacco was quite different from that in rice. High level of GUS expression was detected in mature pollens as well as leaves, roots, sepals and stigmas. These findings suggested a complicated transcriptional regulation of OsUgp2.


Assuntos
Oryza/enzimologia , Oryza/genética , Proteínas de Plantas/genética , Pólen/enzimologia , Pólen/genética , Regiões Promotoras Genéticas , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Pareamento de Bases/genética , Sequência de Bases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Glucuronidase/metabolismo , Imuno-Histoquímica , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Análise de Sequência de DNA , Deleção de Sequência/genética , Coloração e Rotulagem , Nicotiana/genética
17.
Mol Plant Microbe Interact ; 23(9): 1184-96, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20687808

RESUMO

Bacterial galU coding for a uridine diphosphate-glucose pyrophosphorylase plays an important role in carbohydrates biosynthesis, including synthesis of lipopolysaccharides (LPS), membrane-derived oligosaccharides, and capsular polysaccharides. In this study, we characterized the galU mutant of Pseudomonas syringae pv. syringae 61 (Psy61), a necrotizing plant pathogen whose pathogenicity depends on a functional type III secretion system (T3SS), and showed that the Psy61 galU mutant had reduced biofilm formation ability, was nonmotile, and had an assembled T3SS structure but failed to elicit hypersensitive response in resistant plants and necrotic lesions in susceptible plants. Moreover, the defective LPS and other pathogen-associated molecular patterns (PAMPs) on the surface of the Psy61 galU mutant were capable of inducing PAMP-triggered immunity, which severely compromised the ability of the Psy61 galU mutant to survive in planta. Our results demonstrated that the complete LPS protected plant-pathogenic bacteria from host innate immunity, similar to what was found in animal pathogens, prior to the translocation of T3S effectors and bacterial multiplication.


Assuntos
Pseudomonas syringae/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Biofilmes/crescimento & desenvolvimento , Flagelina/genética , Flagelina/metabolismo , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio , Lipopolissacarídeos , Dados de Sequência Molecular , Mutação , Pseudomonas syringae/genética , Pseudomonas syringae/fisiologia , Nicotiana/microbiologia , UTP-Glucose-1-Fosfato Uridililtransferase/genética
18.
FEMS Microbiol Lett ; 305(2): 91-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20199575

RESUMO

Pseudomonas fluorescens BM07 is known to produce cold-induced exobiopolymer, which is mainly composed of water-insoluble hydrophobic polypeptides (up to 85%) and saccharides (8%), by decreasing the culture temperature down to as low as 10 degrees C. We screened for transposon insertion mutants of P. fluorescens BM07 that were unable to produce the exobiopolymer. Among the eight mutants that showed the deficiency of exobiopolymer and O-lipopolysaccharide, one mutant BM07-59 that had the highest polyhydroxyalkanoates (PHA) production was selected. The transposon inserted gene in BM07-59 was identified as galU. The disruption of the gene galU coded for the putative product, UDP-glucose pyrophosphorylase (GalU), resulted in 1.5-fold more accumulation of PHA compared with the wild-type strain from 70 mM fructose or galactose at 30 degrees C. Electrophoretic analysis of lipopolysaccharide showed that the mutant lacked the O-antigen lipopolysaccharide bands. The glycosyl composition of the lipopolysaccharide produced by the mutant strain was significantly different from that of the wild-type strain. We suggest that the deletion of galU could be a way to shift carbon flux efficiently from exobiopolymer toward PHA in P. fluorescens BM07.


Assuntos
Biopolímeros/metabolismo , Elementos de DNA Transponíveis , Mutagênese Insercional , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Proteínas de Bactérias/genética , Temperatura Baixa , Frutose/metabolismo , Galactose/metabolismo , Antígenos O/metabolismo , Peptídeos/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/genética
19.
Glycobiology ; 20(7): 872-82, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20335578

RESUMO

The nucleotide sugar UDP-galactose (UDP-Gal) is essential for the biosynthesis of several abundant glycoconjugates forming the surface glycocalyx of the protozoan parasite Leishmania major. Current data suggest that UDP-Gal could arise de novo by epimerization of UDP-glucose (UDP-Glc) or by a salvage pathway involving phosphorylation of Gal and the action of UDP-glucose:alpha-D-galactose-1-phosphate uridylyltransferase as described by Leloir. Since both pathways require UDP-Glc, inactivation of the UDP-glucose pyrophosphorylase (UGP) catalyzing activation of glucose-1 phosphate to UDP-Glc was expected to deprive parasites of UDP-Gal required for Leishmania glycocalyx formation. Targeted deletion of the gene encoding UGP, however, only partially affected the synthesis of the Gal-rich phosphoglycans. Moreover, no alteration in the abundant Gal-containing glycoinositolphospholipids was found in the deletion mutant. Consistent with these findings, the virulence of the UGP-deficient mutant was only modestly affected. These data suggest that Leishmania elaborates a UDP-Glc independent salvage pathway for UDP-Gal biosynthesis.


Assuntos
Leishmania major/enzimologia , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Uridina Difosfato Galactose/metabolismo , Uridina Difosfato Glucose/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Leishmania major/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Deleção de Sequência , Transdução de Sinais , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Uridina Difosfato Galactose/química , Uridina Difosfato Glucose/química
20.
Transgenic Res ; 19(2): 269-83, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19690976

RESUMO

Nicotiana tabacum (tobacco) was transformed with three genes involved in sucrose metabolism, UDP-glucose pyrophosphorylase (UGPase, EC 2.7.7.9), sucrose synthase (SuSy, EC 2.4.1.13) and sucrose phosphate synthase (SPS, EC 2.4.1.14). Plants harbouring the single transgenes were subsequently crossed to produce double and triple transgenic lines, including: 2 x 35S::UGPase x SPS, 4CL::UGPase x SPS, 2 x 35S::SuSy x SPS, 4CL::SuSy x SPS, 2 x 35S::UGPase x SuSy x SPS, and 4CL::UGPase x SuSy x SPS. The ultimate aim of the study was to examine whether it is possible to alter cellulose production through the manipulation of sucrose metabolism genes. While altering sucrose metabolism using UGPase, SuSy and SPS does not have an end effect on cellulose production, their simultaneous overexpression resulted in enhanced primary growth as seen in an increase in height growth, in some cases over 50%. Furthermore, the pyramiding strategy of simultaneously altering the expression of multiple genes in combination resulted in increased time to reproductive bud formation as well as altered flower morphology and foliar stipule formation in 4CL lines. Upregulation of these sucrose metabolism genes appears to directly impact primary growth and therefore biomass production in tobacco.


Assuntos
Biomassa , Flores/crescimento & desenvolvimento , Nicotiana , Plantas Geneticamente Modificadas , Sacarose/metabolismo , Regulação para Cima , Biotecnologia/métodos , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Transgenes/genética , Transgenes/fisiologia , UTP-Glucose-1-Fosfato Uridililtransferase/genética , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA