Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 739837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721406

RESUMO

We have developed a new binary epitope-presenting CVP platform based on bamboo mosaic virus (BaMV) by using the sortase A (SrtA)-mediated ligation technology. The reconstructed BaMV genome harbors two modifications: 1) a coat protein (CP) with N-terminal extension of the tobacco etch virus (TEV) protease recognition site plus 4 extra glycine (G) residues as the SrtA acceptor; and 2) a TEV protease coding region replacing that of the triple-gene-block proteins. Inoculation of such construct, pKB5G, on Nicotiana benthamiana resulted in the efficient production of filamentous CVPs ready for SrtA-mediated ligation with desired proteins. The second part of the binary platform includes an expression vector for the bacterial production of donor proteins. We demonstrated the applicability of the platform by using the recombinant envelope protein domain III (rEDIII) of Japanese encephalitis virus (JEV) as the antigen. Up to 40% of the BaMV CP subunits in each CVP were loaded with rEDIII proteins in 1 min. The rEDIII-presenting BaMV CVPs (BJLPET5G) could be purified using affinity chromatography. Immunization assays confirmed that BJLPET5G could induce the production of neutralizing antibodies against JEV infections. The binary platform could be adapted as a useful alternative for the development and mass production of vaccine candidates.


Assuntos
Aminoaciltransferases/metabolismo , Antígenos Virais/administração & dosagem , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/prevenção & controle , Endopeptidases/metabolismo , Vacinas contra Encefalite Japonesa/administração & dosagem , Potexvirus/enzimologia , Vírion/enzimologia , Aminoaciltransferases/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas de Bactérias/genética , Linhagem Celular , Cisteína Endopeptidases/genética , Modelos Animais de Doenças , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/sangue , Encefalite Japonesa/imunologia , Encefalite Japonesa/virologia , Endopeptidases/genética , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/metabolismo , Feminino , Vetores Genéticos , Imunogenicidade da Vacina , Vacinas contra Encefalite Japonesa/genética , Vacinas contra Encefalite Japonesa/imunologia , Camundongos Endogâmicos BALB C , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Potexvirus/genética , Potexvirus/imunologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo , Vírion/genética , Vírion/imunologia
2.
Sci Rep ; 10(1): 18101, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093566

RESUMO

HIV encodes an aspartyl protease that is activated during, or shortly after, budding of viral particles from the surface of infected cells. Protease-mediated cleavage of viral polyproteins is essential to generating infectious viruses, a process known as 'maturation' that is the target of FDA-approved antiretroviral drugs. Most assays to monitor protease activity rely on bulk analysis of millions of viruses and obscure potential heterogeneity of protease activation within individual particles. In this study we used nanoscale flow cytometry in conjunction with an engineered FRET reporter called VIral ProteasE Reporter (VIPER) to investigate heterogeneity of protease activation in individual, patient-derived viruses. We demonstrate previously unappreciated interpatient variation in HIV protease processing efficiency that impacts viral infectivity. Additionally, monitoring of protease activity in individual virions distinguishes between drug sensitivity or resistance to protease inhibitors in patient-derived samples. These findings demonstrate the feasibility of monitoring enzymatic processes using nanoscale flow cytometry and highlight the potential of this technology for translational clinical discovery, not only for viruses but also other submicron particles including exosomes, microvesicles, and bacteria.


Assuntos
Farmacorresistência Viral , Citometria de Fluxo/métodos , Infecções por HIV/virologia , Inibidores da Protease de HIV/farmacologia , Protease de HIV/metabolismo , HIV-1/enzimologia , Vírion/enzimologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/enzimologia , HIV-1/efeitos dos fármacos , HIV-1/isolamento & purificação , Humanos , Células Jurkat , Vírion/efeitos dos fármacos , Vírion/isolamento & purificação
3.
PLoS Pathog ; 14(6): e1007124, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29928064

RESUMO

Hepatitis B virus (HBV) is one of the major etiological pathogens for liver cirrhosis and hepatocellular carcinoma. Chronic HBV infection is a key factor in these severe liver diseases. During infection, HBV forms a nuclear viral episome in the form of covalently closed circular DNA (cccDNA). Current therapies are not able to efficiently eliminate cccDNA from infected hepatocytes. cccDNA is a master template for viral replication that is formed by the conversion of its precursor, relaxed circular DNA (rcDNA). However, the host factors critical for cccDNA formation remain to be determined. Here, we assessed whether one potential host factor, flap structure-specific endonuclease 1 (FEN1), is involved in cleavage of the flap-like structure in rcDNA. In a cell culture HBV model (Hep38.7-Tet), expression and activity of FEN1 were reduced by siRNA, shRNA, CRISPR/Cas9-mediated genome editing, and a FEN1 inhibitor. These reductions in FEN1 expression and activity did not affect nucleocapsid DNA (NC-DNA) production, but did reduce cccDNA levels in Hep38.7-Tet cells. Exogenous overexpression of wild-type FEN1 rescued the reduced cccDNA production in FEN1-depleted Hep38.7-Tet cells. Anti-FEN1 immunoprecipitation revealed the binding of FEN1 to HBV DNA. An in vitro FEN activity assay demonstrated cleavage of 5'-flap from a synthesized HBV DNA substrate. Furthermore, cccDNA was generated in vitro when purified rcDNA was incubated with recombinant FEN1, DNA polymerase, and DNA ligase. Importantly, FEN1 was required for the in vitro cccDNA formation assay. These results demonstrate that FEN1 is involved in HBV cccDNA formation in cell culture system, and that FEN1, DNA polymerase, and ligase activities are sufficient to convert rcDNA into cccDNA in vitro.


Assuntos
DNA Circular/metabolismo , DNA Viral/metabolismo , Endonucleases Flap/metabolismo , Vírus da Hepatite B/genética , Hepatite B/genética , Vírion/genética , DNA Circular/genética , DNA Viral/genética , Inibidores Enzimáticos/farmacologia , Endonucleases Flap/antagonistas & inibidores , Endonucleases Flap/genética , Células Hep G2 , Hepatite B/enzimologia , Hepatite B/virologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Vírion/enzimologia , Replicação Viral
4.
J Virol ; 89(2): 1286-97, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25392207

RESUMO

UNLABELLED: Reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) is synthesized and packaged into the virion as a part of the GagPol polyprotein. Mature RT is released by the action of viral protease. However, unlike other viral proteins, RT is subject to an internal cleavage event leading to the formation of two subunits in the virion: a p66 subunit and a p51 subunit that lacks the RNase H domain. We have previously identified RNase H to be an HIV-1 protein that has the potential to be a substrate for the N-end rule pathway, which is an ubiquitin-dependent proteolytic system in which the identity of the N-terminal amino acid determines the half-life of a protein. Here we examined the importance of the N-terminal amino acid residue of RNase H in the early life cycle of HIV-1. We show that changing this residue to an amino acid structurally different from the conserved residue leads to the degradation of RT and, in some cases, integrase in the virus particle and this abolishes infectivity. Using intravirion complementation and in vitro protease cleavage assays, we show that degradation of RT in RNase H N-terminal mutants occurs in the absence of active viral protease in the virion. Our results also indicate the importance of the RNase H N-terminal residue in the dimerization of RT subunits. IMPORTANCE: HIV-1 proteins are initially made as part of a polyprotein that is cleaved by the viral protease into the proteins that form the virus particle. We were interested in one particular protein, RNase H, that is cleaved from reverse transcriptase. In particular, we found that the first amino acid of RNase H never varied in over 1,850 isolates of HIV-1 that we compared. When we changed the first amino acid, we found that the reverse transcriptase in the virus was degraded. While other studies have implied that the viral protease can degrade mutant RT proteins, we show here that this may not be the case for our mutants. Our results suggest that the presence of active viral protease is not required for the degradation of RT in RNase H N-terminal mutants, suggesting a role for a cellular protease in this process.


Assuntos
Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Ribonuclease H/química , Ribonuclease H/metabolismo , Vírion/enzimologia , Aminoácidos/genética , Análise Mutacional de DNA , Estabilidade Enzimática , Transcriptase Reversa do HIV/genética , HIV-1/genética , Humanos , Proteólise , Ribonuclease H/genética , Vírion/genética
5.
Biotechnol Lett ; 36(6): 1253-61, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24563316

RESUMO

Recombinant transmembrane adenylate cyclase (AC) was incorporated into membranes of giant liposomes using membrane fusion between liposomes and baculovirus-budded virus (BV). AC genes were constructed into transfer vectors in a form fused with fluorescent protein or polyhistidine at the C-terminus. The recombinant BVs were collected by ultracentrifugation and AC expression was verified using western blotting. The BVs and giant liposomes generated using gentle hydration were fused under acidic conditions; the incorporation of AC into giant liposomes was demonstrated by confocal laser scanning microscopy through the emission of fluorescence from their membranes. The AC-expressing BVs were also fused with liposomes containing the substrate (ATP) with/without a specific inhibitor (SQ 22536). An enzyme immunoassay on extracts of the sample demonstrated that cAMP was produced inside the liposomes. This procedure facilitates direct introduction of large transmembrane proteins into artificial membranes without solubilization.


Assuntos
Adenilil Ciclases/metabolismo , Baculoviridae/enzimologia , Lipossomos/metabolismo , Fusão de Membrana , Vírion/enzimologia , Adenilil Ciclases/genética , Baculoviridae/genética , AMP Cíclico/metabolismo , Técnicas Imunoenzimáticas , Lipossomos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
J Virol ; 88(3): 1513-24, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24227847

RESUMO

Late in adenovirus assembly, the viral protease (AVP) becomes activated and cleaves multiple copies of three capsid and three core proteins. Proteolytic maturation is an absolute requirement to render the viral particle infectious. We show here that the L1 52/55k protein, which is present in empty capsids but not in mature virions and is required for genome packaging, is the seventh substrate for AVP. A new estimate on its copy number indicates that there are about 50 molecules of the L1 52/55k protein in the immature virus particle. Using a quasi-in vivo situation, i.e., the addition of recombinant AVP to mildly disrupted immature virus particles, we show that cleavage of L1 52/55k is DNA dependent, as is the cleavage of the other viral precursor proteins, and occurs at multiple sites, many not conforming to AVP consensus cleavage sites. Proteolytic processing of L1 52/55k disrupts its interactions with other capsid and core proteins, providing a mechanism for its removal during viral maturation. Our results support a model in which the role of L1 52/55k protein during assembly consists in tethering the viral core to the icosahedral shell and in which maturation proceeds simultaneously with packaging, before the viral particle is sealed.


Assuntos
Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/enzimologia , Proteínas do Capsídeo/metabolismo , Cisteína Endopeptidases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Virais/metabolismo , Vírion/enzimologia , Montagem de Vírus , Adenovírus Humanos/genética , Adenovírus Humanos/fisiologia , Proteínas do Capsídeo/genética , Linhagem Celular , Cisteína Endopeptidases/genética , Humanos , Proteínas Virais/genética , Vírion/genética , Vírion/fisiologia
7.
J Biol Chem ; 288(3): 2068-80, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23043137

RESUMO

Late in an adenovirus infection, the viral proteinase (AVP) becomes activated to process virion precursor proteins used in virus assembly. AVP is activated by two cofactors, the viral DNA and pVIc, an 11-amino acid peptide originating from the C terminus of the precursor protein pVI. There is a conundrum in the activation of AVP in that AVP and pVI are sequence-independent DNA-binding proteins with nm equilibrium dissociation constants such that in the virus particle, they are predicted to be essentially irreversibly bound to the viral DNA. Here, we resolve that conundrum by showing that activation of AVP takes place on the one-dimensional contour of DNA. In vitro, pVI, a substrate, slides on DNA via one-dimensional diffusion, D(1) = 1.45 × 10(6) bp(2)/s, until it binds to AVP also on the same DNA molecule. AVP, partially activated by being bound to DNA, excises pVIc, which binds to the AVP molecule that cut it out. pVIc then forms a disulfide bond with AVP forming the fully active AVP-pVIc complex bound to DNA. In vivo, in heat-disrupted immature virus, AVP was also activated by pVI in DNA-dependent reactions. This activation mechanism illustrates a new paradigm for virion maturation and a new way, by sliding on DNA, for bimolecular complexes to form among proteins not involved in DNA metabolism.


Assuntos
Adenovírus Humanos/enzimologia , Proteínas do Capsídeo/metabolismo , Cisteína Endopeptidases/metabolismo , DNA Viral/metabolismo , Precursores de Proteínas/metabolismo , Vírion/enzimologia , Adenovírus Humanos/genética , Sequência de Aminoácidos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , DNA Viral/química , Dissulfetos/química , Dissulfetos/metabolismo , Ativação Enzimática , Humanos , Cinética , Dados de Sequência Molecular , Ligação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Vírion/genética
8.
J Biol Chem ; 288(3): 2092-102, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23043138

RESUMO

Precursor proteins used in the assembly of adenovirus virions must be processed by the virally encoded adenovirus proteinase (AVP) before the virus particle becomes infectious. An activated adenovirus proteinase, the AVP-pVIc complex, was shown to slide along viral DNA with an extremely fast one-dimensional diffusion constant, 21.0 ± 1.9 × 10(6) bp(2)/s. In principle, one-dimensional diffusion can provide a means for DNA-bound proteinases to locate and process DNA-bound substrates. Here, we show that this is correct. In vitro, AVP-pVIc complexes processed a purified virion precursor protein in a DNA-dependent reaction; in a quasi in vivo environment, heat-disrupted ts-1 virions, AVP-pVIc complexes processed five different precursor proteins in DNA-dependent reactions. Sliding of AVP-pVIc complexes along DNA illustrates a new biochemical mechanism by which a proteinase can locate its substrates, represents a new paradigm for virion maturation, and reveals a new way of exploiting the surface of DNA.


Assuntos
Adenovírus Humanos/enzimologia , Proteínas do Capsídeo/química , Cisteína Endopeptidases/química , DNA Viral/química , Precursores de Proteínas/química , Vírion/enzimologia , Adenovírus Humanos/genética , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , DNA Viral/metabolismo , Ativação Enzimática , Escherichia coli/genética , Temperatura Alta , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Vírion/genética
9.
Biochimie ; 94(12): 2498-507, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22766015

RESUMO

Treatment of HIV-1 with nucleoside reverse transcription inhibitors leads to the emergence of resistance mutations in the reverse transcriptase (RT) gene. Resistance to 3'-azido-3'-deoxythymidine (AZT) and to a lesser extent to 2'-3'-didehydro-2'-3'-dideoxythymidine is mediated by phosphorolytic excision of the chain terminator. Wild-type RT excises AZT by pyrophosphorolysis, while thymidine-associated resistance mutations in RT (TAMs) favour ATP as the donor substrate. However, in vitro, resistant RT still uses pyrophosphate more efficiently than ATP. We performed in vitro (-) strong-stop DNA synthesis experiments, with wild-type and AZT-resistant HIV-1 RTs, in the presence of physiologically relevant pyrophosphate and/or ATP concentrations and found that in the presence of pyrophosphate, ATP and AZTTP, TAMs do not enhance in vitro (-) strong-stop DNA synthesis. We hypothesized that utilisation of ATP in vivo is driven by intrinsic low pyrophosphate concentrations within the reverse transcription complex, which could be explained by the packaging of a cellular pyrophosphatase. We showed that over-expressed flagged-pyrophosphatase was associated with HIV-1 viral-like particles. In addition, we demonstrated that when HIV-1 particles were purified in order to avoid cellular microvesicle contamination, a pyrophosphatase activity was specifically associated to them. The presence of a pyrophosphatase activity in close proximity to the reverse transcription complex is most likely advantageous to the virus, even in the absence of any drug pressure.


Assuntos
Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Pirofosfatases/metabolismo , Vírion/enzimologia , Trifosfato de Adenosina/metabolismo , Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/farmacologia , DNA Viral/genética , DNA Viral/metabolismo , Didesoxinucleotídeos/metabolismo , Difosfatos/metabolismo , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/genética , Cinética , Mutação , Pirofosfatases/genética , Estavudina/metabolismo , Estavudina/farmacologia , Especificidade por Substrato , Nucleotídeos de Timina/metabolismo , Vírion/efeitos dos fármacos , Vírion/genética , Zidovudina/análogos & derivados , Zidovudina/metabolismo , Zidovudina/farmacologia
10.
PLoS Pathog ; 8(4): e1002642, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496660

RESUMO

RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2'-O methyltransferase activities that are required for the formation of 5' type I cap (m(7)GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2'-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2'-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2'-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2'-O-methyladenosine. The 2'-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2'-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2'-O methylation of internal adenosine of viral RNA in vivo and host ribosomal RNAs in vitro.


Assuntos
Adenosina/metabolismo , Vírus da Dengue/enzimologia , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Vírus do Nilo Ocidental/enzimologia , tRNA Metiltransferases/metabolismo , Adenosina/genética , Animais , Linhagem Celular , Vírus da Dengue/genética , Humanos , Insetos , Metilação , RNA Viral/genética , Proteínas não Estruturais Virais/genética , Vírion/enzimologia , Vírion/genética , Vírus do Nilo Ocidental/genética , tRNA Metiltransferases/genética
11.
J Biol Chem ; 287(16): 13279-90, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22334652

RESUMO

Processing of the human immunodeficiency virus type 1 (HIV-1) Gag and Gag-Pro-Pol polyproteins by the HIV-1 protease (PR) is essential for the production of infectious particles. However, the determinants governing the rates of processing of these substrates are not clearly understood. We studied the effect of substrate context on processing by utilizing a novel protease assay in which a substrate containing HIV-1 matrix (MA) and the N-terminal domain of capsid (CA) is labeled with a FlAsH (fluorescein arsenical hairpin) reagent. When the seven cleavage sites within the Gag and Gag-Pro-Pol polyproteins were placed at the MA/CA site, the rates of cleavage changed dramatically compared with that of the cognate sites in the natural context reported previously. The rate of processing was affected the most for three sites: CA/spacer peptide 1 (SP1) (≈10-fold increase), SP1/nucleocapsid (NC) (≈10-30-fold decrease), and SP2/p6 (≈30-fold decrease). One of two multidrug-resistant (MDR) PR variants altered the pattern of processing rates significantly. Cleavage sites within the Pro-Pol region were cleaved in a context-independent manner, suggesting for these sites that the sequence itself was the determinant of rate. In addition, a chimera consisting of SP1/NC P4-P1 and MA/CA P1'-P4' residues (ATIM↓PIVQ) abolished processing by wild type and MDR proteases, and the reciprocal chimera consisting of MA/CA P4-P1 and SP1/NC P1'-4' (SQNY↓IQKG) was cleaved only by one of the MDR proteases. These results suggest that complex substrate interactions both beyond the active site of the enzyme and across the scissile bond contribute to defining the rate of processing by the HIV-1 PR.


Assuntos
Protease de HIV/metabolismo , HIV-1/enzimologia , HIV-1/crescimento & desenvolvimento , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene pol do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Repetição Terminal Longa de HIV/fisiologia , Protease de HIV/genética , HIV-1/genética , Especificidade por Substrato/fisiologia , Vírion/enzimologia , Montagem de Vírus/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética
12.
Appl Environ Microbiol ; 78(7): 2241-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22267667

RESUMO

Virion-associated peptidoglycan hydrolases have potential as antimicrobial agents due to their ability to lyse Gram-positive bacteria on contact. In this work, our aim was to improve the lytic activity of HydH5, a virion-associated peptidoglycan hydrolase from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88. Full-length HydH5 and two truncated derivatives containing only the CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) domain exhibited high lytic activity against live S. aureus cells. In addition, three different fusion proteins were created between lysostaphin and HydH5, each of which showed higher staphylolytic activity than the parental enzyme or its deletion construct. Both parental and fusion proteins lysed S. aureus cells in zymograms and plate lysis and turbidity reduction assays. In plate lysis assays, HydH5 and its derivative fusions lysed bovine and human S. aureus strains, the methicillin-resistant S. aureus (MRSA) strain N315, and human Staphylococcus epidermidis strains. Several nonstaphylococcal bacteria were not affected. HydH5 and its derivative fusion proteins displayed antimicrobial synergy with the endolysin LysH5 in vitro, suggesting that the two enzymes have distinct cut sites and, thus, may be more efficient in combination for the elimination of staphylococcal infections.


Assuntos
Bacteriólise , Staphylococcus aureus Resistente à Meticilina/virologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Infecções Estafilocócicas/microbiologia , Fagos de Staphylococcus , Staphylococcus aureus/virologia , Staphylococcus epidermidis/virologia , Animais , Antibacterianos/uso terapêutico , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/terapia , Sinergismo Farmacológico , Endopeptidases/metabolismo , Deleção de Genes , Humanos , Dados de Sequência Molecular , N-Acetil-Muramil-L-Alanina Amidase/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Infecções Estafilocócicas/terapia , Fagos de Staphylococcus/enzimologia , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/fisiologia , Vírion/enzimologia
13.
Antimicrob Agents Chemother ; 56(2): 623-33, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22083488

RESUMO

Resistance-associated mutations in the HIV-1 protease modify viral fitness through changes in the catalytic activity and altered binding affinity for substrates and inhibitors. In this report, we examine the effects of 31 mutations at 26 amino acid positions in protease to determine their impact on infectivity and protease inhibitor sensitivity. We found that primary resistance mutations individually decrease fitness and generally increase sensitivity to protease inhibitors, indicating that reduced virion-associated protease activity reduces virion infectivity and the reduced level of per virion protease activity is then more easily titrated by a protease inhibitor. Conversely, mutations at more variable positions (compensatory mutations) confer low-level decreases in sensitivity to all protease inhibitors with little effect on infectivity. We found significant differences in the observed effect on infectivity with a pseudotype virus assay that requires the protease to cleave the cytoplasmic tail of the amphotropic murine leukemia virus (MuLV) Env protein. Additionally, we were able to mimic the fitness loss associated with resistance mutations by directly reducing the level of virion-associated protease activity. Virions containing 50% of a D25A mutant protease were 3- to 5-fold more sensitive to protease inhibitors. This level of reduction in protease activity also resulted in a 2-fold increase in sensitivity to nonnucleoside inhibitors of reverse transcriptase and a similar increase in sensitivity to zidovudine (AZT), indicating a pleiotropic effect associated with reduced protease activity. These results highlight the interplay between enzyme activity, viral fitness, and inhibitor mechanism and sensitivity in the closed system of the viral replication complex.


Assuntos
Farmacorresistência Viral/genética , Inibidores da Protease de HIV/farmacologia , Protease de HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/patogenicidade , Mutação , Animais , Linhagem Celular , Farmacorresistência Viral/efeitos dos fármacos , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Protease de HIV/efeitos dos fármacos , Protease de HIV/genética , HIV-1/enzimologia , HIV-1/genética , Humanos , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Vírion/efeitos dos fármacos , Vírion/enzimologia , Vírion/genética , Vírion/patogenicidade , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
14.
J Virol ; 85(24): 13144-52, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21994449

RESUMO

Apoptosis and inhibition of host gene expression are often associated with virus infections. Many viral polypeptides modulate apoptosis by direct interaction with highly conserved apoptotic pathways. Some viruses induce apoptosis during late stages of the infection cycle, while others inhibit apoptosis to facilitate replication or maintain persistent infection. In previous work, we showed that Chilo iridescent virus (CIV) or CIV virion protein extract induces apoptosis in spruce budworm and cotton boll weevil cell cultures. Here, we characterize the product of a CIV gene (iridovirus serine/threonine kinase; istk) with signature sequences for S/T kinase and ATP binding. ISTK appears to belong to the superfamily, vaccinia-related kinases (VRKs). The istk gene was expressed in Pichia pastoris vectors. Purified ISTK (48 kDa) exhibited S/T kinase activity. Treatment with ISTK induced apoptosis in budworm cells. A 35-kDa cleavage product of ISTK retaining key signature sequences was identified during purification. Pichia-expressed 35-kDa polypeptide, designated iridoptin, induced apoptosis and inhibition of host protein synthesis in budworm and boll weevil cells. A mutation in the ATP-binding site eliminated both kinase and apoptosis activity of iridoptin, suggesting that kinase activity is essential for induction of apoptosis. Analysis with custom antibody confirmed that ISTK is a structural component of CIV particles. This is the first demonstration of a viral kinase inducing apoptosis in any virus-host system and the first identification of a factor inducing apoptosis or host protein shutoff for the family Iridoviridae.


Assuntos
Apoptose , Iridovirus/enzimologia , Proteínas Quinases/metabolismo , Vírion/enzimologia , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células Cultivadas , Expressão Gênica , Lepidópteros , Dados de Sequência Molecular , Peso Molecular , Mutação de Sentido Incorreto , Pichia/genética , Proteínas Quinases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA
15.
Uirusu ; 61(1): 91-8, 2011 Jun.
Artigo em Japonês | MEDLINE | ID: mdl-21972560

RESUMO

In general, the retrovirus particles become infectious on post-budding with cleavages of structural protein Gag by viral protease. Protease defective mutants bud particles normally, but the particles are non-infectious and called donuts-like particle because of their morphology. The viral genomes inside the donuts-like particles form very fragile dimer, which are far different from those in wild-type particles. The ordered particle maturation process is essential for infectivity of virus, but its mechanism largely remains unclear. We have constructed HIV-1 Gag cleavage site mutants to enable the steady state observation of virion maturation steps, and precisely study Gag processing, RNA dimerization, virion morphology and infectivity. As results, we found that these process progressed synchronously, but each transition point did not coincide completely. The mutual relationship between viral protein and RNA maturation is discussed for a further understanding of the retroviral life cycle.


Assuntos
Retroviridae/fisiologia , Vírion/patogenicidade , Liberação de Vírus , Dimerização , Genoma Viral , Protease de HIV/fisiologia , HIV-1 , Microscopia Eletrônica , Mutação , RNA Viral , Vírion/enzimologia , Vírion/genética , Vírion/ultraestrutura , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
16.
BMC Microbiol ; 11: 138, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21682850

RESUMO

BACKGROUND: Staphylococcus aureus is a food-borne pathogen and the most common cause of infections in hospitalized patients. The increase in the resistance of this pathogen to antibacterials has made necessary the development of new anti-staphylococcal agents. In this context, bacteriophage lytic enzymes such as endolysins and structural peptidoglycan (PG) hydrolases have received considerable attention as possible antimicrobials against gram-positive bacteria. RESULTS: S. aureus bacteriophage vB_SauS-phiIPLA88 (phiIPLA88) contains a virion-associated muralytic enzyme (HydH5) encoded by orf58, which is located in the morphogenetic module. Comparative bioinformatic analysis revealed that HydH5 significantly resembled other peptidoglycan hydrolases encoded by staphylococcal phages. The protein consists of 634 amino acid residues. Two putative lytic domains were identified: an N-terminal CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) domain (135 amino acid residues), and a C-terminal LYZ2 (lysozyme subfamily 2) domain (147 amino acid residues). These domains were also found when a predicted three-dimensional structure of HydH5 was made which provided the basis for deletion analysis. The complete HydH5 protein and truncated proteins containing only each catalytic domain were overproduced in E. coli and purified from inclusion bodies by subsequent refolding. Truncated and full-length HydH5 proteins were all able to bind and lyse S. aureus Sa9 cells as shown by binding assays, zymogram analyses and CFU reduction analysis. HydH5 demonstrated high antibiotic activity against early exponential cells, at 45°C and in the absence of divalent cations (Ca2+, Mg2+, Mn2+). Thermostability assays showed that HydH5 retained 72% of its activity after 5 min at 100°C. CONCLUSIONS: The virion-associated PG hydrolase HydH5 has lytic activity against S. aureus, which makes it attractive as antimicrobial for food biopreservation and anti-staphylococcal therapy.


Assuntos
Bacteriólise , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Fagos de Staphylococcus/enzimologia , Staphylococcus aureus/efeitos dos fármacos , Clonagem Molecular , Análise Mutacional de DNA , Escherichia coli/genética , Expressão Gênica , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , N-Acetil-Muramil-L-Alanina Amidase/genética , Filogenia , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Homologia de Sequência , Fagos de Staphylococcus/genética , Staphylococcus aureus/virologia , Temperatura , Vírion/enzimologia , Vírion/genética
17.
Microbes Infect ; 12(2): 119-25, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19892032

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) infection is involved in the development of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. A high HTLV-1 proviral load in circulating lymphocytes of HTLV-1 carriers is a risk factor for HTLV-1-related diseases. The virus-cell interaction is linked to viral tropism and pathogenesis. Characterization of the factors that affect HTLV-1 infection is important for preventing HTLV-1 infection. HTLV-1 virions are believed to be weakly infectious under cell culture conditions; however, we found that the treatment of HTLV-1 virions with microbial neuraminidase, an enzyme catalyzing the removal of sialic acid residues from various glycoconjugates, enhanced the number of proviral DNAs in infected cells in a dose-dependent manner. Neuraminidase treatment of virions, but not target cells, enhanced viral binding and entry into cells and viral infectivity; treatment of target cells prior to infection had no effect. Moreover, the number of HTLV-1-mediated syncytia was higher in the presence of neuraminidase. Our results suggest a possible contribution of microbial agents carrying neuraminidase activity to HTLV-1 pathogenesis.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Neuraminidase/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Gatos , Linhagem Celular , Células Gigantes/efeitos dos fármacos , Glicoproteínas/efeitos dos fármacos , Glicoproteínas/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/efeitos dos fármacos , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Humanos , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/metabolismo , Proteínas do Envelope Viral/efeitos dos fármacos , Proteínas do Envelope Viral/metabolismo , Vírion/efeitos dos fármacos , Vírion/enzimologia
18.
Clin Vaccine Immunol ; 15(1): 172-5, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17989337

RESUMO

The aim of this study was to develop a highly sensitive human papillomavirus type 31 (HPV31) neutralization assay based on the production of pseudovirions carrying luciferase. Neutralizing antibodies against HPV31 were investigated in a set of HPV31 monoclonal antibodies and in women with evidence of HPV31 infection. Neutralizing antibodies were detected in 78% of subjects with a positive enzyme-linked immunosorbent assay.


Assuntos
Anticorpos Antivirais/análise , Luciferases/química , Papillomaviridae/imunologia , Infecções por Papillomavirus/diagnóstico , Vírion/enzimologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Células COS , Linhagem Celular , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Insetos , Luciferases/biossíntese , Luciferases/genética , Testes de Neutralização , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Vírion/genética , Montagem de Vírus/fisiologia
19.
J Virol ; 81(19): 10496-505, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17626105

RESUMO

Many groups of plus-stranded RNA viruses produce additional, subgenomic mRNAs to regulate the expression of part of their genome. Arteriviruses and coronaviruses (order Nidovirales) are unique among plus-stranded RNA viruses for using a mechanism of discontinuous RNA synthesis to produce a nested set of 5'- and 3'-coterminal subgenomic mRNAs, which serve to express the viral structural protein genes. The discontinuous step presumably occurs during minus-strand synthesis and joins noncontiguous sequences copied from the 3'- and 5'-proximal domains of the genomic template. Nidovirus genome amplification ("replication") and subgenomic mRNA synthesis ("transcription") are driven by 13 to 16 nonstructural proteins (nsp's), generated by autocatalytic processing of two large "replicase" polyproteins. Previously, using a replicon system, the N-terminal nsp1 replicase subunit of the arterivirus equine arteritis virus (EAV) was found to be dispensable for replication but crucial for transcription. Using reverse genetics, we have now addressed the role of nsp1 against the background of the complete EAV life cycle. Mutagenesis revealed that nsp1 is in fact a multifunctional regulatory protein. Its papain-like autoprotease domain releases nsp1 from the replicase polyproteins, a cleavage essential for viral RNA synthesis. Several mutations in the putative N-terminal zinc finger domain of nsp1 selectively abolished transcription, while replication was either not affected or even increased. Other nsp1 mutations did not significantly affect either replication or transcription but still dramatically reduced the production of infectious progeny. Thus, nsp1 is involved in at least three consecutive key processes in the EAV life cycle: replicase polyprotein processing, transcription, and virion biogenesis.


Assuntos
Equartevirus/genética , Peptídeo Hidrolases/metabolismo , RNA Viral/genética , Proteínas não Estruturais Virais/metabolismo , Vírion/genética , Replicação Viral/genética , Sequência de Aminoácidos , Sequência de Bases , Equartevirus/enzimologia , Equartevirus/fisiologia , Genoma Viral , Dados de Sequência Molecular , Peptídeo Hidrolases/genética , RNA Mensageiro/genética , Proteínas não Estruturais Virais/genética , Vírion/enzimologia , Vírion/fisiologia
20.
J Mol Biol ; 372(2): 369-81, 2007 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-17651754

RESUMO

Mature enzymes encoded within the human immunodeficiency virus type 1 (HIV-1) genome (protease (PR), reverse transcriptase (RT) and integrase (IN)) derive from proteolytic processing of a large polyprotein (Gag-Pol). Gag-Pol processing is catalyzed by the viral PR, which is active as a homodimer. The HIV-1 RT functions as a heterodimer (p66/p51) composed of subunits of 560 and 440 amino acid residues, respectively. Both subunits have identical amino acid sequence, but p51 lacks 120 residues that are removed by the HIV-1 PR during viral maturation. While p66 is the catalytic subunit, p51 has a primarily structural role. Amino acid substitutions affecting the stability of p66/p51 (i.e. F130W) have a deleterious effect on viral fitness. Previously, we showed that the effects of F130W are mediated by p51 and can be compensated by mutation T58S. While studying the dynamics of emergence of the compensatory mutation, we observed that mutations in the viral PR-coding region were selected in HIV clones containing the RT substitution F130W, before the imposition of T58S/F130W mutations. The PR mutations identified (G94S and T96S) improved the replication capacity of the F130W mutant virus. By using a trans-complementation assay, we demonstrate that the loss of p66/p51 heterodimer stability caused by Trp130 can be attributed to an increased susceptibility of RT to viral PR degradation. Recombinant HIV-1 PRs bearing mutations G94S or T96S showed decreased dimer stability and reduced catalytic efficiency. These results were consistent with crystallographic data showing the location of both residues in the PR dimerization interface.


Assuntos
Protease de HIV/química , Protease de HIV/genética , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Mutação/genética , Vírion/enzimologia , Animais , Linhagem Celular , Dimerização , Estabilidade Enzimática/efeitos dos fármacos , Protease de HIV/metabolismo , HIV-1/genética , HIV-1/fisiologia , Humanos , Ureia/farmacologia , Vírion/genética , Vírion/fisiologia , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA