Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.054
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Med Chem ; 67(9): 7176-7196, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38679872

RESUMO

Peroxiredoxin (PRDX1) is a tumor-overexpressed antioxidant enzyme for eliminating excessive reactive oxygen species (ROS) to protect tumor cells from oxidative damage. Herein, a series of celastrol urea derivatives were developed based on its cocrystal structure with PRDX1, with the aim of pursuing a PRDX1-specific inhibitor. Among them, derivative 15 displayed potent anti-PRDX1 activity (IC50 = 0.35 µM) and antiproliferative potency against colon cancer cells. It covalently bound to Cys-173 of PRDX1 (KD = 0.37 µM), which was secured by the cocrystal structure of PRDX1 with an analogue of 15 while exhibiting weak inhibitory effects on PRDX2-PRDX6 (IC50 > 50 µM), indicating excellent PRDX1 selectivity. Treatment with 15 dose-dependently decreased the mitochondria membrane potential of SW620 cells, probably due to ROS induced by PRDX1 inhibition, leading to cell apoptosis. In colorectal cancer cell xenograft model, it displayed potent antitumor efficacy with superior safety to celastrol. Collectively, 15 represents a promising PRDX1 selective inhibitor for the development of anticolorectal cancer agents.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Triterpenos Pentacíclicos , Peroxirredoxinas , Ureia , Humanos , Peroxirredoxinas/antagonistas & inibidores , Peroxirredoxinas/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ureia/análogos & derivados , Ureia/farmacologia , Ureia/química , Linhagem Celular Tumoral , Camundongos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Relação Estrutura-Atividade , Camundongos Nus , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Camundongos Endogâmicos BALB C , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/síntese química , Espécies Reativas de Oxigênio/metabolismo , Descoberta de Drogas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Ensaios de Seleção de Medicamentos Antitumorais
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124332, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38676982

RESUMO

Studies on the interactions between ligands and proteins provide insights into how a possible medication alters the structures and activities of the target or carrier proteins. The natural flavonoid aglycone Chrysin (CHR) has demonstrated anti-inflammatory, antioxidant, antiapoptotic, neuroprotective, and antineoplastic effects, both in vitro and in vivo. In this work, we investigated the impact of CHR binding on the as-yet-unexplored conformation, dynamics, and unfolding mechanism of human serum albumin (HSA). We determined CHR binding to HSA domain-II with the association constant (Ka) of 2.70 ± 0.21 × 105 M-1. The urea-induced sequential unfolding mechanism of HSA was used to elucidate the debatable binding location of CHR. CHR binding induced both secondary and tertiary structural alterations in the protein as studied by far-UV circular dichroism and intrinsic fluorescence spectroscopy. Red edge excitation shift (REES) indicated a decrease in conformational dynamics of the protein on the complex formation. This suggested an ordered compact and spatial arrangement of the CHR-boundmolecule. The binding of CHR was found to significantly modulate the urea-induced unfolding pathway of HSA. Urea-induced unfolding pathway of HSA became a two-state process (N-U) from a three-state process (N-I-U). The interaction of CHR is found to increase the thermal stability of the protein by ∼4 °C. This study focuses on the fundamental sciences and demonstrates how prospective medication compounds can alter the dynamics and stability of protein structure.


Assuntos
Flavonoides , Ligação Proteica , Desdobramento de Proteína , Albumina Sérica Humana , Humanos , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/metabolismo , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Desdobramento de Proteína/efeitos dos fármacos , Ureia/farmacologia , Ureia/química , Dicroísmo Circular , Espectrometria de Fluorescência , Conformação Proteica
3.
Acta Pharm ; 74(1): 37-59, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554382

RESUMO

A diastereomeric mixture of racemic 3-phthalimido-b-lactam 2a/2b was synthesized by the Staudinger reaction of carboxylic acid activated with 2-chloro-1-methylpyridinium iodide and imine 1. The amino group at the C3 position of the b-lactam ring was used for further structural upgrade. trans-b-lactam ureas 4a-t were prepared by the condensation reaction of the amino group of b-lactam ring with various aromatic and aliphatic isocyanates. Antimicrobial activity of compounds 4a-t was evaluated in vitro and neither antibacterial nor antifungal activity were observed. Several of the newly synthesized trans-b-lactam ureas 4a-c, 4f, 4h, 4n, 4o, 4p, and 4s were evaluated for in vitro antiproliferative activity against liver hepatocellular carcinoma (HepG2), ovarian carcinoma (A2780), breast adenocarcinoma (MCF7) and untransformed human fibroblasts (HFF1). The b-lactam urea 4o showed the most potent antiproliferative activity against the ovarian carcinoma (A2780) cell line. Compounds 4o and 4p exhibited strong cytotoxic effects against human non-tumor cell line HFF1. The b-lactam ureas 4a-t were estimated to be soluble and membrane permeable, moderately lipophilic molecules (logP 4.6) with a predisposition to be CYP3A4 and P-glycoprotein substrates. The tools PASS and SwissTargetPrediction could not predict biological targets for compounds 4a-t with high probability, pointing to the novelty of their structure. Considering low toxicity risk, molecules 4a and 4f can be selected as the most promising candidates for further structure modifications.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Ovarianas , Humanos , Feminino , Estrutura Molecular , Relação Estrutura-Atividade , beta-Lactamas/farmacologia , Ureia/farmacologia , Ureia/química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células
4.
Bioorg Chem ; 145: 107192, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382393

RESUMO

To investigate the intrinsic relation between carbonic anhydrase inhibition and anticancer activity, we have prepared four sets of diaryl urea molecules and tested for the inhibition of hCA-IX and XII on two breast cancer cell lines. Among 21 compounds, compound J2 (with -SO2NH2 group) and J16 (without -SO2NH2 group) showed the best activity under normoxic and hypoxic conditions. The IC50 values of J16 for MDA-MB-231 and MCF-7 cells, under normoxic condition were 6.3 and 3.7 µM respectively, which are 1.9/3.3 and 15.8 times better than U-4-Nitro and SLC-0111 respectively. Whereas, under the hypoxic condition the corresponding values were 12.4 and 1.1 µM (MDA-MB-231 and MCF-7 cells respectively), which are equal/8 times better than U-4-Nitro. Whereas, J2 showed better IC50 value than U-4-Nitro (6.3 µM) under normoxic condition for both MDA-MB-231 and MCF-7 cells (1.9/2.7 times). Compound J2 inhibits the activity of hCA-IX and XII in nanomolar concentration [Ki values 4.09 and 9.10 nM respectively with selectivity ratio of 1.8 and 0.8 with hCA-II]. The crystal structure and modelling studies demonstrates that the inhibition of CAs arises due to the blocking of the CO2 coordination site of zinc in its catalytic domain. However, J16 was found to be unable to inhibit the activity of hCAs (Ki > 89000 nM). qPCR and western blot analysis showed a significant reduction (1.5 to 20 fold) of the transcription and expression of HIF1A, CA9 and CA12 genes in presence of J2 and J16. Both J2 and J16 found to reduce accumulation of HIF-1α protein by inhibiting the chaperone activity of hHSP70 with IC50 values of 19.4 and 15.3 µM respectively. Perturbation of the hCA-IX and XII activity by binding at active site or by reduced expression or by both leads to the decrease of intracellular pH, which resulted in concomitant increase of reactive oxygen species by 2.6/2.0 (MCF-7) and 2.9/1.8 (MDA-MB-231) fold for J2/J16. Increased cyclin D1 expression in presence of J2 and J16 was presumed to be indirectly responsible for the apoptosis of the cancer cells. Expression of the other apoptosis markers Bcl-2, Bim, caspase 9 and caspase 3 substantiated the apoptosis mechanism. However, decreased transcription/expression of HIF1A/HIF-1α and hCA-IX/XII also implies the inhibition of the extracellular signal-regulated kinase pathway by J2 and J16.


Assuntos
Neoplasias da Mama , Ureia , Humanos , Feminino , Anidrase Carbônica IX , Relação Estrutura-Atividade , Ureia/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antígenos de Neoplasias/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/química , Inibidores da Anidrase Carbônica/química , Estrutura Molecular
5.
J Med Chem ; 67(4): 2667-2689, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38348819

RESUMO

Fibroblast growth factor receptor 4 (FGFR4) has been considered as a potential anticancer target due to FGF19/FGFR4 mediated aberrant signaling in hepatocellular carcinoma (HCC). Several FGFR4 inhibitors have been reported, but none have gained approval. Herein, a series of 5-formyl-pyrrolo[3,2-b]pyridine-3-carboxamides and a series of 6-formylpyridyl ureas were characterized as selective reversible-covalent FGFR4 inhibitors. The representative 6-formylpyridyl urea 8z exhibited excellent potency against FGFR4WT, FGFR4V550L, and FGFR4V550M with IC50 values of 16.3, 12.6, and 57.3 nM, respectively. It also potently suppressed proliferation of Ba/F3 cells driven by FGFR4WT, FGFR4V550L, and FGFR4V550M, and FGFR4-dependent Hep3B and Huh7 HCC cells, with IC50 values of 1.2, 13.5, 64.5, 15.0, and 20.4 nM, respectively. Furthermore, 8z displayed desirable microsomal stability and significant in vivo efficacy in the Huh7 HCC cancer xenograft model in nude mice. The study provides a promising new lead for anticancer drug discovery directed toward overcoming FGFR4 gatekeeper mutation mediated resistance in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Ureia/farmacologia , Ureia/uso terapêutico , Camundongos Nus , Fatores de Crescimento de Fibroblastos/metabolismo , Linhagem Celular Tumoral
6.
J Biomol Struct Dyn ; 42(5): 2494-2511, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37154501

RESUMO

Lung Cancer is one of the deadliest cancers, responsible for more than 1.80 million deaths annually worldwide, and it is on the priority list of WHO. In the current scenario, when cancer cells become resistant to the drug, making it less effective leaves the patient in vulnerable conditions. To overcome this situation, researchers are constantly working on new drugs and medications that can help fight drug resistance and improve patients' outcomes. In this study, we have taken five main proteins of lung cancer, namely RSK4 N-terminal kinase, guanylate kinase, cyclin-dependent kinase 2, kinase CK2 holoenzyme, tumour necrosis factor-alpha and screened the prepared Drug Bank library with 1,55,888 compounds against all using three Glide-based docking algorithms namely HTVS, standard precision and extra precise with a docking score ranging from -5.422 to -8.432 Kcal/mol. The poses were filtered with the MM\GBSA calculations, which helped to identify Imidazolidinyl urea C11H16N8O8 (DB14075) as a multitargeted inhibitor for lung cancer, validated with advanced computations like ADMET, interaction pattern fingerprints, and optimised the compound with Jaguar, producing satisfied relative energy. All five complexes were performed with MD Simulation for 100 ns with NPT ensemble class, producing cumulative deviation and fluctuations < 2 Å and a web of intermolecular interaction, making the complexes stable. Further, the in-vitro analysis for morphological imaging, Annexin V/PI FACS assay, ROS and MMP analysis caspase3//7 activity were performed on the A549 cell line producing promising results and can be an option to treat lung cancer at a significantly cheaper state.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias Pulmonares , Ureia/análogos & derivados , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Ureia/farmacologia , Células A549 , Algoritmos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
7.
Biol Trace Elem Res ; 202(5): 2228-2240, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37721680

RESUMO

The present study aims to investigate the ability of CaNa2EDTA (ethylenediaminetetraacetic acid) macroparticles and nanoparticles to treat cadmium-induced toxicity in female rats and to compare their efficacies. Forty rats were divided into 4 equal groups: control, cadmium, cadmium + CaNa2EDTA macroparticles and Cd + CaNa2EDTA nanoparticles. Cadmium was added to the drinking water in a concentration of 30 ppm for 10 weeks. CaNa2EDTA macroparticles and nanoparticles (50 mg/kg) were intraperitoneally injected during the last 4 weeks of the exposure period. Every two weeks, blood and urine samples were collected for determination of urea, creatinine, metallothionein and cadmium concentrations. At the end of the experiment, the skeleton of rats was examined by X-ray and tissue samples from the kidney and femur bone were collected and subjected to histopathological examination. Exposure to cadmium increased the concentrations of urea and creatinine in the serum and the concentrations of metallothionein and cadmium in serum and urine of rats. A decrease in bone mineralization by X-ray examination in addition to various histopathological alterations in the kidney and femur bone of Cd-intoxicated rats were also observed. Treatment with both CaNa2EDTA macroparticles and nanoparticles ameliorated the toxic effects induced by cadmium on the kidney and bone. However, CaNa2EDTA nanoparticles showed a superior efficacy compared to the macroparticles and therefore can be used as an effective chelating antidote for treatment of cadmium toxicity.


Assuntos
Intoxicação por Cádmio , Cádmio , Ratos , Feminino , Animais , Cádmio/toxicidade , Ácido Edético/farmacologia , Cálcio/urina , Creatinina , Rim , Intoxicação por Cádmio/tratamento farmacológico , Ureia/farmacologia , Metalotioneína
8.
J Enzyme Inhib Med Chem ; 39(1): 2286925, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38062550

RESUMO

Cancer and antibiotic-resistant bacterial infections are significant global health challenges. The resistance developed in cancer treatments intensifies therapeutic difficulties. In addressing these challenges, this study synthesised a series of N,N'-dialkyl urea derivatives containing methoxy substituents on phenethylamines. Using isocyanate for the efficient synthesis yielded target products 14-18 in 73-76% returns. Subsequently, their antibacterial and anticancer potentials were assessed. Cytotoxicity tests on cancer cell lines, bacterial strains, and a healthy fibroblast line revealed promising outcomes. All derivatives demonstrated robust antibacterial activity, with MIC values ranging from 0.97 to 15.82 µM. Notably, compounds 14 and 16 were particularly effective against the HeLa cell line, while compounds 14, 15, and 17 showed significant activity against the SH-SY5Y cell line. Importantly, these compounds had reduced toxicity to healthy fibroblast cells than to cancer cells, suggesting their potential as dual-functioning agents targeting both cancer and bacterial infections.


Assuntos
Antineoplásicos , Infecções Bacterianas , Neuroblastoma , Humanos , Células HeLa , Ureia/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Antineoplásicos/farmacologia , Relação Estrutura-Atividade
9.
Bioorg Chem ; 143: 107037, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134521

RESUMO

Presently, dual-targeting by a single small molecule stands out as a fruitful cancer-fighting strategy. Joining the global effort to fight cancer, a leading cause of death worldwide, we report in this study a novel set for benzothiophene-based aryl urea derivatives as potential anti-proliferative candidates endowed with dual VEGFR-2/EGFR inhibitory activities. The prepared ureido benzothiophenes 6a-r have been evaluated for their anticancer action on a panel of tumor cell lines, namely PanC-1, MCF-7, and HepG2 cells. Most newly synthesized benzo[b]thiophene ureas disclosed effective cytotoxic activities against the examined cancer cell lines. In particular, compound 6q, with an appended 4-trifluoromethoxy group on the terminal phenyl ring, exhibited the most significant cytotoxic activity in MCF-7 with IC50 3.86 ± 0.72 ug/mL; IC50 of 3.65 ± 0.18 ug/ml in PanC-1 cell line and an IC50 of 4.78 ± 0.06 ug/ml in HepG2. After that, derivatives that exhibited the most potent cytotoxic activities (6g, 6j, 6q, and 6r) were further evaluated as VEGFR-2 and EGFR inhibitors. Fortunately, they displayed low nanomolar IC50 values against both enzymes, where compound 6q emerged to possess superior inhibitory effects towards both EGFR and VEGFR-2 with IC50 46.6 nM and 11.3 nM simultaneously compared to the reference medications Erlotinib and Sorafenib, respectively. The docked structure of 6q within the catalytic region of VEGFR-2 and EGFR kinases was acquired and studied so that we could investigate potential binding mechanisms for the target ureido benzothiophenes. Hence, the benzothiophene-based aryl urea scaffold has great potential for advancing the development of highly effective dual inhibitors targeting both EGFR and VEGFR-2, which can serve as effective candidates for anticancer therapy.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/química , Proliferação de Células , Simulação de Acoplamento Molecular , Antineoplásicos/química , Tiofenos/farmacologia , Ureia/farmacologia , Receptores ErbB/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Desenho de Fármacos
10.
J Med Food ; 27(1): 60-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150214

RESUMO

Basil (Ocimum basilicum L.) is distributed worldwide and used in the food, pharmaceutical, and cosmetic industries. Most applications are for the herb basil, recently the basil seeds have also been used commercially; however, little is known about the nutritional and functional properties of the seeds. The present study aimed to investigate a possible protective effect of the methanol extract of O. basilicum seeds (MEOB), based on its phytochemical content, against kidney toxicity induced by CCl4 in adult rats. A single dose of CCl4 was used to induce oxidative stress in rats, which was demonstrated by a significant rise of serum enzyme markers. MEOB was administrated for 15 consecutive days (200 mg/kg body weight) to Wistar rats before CCl4 treatment and the effects on serum urea, creatinine, and uric acid, as well as the kidney superoxide dismutase, catalase, glutathione peroxidase, and glutathione activity and thiobarbituric acid reactive substances and protein carbonyl (PCO) levels were evaluated. In addition, histopathological examinations of kidneys were performed. In the positive control group, CCl4 induced an increase in serum biochemical parameters and triggered oxidative stress in the kidney. MEOB (200 mg/kg BW) resulted in significant reduction of CCl4-elevated levels of kidney markers, urea and creatinine, and a significant increase of uric acid compared with the CCl4-only group. In addition, MEOB pretreatment resulted in a significant reduction in lipid peroxidation and PCO levels in renal tissue compared with CCl4-exposed group. MEOB definitely could prevent the development of pathological changes in the kidneys. Overall, we conclude that MEOB is effective in protecting renal function from CCl4 toxicity.


Assuntos
Antioxidantes , Ocimum basilicum , Ratos , Animais , Antioxidantes/metabolismo , Tetracloreto de Carbono/toxicidade , Ácido Úrico/metabolismo , Creatinina , Ratos Wistar , Extratos Vegetais/química , Rim , Estresse Oxidativo , Sementes/metabolismo , Ureia/metabolismo , Ureia/farmacologia , Peroxidação de Lipídeos , Fígado/metabolismo
11.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069364

RESUMO

Breast cancer is the most common type of cancer in women. Although current treatments can increase patient survival, they are rarely curative when the disease is advanced (metastasis). Therefore, there is an urgent need to develop new cytotoxic drugs with a high selectivity toward cancer cells. Since repurposing approved drugs for cancer therapy has been a successful strategy in recent years, in this study, we screened a library of antiviral piperazine-derived compounds as anticancer agents. The compounds included a piperazine ring and aryl urea functions, which are privileged structures present in several anti-breast cancer drugs. The selective cytotoxic activity of a set of thirty-four 4-acyl-2-substituted piperazine urea derivatives against MCF7 breast cancer cells and MCF 10A normal breast cells was determined. Compounds 31, 32, 35, and 37 showed high selective anticancer activity against breast cancer cells and were also tested against another common type of cancer, non-small cell lung cancer (A549 lung cancer cells versus MRC-5 lung normal cells). Compounds 35 and 37 also showed selectivity against lung cancer cells. These results suggest that compounds 35 and 37 may be promising hit compounds for the development of new anticancer agents.


Assuntos
Antineoplásicos , Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Reposicionamento de Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/química , Piperazina/farmacologia , Piperazina/química , Ureia/farmacologia , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Estrutura Molecular , Células MCF-7
12.
Sci Rep ; 13(1): 22824, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38129413

RESUMO

Cancer and different types of tumors are still the most resistant diseases to available therapeutic agents. Finding a highly effective anticancer drug is the first target and concern of thousands of drug designers. In our attempts to address this concern, a new pyrazine derivative, 1-(5-bromopyrazin-2-yl)-1-[3-(trifluoromethyl)benzyl]urea (BPU), was designed via structural optimization and synthesized to investigate its anticancer/antitumor potential. The in-vitro anticancer properties of BPU were evaluated by MTT assay using selected cell lines, including the Jurkat, HeLa, and MCF-7 cells. The Jurkat cells were chosen to study the effect of BPU on cell cycle analysis using flow cytometry technique. BPU exhibited an effective cytotoxic ability in all the three cell lines assessed. It was found to be more prominent with the Jurkat cell line (IC50 = 4.64 ± 0.08 µM). When it was subjected to cell cycle analysis, this compound effectively arrested cell cycle progression in the sub-G1 phase. Upon evaluating the antiangiogenic potential of BPU via the in-vivo/ex-vivo shell-less chick chorioallantoic membrane (CAM) assays, the compound demonstrated very significant findings, revealing a complementary supportive action for the compound to act as a potent anticancer agent through inhibiting blood vessel formation in tumor tissues. Moreover, the docking energy of BPU computationally scored - 9.0 kcal/mol with the human matrix metalloproteinase 2 (MMP-2) and - 7.8 kcal/mol with the human matrix metalloproteinase 9 (MMP-9), denoting promising binding results as compared to the existing drugs for cancer therapy. The molecular dynamics (MD) simulation outcomes showed that BPU could effectively bind to the previously-proposed catalytic sites of both MMP-2 and MMP-9 enzymes with relatively stable statuses and good inhibitory binding abilities and parameters. Our findings suggest that the compound BPU could be a promising anticancer agent since it effectively inhibited cell proliferation and can be selected for further in-vitro and in-vivo investigations. In addition, the current results can be extensively validated by conducting wet-lab analysis so as to develop novel and better derivatives of BPU for cancer therapy with much less side effects and higher activities.


Assuntos
Antineoplásicos , Metaloproteinase 2 da Matriz , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ureia/farmacologia , Antineoplásicos/química , Células MCF-7 , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Estrutura Molecular
13.
J Med Life ; 16(8): 1274-1281, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38024816

RESUMO

Renal ischemia-reperfusion injury is caused by a temporary reduction in oxygen-carrying blood flow to the kidney, followed by reperfusion. During ischemia, kidney tissue damage induces overproduction of reactive oxygen species, which produces oxidative stress. The blood flow restoration during the reperfusion period causes further production of reactive oxygen species that ends with apoptosis and cell death. This study aimed to investigate the potential renoprotective effects of Raloxifene on bilateral renal ischemia-reperfusion injury in rats by looking into kidney function biomarkers, urea and creatinine, inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß). Additionally, antioxidant markers such as total antioxidant capacity (TAC) and the pro-apoptotic marker caspase-3 were assessed. Histopathological scores were also employed for evaluation. Our experimental design involved 20 rats divided into four groups: the sham group underwent median laparotomy without ischemia induction, the control group experienced bilateral renal ischemia for 30 minutes followed by 2 hours of reperfusion, the vehicle group received pretreatment with a mixture of corn oil and dimethyl sulfoxide (DMSO) before ischemia induction, and the Raloxifene-treated group was administered Raloxifene at a dose of 10 mg/kg before ischemia induction, followed by ischemia-reperfusion. Urea and creatinine, TNF-α, IL-1ß, and caspase-3 in the Raloxifene group were significantly lower compared to the control and vehicle groups. On the other hand, TAC levels in the Raloxifene group were significantly higher than in the control and vehicle groups. This study concluded that Raloxifene had a renoprotective impact via multiple actions as an anti-inflammatory, anti-apoptotic, and antioxidant agent.


Assuntos
Nefropatias , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Caspase 3/metabolismo , Caspase 3/farmacologia , Caspase 3/uso terapêutico , Cloridrato de Raloxifeno/farmacologia , Cloridrato de Raloxifeno/uso terapêutico , Cloridrato de Raloxifeno/metabolismo , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa , Creatinina , Rim , Estresse Oxidativo , Nefropatias/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Ureia/metabolismo , Ureia/farmacologia , Ureia/uso terapêutico , Isquemia
14.
Artigo em Inglês | MEDLINE | ID: mdl-37946347

RESUMO

AIM: The research intended to explore the possible nephroprotective potential of the ethyl acetate fraction derived from Acacia catechu leaves against nephrotoxicity brought about by 5-fluorouracil (5-FU) in Wistar rats. BACKGROUND: While possessing strong anticancer properties, 5-FU is hindered in its therapeutic application due to significant organ toxicity linked to elevated oxidative stress and inflammation. OBJECTIVE: The study is undertaken to conduct an analysis of the ethyl acetate fraction of A. catechu leaves both in terms of quality and quantity, examining its impact on different biochemical and histopathological parameters within the context of 5-FU-induced renal damage in rats and elucidation of the mechanism behind the observed outcomes. METHODOLOGY: Intraperitoneal injection of 5-FU at a dosage of 20 mg/kg/day over 5 days was given to induce nephrotoxicity in rats. The evaluation of nephrotoxicity involved quantifying serum creatinine, urea, uric acid, and electrolyte concentrations. Furthermore, superoxide dismutase, catalase antioxidant enzymes, and TNF-α concentration in serum were also measured. RESULTS: 5-FU injection led to the initiation of oxidative stress within the kidneys, leading to modifications in renal biomarkers (including serum creatinine, urea, uric acid, and Na+, K+ levels), and a reduction in antioxidant enzymes namely superoxide dismutase and catalase. Notably, the presence of the inflammatory cytokine TNF-α was significantly elevated due to 5-FU. Microscopic examination of renal tissue revealed tubular degeneration and congestion. However, treatment involving the ethyl acetate fraction derived from A. catechu leaves effectively and dose-dependently reversed the changes observed in renal biomarkers, renal antioxidant enzymes, inflammatory mediators, and histopathological features, bringing them closer to normal conditions. The observed recuperative impact was mainly attributed to the antioxidant and antiinflammatory properties of the fraction. CONCLUSION: The ethyl acetate fraction of A. catechu leaves exhibited a mitigating influence on the renal impairment caused by 5-FU, showcasing its potential as a nephroprotective agent capable of preventing and ameliorating 5-FU-induced nephrotoxicity.


Assuntos
Acacia , Antioxidantes , Ratos , Animais , Ratos Wistar , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Catalase/metabolismo , Catalase/farmacologia , Acacia/metabolismo , Fluoruracila/toxicidade , Fluoruracila/metabolismo , Creatinina/metabolismo , Creatinina/farmacologia , Fator de Necrose Tumoral alfa , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia , Estresse Oxidativo , Rim , Inflamação/tratamento farmacológico , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Ureia/metabolismo , Ureia/farmacologia , Biomarcadores
15.
Med Oncol ; 40(11): 333, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848569

RESUMO

Chemotherapy-related anemia is a major obstacle in anticancer therapy. Tamoxifen (TAM) is an antiestrogen prescribed for breast cancer patients with hemolytic potential and apoptotic properties in nucleated cells. However, the eryptotic activity of TAM has hitherto escaped the efforts of investigators. RBCs from apparently healthy volunteers were treated with 1-50 µM of TAM for 24 h at 37 °C. Hemoglobin leakage and LDH, AST, and AChE activities were photometrically determined while K+, Na+, and Mg2+ were detected by ion-selective electrode. Flow cytometry was used to identify eryptotic cells by annexin-V-FITC, intracellular Ca2+ by Fluo4/AM, sell size and morphology by FSC and SSC signals, respectively, and oxidative stress by H2DCFDA. Whole blood was also exposed to 30 µM of TAM for 24 h at 37 °C to examine the toxicity of TAM to WBCs and platelets. TAM caused Ca2+-independent, dose-responsive hemolysis accompanied by K+, LDH, and AST leakage without improving the mechanical stability of RBCs in hypotonic environments. TAM treatment also increased the proportion of cells positive for annexin-V-FITC, Fluo4, and DCF, along with diminished FSC and SSC signals and AChE activity. Notably, TAM toxicity was aggravated by sucrose but abrogated by vitamin C, PEG 8000, and urea. Moreover, TAM exhibited distinct cytotoxic profiles against leukocytes and platelets. TAM-induced eryptosis is characterized by breakdown of membrane asymmetry, inhibition of AChE activity, Ca2+ accumulation, cell shrinkage, and oxidative stress. Vitamin C, PEG 8000, and urea may hold promise to subvert the undesirable toxic effects of TAM on RBCs.


Assuntos
Eriptose , Tamoxifeno , Humanos , Tamoxifeno/efeitos adversos , Cálcio/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Fluoresceína-5-Isotiocianato/farmacologia , Estresse Oxidativo , Eritrócitos , Hemólise , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Ureia/metabolismo , Ureia/farmacologia , Espécies Reativas de Oxigênio/metabolismo
16.
Sci Rep ; 13(1): 17560, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845243

RESUMO

We designed and prepared a novel series of urea derivatives with/without sulfonyl group in their structures to investigate the impact of the sulfonyl group on the biological activity of the evaluated compounds. Antibacterial investigations indicated that derivatives 7, 8, 9, and 11 had the most antibacterial property of all the compounds examined, their minimum inhibitory concentrations (MICs) determined against B. mycoides, E. coli, and C. albicans, with compound 8 being the most active at a MIC value of 4.88 µg/mL. Anti-cancer activity has been tested against eight human cancer cell lines; A549, HCT116, PC3, A431, HePG2, HOS, PACA2 and BJ1. Compounds 7, 8 and 9 emerged IC50 values better than Doxorubicin as a reference drug. Compounds 7 and 8 showed IC50 = 44.4 and 22.4 µM respectively against PACA2 compared to Doxorubicin (IC50 = 52.1 µM). Compound 9 showed IC50 = 17.8, 12.4, and 17.6 µM against HCT116, HePG2, and HOS, respectively. qRT-PCR revealed the down-regulation of PALB2 in compounds 7 and 15 treated PACA2 cells. Also, the down-regulation of BRCA1 and BRCA2 was shown in compound 7 treated PC3 cells. As regard A549 cells, compound 8 decreased the expression level of EGFR and KRAS genes. While compounds 7 and 9 down-regulated TP53 and FASN in HCT116 cells. Molecular docking was done against Escherichia coli enoyl reductase and human Son of sevenless homolog 1 (SOS1) and the results showed the promising inhibition of the studied proteins.


Assuntos
Antineoplásicos , Humanos , Linhagem Celular Tumoral , Antineoplásicos/química , Simulação de Acoplamento Molecular , Ureia/farmacologia , Escherichia coli/metabolismo , Doxorrubicina/farmacologia , Antibacterianos/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células
17.
J Med Life ; 16(7): 1032-1040, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37900077

RESUMO

The pathogenesis of kidney damage involves complicated interactions between vascular endothelial and tubular cell destruction. Evidence has shown that vitamin D may have anti-inflammatory effects in several models of kidney damage. In this study, we evaluated the effects of synthetic vitamin D on levofloxacin-induced renal injury in rats. Forty-two white Albino rats were divided into six groups, with each group comprising seven rats. Group I served as the control (negative control) and received intraperitoneal injections of normal saline (0.5 ml) once daily for twenty-one days. Group II and Group III were treated with a single intraperitoneal dose of Levofloxacin (50 mg/kg/day) and (100 mg/kg/day), respectively, for 14 days (positive control groups). Group IV served as an additional negative control and received oral administration of vitamin D3 (500 IU/rat/day) for twenty-one days. In Group V, rats were orally administered vitamin D3 (500 IU/rat/day) for twenty-one days, and intraperitoneal injections of Levofloxacin (50 mg/kg/day) were administered on day 8 for 14 days. Group VI received oral vitamin D3 supplementation (500 IU/rat/day) for twenty-one days, followed by intraperitoneal injections of Levofloxacin (100 mg/kg/day) on day 8 for fourteen days. Blood samples were collected to measure creatinine, urea, malondialdehyde, glutathione reductase, and superoxide dismutase levels. Compared to the positive control group, vitamin D supplementation lowered creatinine, urea, and malondialdehyde levels, while increasing glutathione reductase and superoxide dismutase levels. Urea, creatinine, and malondialdehyde levels were significantly (p<0.05) higher in rats administered LFX 50mg and 100mg compared to rats given (LFX + vitamin D). The main findings of this study show that vitamin D reduces renal dysfunction, suggesting that vitamin D has antioxidant properties and may be used to prevent renal injury.


Assuntos
Nefropatias , Levofloxacino , Vitamina D , Animais , Ratos , Antioxidantes/farmacologia , Colecalciferol/metabolismo , Creatinina , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Glutationa Redutase/farmacologia , Rim , Levofloxacino/efeitos adversos , Levofloxacino/metabolismo , Malondialdeído , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Ureia/metabolismo , Ureia/farmacologia , Vitamina D/farmacologia
18.
Vet Q ; 43(1): 1-12, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37729105

RESUMO

BACKGROUND: Type 2 diabetes (T2D) is a health concern for both humans and cats, with cases rising over the past decade. Around 70% of patients from either species exhibit pancreatic aggregates of islet amyloid polypeptide (IAPP), a protein that proves toxic upon misfolding. These misfolded protein aggregates congregate in the islets of Langerhans of the pancreas, diminishing the capability of ß-cells to produce insulin and further perpetuating disease. OBJECTIVE: Our team's drug discovery program is investigating newly synthesized compounds that could diminish aggregates of both human and feline IAPP, potentially disrupting the progression of T2D. MATERIAL AND METHODS: We prepared 24 compounds derived from diaryl urea, as ureas have previously demonstrated great potential at reducing accumulations of misfolded proteins. Biophysical methods were employed to analyze the anti-aggregation activity of these compounds at inhibiting and/or disrupting IAPP fibril formation in vitro. RESULTS: The results demonstrate that compounds 12 and 24 were most effective at reducing the fibrillization and aggregation of both human and feline IAPP. When compared with the control for each experiment, samples treated with either compound 12 or 24 exhibited fewer accumulations of amyloid-like fibrils. CONCLUSION: Urea-based compounds, such as compounds 12 and 24, may prove crucial in future pre-clinical studies in the search for therapeutics for T2D.


Assuntos
Doenças do Gato , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Animais , Gatos , Humanos , Amiloide/análise , Amiloide/química , Amiloide/metabolismo , Doenças do Gato/tratamento farmacológico , Doenças do Gato/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/veterinária , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/análise , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/metabolismo , Ureia/análogos & derivados , Ureia/análise , Ureia/farmacologia , Ureia/uso terapêutico
19.
Chem Biol Drug Des ; 102(6): 1458-1468, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37653693

RESUMO

Totally 15 novel flurbiprofen urea derivatives were synthesized bearing the thiadiazole ring. Their inhibition effects on tyrosinase were determined. 3c was found to be the strongest inhibitor with the IC50 value of 68.0 µM against tyrosinase. The enzyme inhibition types of the synthesized compounds were determined by examining the kinetic parameters. The inhibition type of 3c was determined as uncompetitive and the Ki value was calculated as 36.3 µM. Moreover, their cytotoxic effects on hepatocellular carcinoma (HepG2), colorectal carcinoma (HT-29), and melanoma (B16F10) cell lines were evaluated. According to the cytotoxicity results, 3l (IC50 = 14.11 µM) showed the highest cytotoxicity on the HT-29 cells, while 3o (IC50 = 4.22 µM) exhibited the strongest cytotoxic effect on HepG2 cell lines. Also, 3j (IC50 = 7.55 µM strongly affected B16F10. The effects of synthesized compounds on the healthy cell line were evaluated on the CCD-986Sk cell line. Molecular modelling studies have indicated the potential binding interactions of the uncompetitive inhibitor 3c with the enzyme-substrate complex.


Assuntos
Antineoplásicos , Flurbiprofeno , Tiadiazóis , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Flurbiprofeno/farmacologia , Ureia/farmacologia , Monofenol Mono-Oxigenase/metabolismo , Antineoplásicos/química , Células HT29
20.
J Phys Chem B ; 127(33): 7251-7265, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37574910

RESUMO

Ionic liquids (ILs) are known to stabilize protein conformations in aqueous medium. Importantly, ILs can also act as refolding additives in urea-driven denaturation of proteins. However, despite the importance of the problem, detailed microscopic understanding of the counteraction effects of ILs on urea-induced protein denaturation remains elusive. In this work, atomistic molecular dynamics (MD) simulations of the protein α-lactalbumin have been carried out in pure aqueous medium, in 8 M binary urea-water solution and in ternary urea-IL-water solutions containing ammonium-based ethyl ammonium acetate (EAA) as the IL at different concentrations (1-4 M). Attempts have been made to quantify detailed molecular-level understanding of the origin behind the counteraction effects of the IL on urea-induced partial unfolding of the protein. The calculations revealed significant conformational changes of the protein with multiple free energy minima due to its partial unfolding in binary urea-water solution. The counteraction effect of the IL was evident from the enhanced structural rigidity of the protein with propensity to transform into a single native free energy minimum state in ternary urea-IL-water solutions. Such an effect has been found to be associated with preferential direct binding of the IL components with the protein and simultaneous expulsion of urea from the interface, thereby providing additional stabilization of the protein in ternary solutions. Most importantly, modified rearrangement of the hydrogen bond network at the interface due to the formation of stronger protein-cation (PC) and protein-anion (PA) hydrogen bonds by breaking relatively weaker protein-urea (PU) and protein-water (PW) hydrogen bonds has been recognized as the microscopic origin behind the counteraction effects of EAA on urea-induced partial unfolding of the protein.


Assuntos
Compostos de Amônio , Líquidos Iônicos , Líquidos Iônicos/química , Lactalbumina , Peptídeos/química , Ureia/farmacologia , Ureia/química , Simulação de Dinâmica Molecular , Água/química , Fatores de Transcrição , Desnaturação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA