Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 7: 11814, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251117

RESUMO

Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ∼95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes.


Assuntos
Actinas/metabolismo , Endossomos/metabolismo , Gotículas Lipídicas/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Peroxissomos/metabolismo , Actinas/ultraestrutura , Animais , Transporte Biológico , Fenômenos Biomecânicos , Células COS , Chlorocebus aethiops , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Difusão , Endossomos/ultraestrutura , Hifas/metabolismo , Hifas/ultraestrutura , Gotículas Lipídicas/ultraestrutura , Microtúbulos/ultraestrutura , Miosinas/ultraestrutura , Peroxissomos/ultraestrutura , Ustilago/metabolismo , Ustilago/ultraestrutura
2.
J Cell Biol ; 204(6): 989-1007, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24637326

RESUMO

Bidirectional membrane trafficking along microtubules is mediated by kinesin-1, kinesin-3, and dynein. Several organelle-bound adapters for kinesin-1 and dynein have been reported that orchestrate their opposing activity. However, the coordination of kinesin-3/dynein-mediated transport is not understood. In this paper, we report that a Hook protein, Hok1, is essential for kinesin-3- and dynein-dependent early endosome (EE) motility in the fungus Ustilago maydis. Hok1 binds to EEs via its C-terminal region, where it forms a complex with homologues of human fused toes (FTS) and its interactor FTS- and Hook-interacting protein. A highly conserved N-terminal region is required to bind dynein and kinesin-3 to EEs. To change the direction of EE transport, kinesin-3 is released from organelles, and dynein binds subsequently. A chimaera of human Hook3 and Hok1 rescues the hok1 mutant phenotype, suggesting functional conservation between humans and fungi. We conclude that Hok1 is part of an evolutionarily conserved protein complex that regulates bidirectional EE trafficking by controlling attachment of both kinesin-3 and dynein.


Assuntos
Dineínas/metabolismo , Endossomos/metabolismo , Proteínas Fúngicas/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Ustilago/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Endossomos/ultraestrutura , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Ustilago/ultraestrutura
3.
Mol Biol Cell ; 17(7): 3242-53, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16672380

RESUMO

Microtubules (MTs) are often organized by a nucleus-associated MT organizing center (MTOC). In addition, in neurons and epithelial cells, motor-based transport of assembled MTs determines the polarity of the MT array. Here, we show that MT motility participates in MT organization in the fungus Ustilago maydis. In budding cells, most MTs are nucleated by three to six small and motile gamma-tubulin-containing MTOCs at the boundary of mother and daughter cell, which results in a polarized MT array. In addition, free MTs and MTOCs move rapidly throughout the cytoplasm. Disruption of MTs with benomyl and subsequent washout led to an equal distribution of the MTOC and random formation of highly motile and randomly oriented MTs throughout the cytoplasm. Within 3 min after washout, MTOCs returned to the neck region and the polarized MT array was reestablished. MT motility and polarity of the MT array was lost in dynein mutants, indicating that dynein-based transport of MTs and MTOCs polarizes the MT cytoskeleton. Observation of green fluorescent protein-tagged dynein indicated that this is achieved by off-loading dynein from the plus-ends of motile MTs. We propose that MT organization in U. maydis involves dynein-mediated motility of MTs and nucleation sites.


Assuntos
Dineínas/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Ustilago/metabolismo , Benomilo/farmacologia , Citoplasma/metabolismo , Dineínas/análise , Dineínas/genética , Proteínas Fúngicas/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Interfase , Centro Organizador dos Microtúbulos/efeitos dos fármacos , Centro Organizador dos Microtúbulos/ultraestrutura , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Mutação , Tubulina (Proteína)/metabolismo , Ustilago/ultraestrutura
4.
EMBO J ; 24(9): 1674-85, 2005 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-15861140

RESUMO

In animals, the nuclear envelope disassembles in mitosis, while budding and fission yeast form an intranuclear spindle. Ultrastructural data indicate that basidiomycetes, such as the pathogen Ustilago maydis, undergo an 'open mitosis'. Here we describe the mechanism of nuclear envelope break-down in U. maydis. In interphase, the nucleus resides in the mother cell and the spindle pole body is inactive. Prior to mitosis, it becomes activated and nucleates microtubules that reach into the daughter cell. Dynein appears at microtubule tips and exerts force on the spindle pole body, which leads to the formation of a long nuclear extension that reaches into the bud. Chromosomes migrate through this extension and together with the spindle pole bodies leave the old envelope, which remains in the mother cell until late telophase. Inhibition of nuclear migration or deletion of a Tem1p-like GTPase leads to a 'closed' mitosis, indicating that spindle pole bodies have to reach into the bud where MEN signalling participates in envelope removal. Our data indicate that dynein-mediated premitotic nuclear migration is essential for envelope removal in U. maydis.


Assuntos
Dineínas/metabolismo , Membrana Nuclear/genética , Ustilago/genética , Divisão do Núcleo Celular , Cromossomos/genética , Genes Fúngicos , Proteínas Luminescentes , Microtúbulos/genética , Mitose , Dados de Sequência Molecular , Plasmídeos , Fuso Acromático/genética , Ustilago/metabolismo , Ustilago/ultraestrutura
5.
J Microsc ; 214(Pt 2): 114-23, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15102060

RESUMO

Microtubules are an important part of the eukaryotic cytoskeleton, which participates in numerous essential cellular processes. In fungi interphase microtubules mediate cell polarity and participate in polar growth. However, our understanding of their detailed role in fungal growth is just at the beginning. In growing cells of the plant pathogenic fungus Ustilago maydis microtubules are organized by polar microtubule organizing centres that focus the microtubule minus ends at the small bud. Two opposing motor complexes utilize this microtubule polarity. Cytoplasmic dynein and a kinesin of the Unc104/Kif1A family of kinesins mediate rapid bi-directional transport of early endosomes. A balance of their activity is required for cell cycle-dependent accumulation of early endosomes at the growth site, the rear cell pole and the region of cell cleavage. Mutant phenotypes suggest that these endosomes participate in polar growth, bud site selection and cell separation. Therefore, our data suggest that endocytotic membrane recycling participates in local exocytosis, and that the microtubule cytoskeleton has a crucial role in this process.


Assuntos
Microtúbulos/fisiologia , Ustilago/fisiologia , Ustilago/patogenicidade , Citoesqueleto/fisiologia , Dineínas/metabolismo , Endocitose , Endossomos/fisiologia , Proteínas Fúngicas/metabolismo , Cinesinas/metabolismo , Movimento , Doenças das Plantas/microbiologia , Ustilago/crescimento & desenvolvimento , Ustilago/ultraestrutura
6.
EMBO J ; 21(12): 2946-57, 2002 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-12065408

RESUMO

In Ustilago maydis, bidirectional transport of early endosomes is microtubule dependent and supports growth and cell separation. During early budding, endosomes accumulate at putative microtubule organizers within the bud, whereas in medium-budded cells, endosome clusters appear at the growing ends of microtubules at the distal cell pole. This suggests that motors of opposing transport direction organize endosomes in budding cells. Here we set out to identify these motors and elucidate the molecular mechanism of endosome reorganization. By PCR we isolated kin3, which encodes an UNC-104/KIF1-like kinesin from U.maydis. Recombinant Kin3 binds microtubules and has ATPase activity. Kin3-green fluorescent protein moves along microtubules in vivo, accumulates at sites of growth and localizes to endosomes. Deletion of kin3 reduces endosome motility to approximately 33%, and abolishes endosome clustering at the distal cell pole and at septa. This results in a transition from bipolar to monopolar budding and cell separation defects. Double mutant analysis indicates that the remaining motility in Deltakin3-mutants depends on dynein, and that dynein and Kin3 counteract on the endosomes to arrange them at opposing cell poles.


Assuntos
Dineínas/metabolismo , Endossomos/metabolismo , Proteínas Fúngicas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteínas do Tecido Nervoso/genética , Ustilago/fisiologia , Transporte Biológico/fisiologia , Tamanho Celular , Citoesqueleto/metabolismo , Dineínas/genética , Endossomos/ultraestrutura , Proteínas Fúngicas/genética , Cinesinas/classificação , Microtúbulos/metabolismo , Modelos Biológicos , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes de Fusão/metabolismo , Ustilago/ultraestrutura
7.
EMBO J ; 20(18): 5091-100, 2001 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-11566874

RESUMO

The heavy chain of dynein forms a globular motor domain that tightly couples the ATP-cleavage region and the microtubule-binding site to transform chemical energy into motion along the cytoskeleton. Here we show that, in the fungus Ustilago maydis, two genes, dyn1 and dyn2, encode the dynein heavy chain. The putative ATPase region is provided by dyn1, while dyn2 includes the predicted microtubule-binding site. Both genes are located on different chromosomes, are transcribed into independent mRNAs and are translated into separate polypeptides. Both Dyn1 and Dyn2 co-immunoprecipitated and co-localized within growing cells, and Dyn1-Dyn2 fusion proteins partially rescued mutant phenotypes, suggesting that both polypeptides interact to form a complex. In cell extracts the Dyn1-Dyn2 complex dissociated, and microtubule affinity purification indicated that Dyn1 or associated polypeptides bind microtubules independently of Dyn2. Both Dyn1 and Dyn2 were essential for cell survival, and conditional mutants revealed a common role in nuclear migration, cell morphogenesis and microtubule organization, indicating that the Dyn1-Dyn2 complex serves multiple cellular functions.


Assuntos
Dineínas/genética , Dineínas/fisiologia , Ustilago/crescimento & desenvolvimento , Sequência de Aminoácidos , Núcleo Celular/fisiologia , Clonagem Molecular , Citoplasma/metabolismo , Dineínas do Citoplasma , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/fisiologia , Dados de Sequência Molecular , Movimento , Mutação , Peptídeos/metabolismo , Estrutura Terciária de Proteína , RNA Fúngico/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Ustilago/citologia , Ustilago/ultraestrutura
8.
Mol Microbiol ; 41(2): 337-48, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11489122

RESUMO

The fungal pathogen Ustilago maydis causes a dramatic disease in maize involving the induction of tumours and the formation of masses of black teliospores. In this fungus, mating between haploid, budding cells results in the formation of the infectious, filamentous cell type that invades host tissue. Mating and filamentous growth are governed by the mating-type loci and by cAMP signalling, perhaps in response to signals from maize. To dissect the involvement of cAMP signalling further, the constitutive filamentous phenotype of a mutant with a defect in the catalytic subunit of protein kinase A was used to isolate suppressor mutations that restore budding growth. One such mutation identified the hgl1 gene, which is shown to be required for both the switch between budding and filamentous growth and teliospore formation during infection. In addition, the hgl1 gene product may be a target of phosphorylation by protein kinase A, and transcript levels for the gene are elevated during mating. Thus, the hgl1 gene provides a connection between mating, cAMP signalling and two important aspects of virulence: filamentous growth and the formation of teliospores.


Assuntos
Proteínas Fúngicas/metabolismo , Morfogênese , Transdução de Sinais , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/genética , Ustilago/crescimento & desenvolvimento , Ustilago/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Genes Fúngicos Tipo Acasalamento , Microscopia Eletrônica de Varredura , Modelos Biológicos , Mutação , Fosforilação , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodução , Esporos Fúngicos/citologia , Esporos Fúngicos/ultraestrutura , Supressão Genética , Transcrição Gênica , Ustilago/citologia , Ustilago/ultraestrutura , Virulência , Zea mays/microbiologia
9.
Development ; 122(10): 2965-76, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8898211

RESUMO

Ustilago maydis is a dimorphic fungus with a yeast-like non-pathogenic form and a filamentous (hyphal) pathogenic form that induces tumor formation in maize. Within mature tumors, hyphae give rise to teliospores, which are round, diploid cells surrounded by a specialized cell wall. Here we describe the time course of fungal development in the plant with a focus on the morphological changes in the hyphae and the pathway of teliospore formation. We confirm and extend earlier observations that U. maydis hyphae branch extensively on the leaf surface and intracellularly before induction of tumors. We observe that at later stages the filaments undergo a series of discrete morphogenetic changes leading to teliospore formation. In particular, we show that the hyphae become embedded in a mucilaginous matrix within the tumor cells and the hyphal tips become modified. The hyphae then undergo fragmentation to release individual cells that exhibit a variety of shapes on their way to becoming rounded. Finally, a specialized cell wall is deposited. Support for the existence of such a pathway comes from analysis of a mutant defective in the fuz1 gene: inactivation of fuz1 blocks production of the mucilaginous matrix and fragmentation of the hyphae, leading to a defect in teliospore formation. The different morphological changes that occur while in the plant but not in culture suggest that plant inputs play a key role in fungal development.


Assuntos
Ustilago/crescimento & desenvolvimento , Deleção de Genes , Esporos Fúngicos , Ustilago/genética , Ustilago/ultraestrutura , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA