Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Phytomedicine ; 128: 155491, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489894

RESUMO

BACKGROUND: Dengue and chikungunya, caused by dengue virus (DENV) and chikungunya virus (CHIKV) respectively, are the most common arthropod-borne viral diseases worldwide, for which there are no FDA-approved antivirals or effective vaccines. Arctigenin, a phenylpropanoid lignan from the seeds of Arctium lappa L. is known for its anti-inflammatory, anti-cancer, antibacterial, and immunomodulatory properties. Arctigenin's antimicrobial and immunomodulatory capabilities make it a promising candidate for investigating its potential as an anti-DENV and anti-CHIKV agent. PURPOSE: The aim of the study was to explore the anti-DENV and anti-CHIKV effects of arctigenin and identify the possible mechanisms of action. METHODS: The anti-DENV or anti-CHIKV effects of arctigenin was assessed using various in vitro and in silico approaches. Vero CCL-81 cells were infected with DENV or CHIKV and treated with arctigenin at different concentrations, temperature, and time points to ascertain the effect of the compound on virus entry or replication. In silico molecular docking was performed to identify the interactions of the compound with viral proteins. RESULTS: Arctigenin had no effects on DENV. Various time- and temperature-dependent assays revealed that arctigenin significantly reduced CHIKV RNA copy number and infectious virus particles and affected viral entry. Entry bypass assay revealed that arctigenin inhibited the initial steps of viral replication. In silico docking results revealed the high binding affinity of the compound with the E1 protein and the nsp3 macrodomain of CHIKV. CONCLUSION: This study demonstrates the in-vitro anti-CHIKV potential of arctigenin and suggests that the compound might affect CHIKV entry and replication. Further preclinical and clinical studies are needed to identify its safety and efficacy as an anti-CHIKV drug.


Assuntos
Antivirais , Arctium , Vírus Chikungunya , Vírus da Dengue , Internalização do Vírus , Replicação Viral , Animais , Antivirais/farmacologia , Arctium/química , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/fisiologia , Furanos/farmacologia , Lignanas/farmacologia , Simulação de Acoplamento Molecular , Sementes/química , Células Vero , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
2.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323434

RESUMO

Arthritis and periodontitis are inflammatory diseases that share several immunopathogenic features. The expansion in the study of virus-induced arthritis has shed light on how this condition could impact other parts of the human body, including the mouth. Viral arthritis is an inflammatory joint disease caused by several viruses, most notably the alphaviruses Chikungunya virus (CHIKV), Sindbis virus (SINV), Ross River virus (RRV), Mayaro virus (MAYV), and O'nyong'nyong virus (ONNV). These viruses can induce an upsurge of matrix metalloproteinases and immune-inflammatory mediators such as Interleukin-6 (IL6), IL-1ß, tumor necrosis factor, chemokine ligand 2, and receptor activator of nuclear factor kappa-B ligand in the joint and serum of infected individuals. This can lead to the influx of inflammatory cells to the joints and associated muscles as well as osteoclast activation and differentiation, culminating in clinical signs of swelling, pain, and bone resorption. Moreover, several data indicate that these viral infections can affect other sites of the body, including the mouth. The human oral cavity is a rich and diverse microbial ecosystem, and viral infection can disrupt the balance of microbial species, causing local dysbiosis. Such events can result in oral mucosal damage and gingival bleeding, which are indicative of periodontitis. Additionally, infection by RRV, CHIKV, SINV, MAYV, or ONNV can trigger the formation of osteoclasts and upregulate pro-osteoclastogenic inflammatory mediators, interfering with osteoclast activation. As a result, these viruses may be linked to systemic conditions, including oral manifestations. Therefore, this review focuses on the involvement of alphavirus infections in joint and oral health, acting as potential agents associated with oral mucosal inflammation and alveolar bone loss. The findings of this review demonstrate how alphavirus infections could be linked to the comorbidity between arthritis and periodontitis and may provide a better understanding of potential therapeutic management for both conditions.


Assuntos
Infecções por Alphavirus , Artrite , Vírus Chikungunya , Periodontite , Humanos , Infecções por Alphavirus/tratamento farmacológico , Infecções por Alphavirus/patologia , Vírus Chikungunya/fisiologia , Mediadores da Inflamação/uso terapêutico , Ligantes , Ross River virus/fisiologia
3.
PLoS Negl Trop Dis ; 17(11): e0010751, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011286

RESUMO

Chikungunya virus (CHIKV) is a human pathogen causing outbreaks of febrile illness for which vaccines and specific treatments remain unavailable. Autophagy-related (ATG) proteins and autophagy receptors are a set of host factors that participate in autophagy, but have also shown to function in other unrelated cellular pathways. Although autophagy is reported to both inhibit and enhance CHIKV replication, the specific role of individual ATG proteins remains largely unknown. Here, a siRNA screen was performed to evaluate the importance of the ATG proteome and autophagy receptors in controlling CHIKV infection. We observed that 7 out of 50 ATG proteins impact the replication of CHIKV. Among those, depletion of the mitochondrial protein and autophagy receptor BCL2 Interacting Protein 3 (BNIP3) increased CHIKV infection. Interestingly, BNIP3 controls CHIKV independently of autophagy and cell death. Detailed analysis of the CHIKV viral cycle revealed that BNIP3 interferes with the early stages of infection. Moreover, the antiviral role of BNIP3 was found conserved across two distinct CHIKV genotypes and the closely related Semliki Forest virus. Altogether, this study describes a novel and previously unknown function of the mitochondrial protein BNIP3 in the control of the early stages of the alphavirus viral cycle.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Vírus Chikungunya/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Replicação Viral/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
4.
J Virol ; 96(21): e0127822, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36226983

RESUMO

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus. In infected cells, its positive-sense RNA genome is translated into polyproteins that are subsequently processed into four nonstructural proteins (nsP1 to 4), the virus-encoded subunits of the RNA replicase. However, for RNA replication, interactions between nsPs and host proteins are also needed. These interactions are mostly mediated through the intrinsically disordered C-terminal hypervariable domain (HVD) in nsP3. Duplicate FGDF motifs in the HVD are required for interaction with mammalian RasGAP SH3-binding proteins (G3BPs) and their mosquito homolog Rin; these interactions are crucial for CHIKV RNA replication. In this study, we inactivated G3BP/Rin-binding motifs in the HVD and inserted peptides containing either native or inactivated G3BP/Rin-binding motifs into flexible regions of nsP1, nsP2, or nsP4. Insertion of native motifs into nsP1 or nsP2 but not into the C terminus of nsP4 activated CHIKV RNA replication in human cells in a G3BP-dependent manner. In mosquito cells, activation also resulted from the insertion of inactive motifs after residue 8 or 466 in nsP2; however, the effect was significantly larger when the inserted sequence contained native motifs. Nonetheless, CHIKV mutants harboring mutations in the HVD and containing insertions of native motifs in nsP2 were not viable in mosquito cells. In contrast, mutant genomes containing native motifs after residue 466 or 618 in nsP2 replicated in BHK-21 cells, with the latter mutant forming infectious progeny. Thus, the binding of G3BPs to nsP2 can support CHIKV RNA replication and restore the infectivity of viruses lacking G3BP-binding motifs in the HVD of nsP3. IMPORTANCE CHIKV is a reemerging alphavirus that has spread throughout more than 60 countries and is the causative agent of chikungunya fever. No approved drugs or vaccines are available for the treatment or prevention of CHIKV infection. CHIKV replication depends on the ability of its replicase proteins to interact with host cell factors, and a better understanding of host cell factor roles in viral infection will increase our understanding of CHIKV RNA replication and provide new strategies for viral infection attenuation. Here, we demonstrate that the motifs required for the binding of host G3BP/Rin proteins remain functional when transferred from their natural location in nsP3 to different replicase proteins and may enable mutant viruses to complete a full replication cycle. To our knowledge, this is the first demonstration of interaction motifs for crucial host factors being successfully transferred from one replicase protein to another subunit of alphavirus replicase.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Culicidae , Animais , Humanos , Vírus Chikungunya/fisiologia , Culicidae/metabolismo , Mamíferos/genética , RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Sítios de Ligação
5.
J Mol Model ; 28(10): 311, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097090

RESUMO

Chikungunya virus (CHIKV) is the etiological agent of the Chikungunya fever which has spread worldwide. Clinically, this disease may lead to prolonged incapacitating joint pain that can compromise remarkably the patients' quality of life. However, there are no licensed vaccines or specific drugs to fight this infection yet, making the search for novel therapies an imperative need. In this scenario, the CHIKV nsP2 protease emerged as an attractive therapeutic target once this protein plays a pivotal role in viral replication and pathogenesis. Hence, we investigated the structural basis for the inhibition of this enzyme by using molecular docking and dynamics simulations. Compounds with inhibitory activities against CHIKV nsP2 protease determined experimentally were selected from the literature. Docking studies with a set of stereoisomers showed that trans isomers, but not cis ones, bound close to the catalytic dyad which may explain isomerism requirements to the enzyme's inhibition. Further, binding mode analyses of other known inhibitors revealed highly conserved contacts between inhibitors and enzyme residues like N1011, C1013, A1046, Y1079, N1082, W1084, L1205, and M1242. Molecular dynamics simulations reinforced the importance of some of these interactions and pointed to nonpolar interactions as the main forces for inhibitors' binding. Finally, we observed that true inhibitors exhibited lower structural fluctuation, higher ligand efficiency and did not induce significant changes in protein correlated motions. Collectively, our findings might allow discerning true inhibitors from false ones and can guide drug development efforts targeting the nsP2 protease to fight CHIKV infections in the future.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/metabolismo , Vírus Chikungunya/química , Vírus Chikungunya/fisiologia , Cisteína Endopeptidases/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeo Hidrolases/metabolismo , Qualidade de Vida
6.
Viruses ; 14(6)2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35746799

RESUMO

Alphaviruses are positive-strand RNA viruses, mostly being mosquito-transmitted. Cells infected by an alphavirus become resistant to superinfection due to a block that occurs at the level of RNA replication. Alphavirus replication proteins, called nsP1-4, are produced from nonstructural polyprotein precursors, processed by the protease activity of nsP2. Trans-replicase systems and replicon vectors were used to study effects of nsP2 of chikungunya virus and Sindbis virus on alphavirus RNA replication in mosquito cells. Co-expressed wild-type nsP2 reduced RNA replicase activity of homologous virus; this effect was reduced but typically not abolished by mutation in the protease active site of nsP2. Mutations in the replicase polyprotein that blocked its cleavage by nsP2 reduced the negative effect of nsP2 co-expression, confirming that nsP2-mediated inhibition of RNA replicase activity is largely due to nsP2-mediated processing of the nonstructural polyprotein. Co-expression of nsP2 also suppressed the activity of replicases of heterologous alphaviruses. Thus, the presence of nsP2 inhibits formation and activity of alphavirus RNA replicase in protease activity-dependent and -independent manners. This knowledge improves our understanding about mechanisms of superinfection exclusion for alphaviruses and may aid the development of anti-alphavirus approaches.


Assuntos
Alphavirus , Vírus Chikungunya , Culicidae , Superinfecção , Alphavirus/genética , Alphavirus/metabolismo , Animais , Vírus Chikungunya/fisiologia , Culicidae/genética , Mosquitos Vetores , Peptídeo Hidrolases/metabolismo , Poliproteínas/genética , Poliproteínas/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia
7.
J Virol ; 96(9): e0006422, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35416719

RESUMO

Alphaviruses infect cells by a low pH-dependent fusion reaction between viral and host cell membranes that is mediated by the viral E1 glycoprotein. Most reported alphavirus E1 sequences include two phenylalanines (F87 and F95) in the fusion loop, yet the role of these residues in viral infectivity remains to be defined. Following introduction of wild type (WT), E1-F87A, and E1-F95A chikungunya virus (CHIKV) RNA genomes into cells, viral particle production was similar in magnitude. However, CHIKV E1-F87A and E1-F95A virions displayed impaired infectivity compared with WT CHIKV particles. Although WT, E1-F87A, and E1-F95A particles bound cells with similar efficiencies, E1-F87A and E1-F95A particles were unable to undergo fusion and entry into cells. Introduction of an F95A mutation in the E1 fusion loop of Mayaro virus or Venezuelan equine encephalitis virus also resulted in poorly infectious virions. We further tested whether an E1-F87A or E1-F95A mutation could be incorporated into a live-attenuated vaccine strain, CHIKV 181/25, to enhance vaccine safety. Infection of immunocompromised Ifnar1-/- and Irf3-/-Irf5-/-Irf7-/- mice with 181/25E1-F87A or 181/25E1-F95A resulted in 0% mortality, compared with 100% mortality following 181/25 infection. Despite this enhanced attenuation, surviving Ifnar1-/- and Irf3-/-Irf5-/-Irf7-/- mice were protected against virulent virus re-challenge. Moreover, single-dose immunization of WT mice with either 181/25, 181/25E1-F87A, or 181/25E1-F95A elicited CHIKV-specific antibody responses and protected against pathogenic CHIKV challenge. These studies define a critical function for residues E1-F87 and E1-F95 in alphavirus fusion and entry into target cells and suggest that incorporation of these mutations could enhance the safety of live-attenuated alphavirus vaccine candidates. IMPORTANCE Alphaviruses are human pathogens that cause both debilitating acute and chronic musculoskeletal disease and potentially fatal encephalitis. In this study, we determined that two highly conserved phenylalanine residues in the alphavirus E1 glycoprotein are required for fusion of viral and host cell membranes and viral entry into target cells. We further demonstrated that mutation of these phenylalanines results in a substantial loss of viral virulence but not immunogenicity. These data enhance an understanding of the viral determinants of alphavirus entry into host cells and could contribute to the development of new antivirals targeting these conserved phenylalanines or new live-attenuated alphavirus vaccines.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Proteínas do Envelope Viral , Vacinas Virais , Animais , Anticorpos Antivirais , Febre de Chikungunya/virologia , Vírus Chikungunya/patogenicidade , Vírus Chikungunya/fisiologia , Fatores Reguladores de Interferon/metabolismo , Camundongos , Camundongos Knockout , Fenilalanina/química , Domínios Proteicos , Vacinas Atenuadas/imunologia , Proteínas do Envelope Viral/química , Vacinas Virais/imunologia , Replicação Viral
8.
Viruses ; 14(2)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35215863

RESUMO

Chikungunya virus (CHIKV) presents a major burden on healthcare systems worldwide, but specific treatment remains unavailable. Attachment and fusion of CHIKV to the host cell membrane is mediated by the E1/E2 protein spikes. We used an in vitro single-particle fusion assay to study the effect of the potent, neutralizing antibody CHK-152 on CHIKV binding and fusion. We find that CHK-152 shields the virions, inhibiting interaction with the target membrane and inhibiting fusion. The analysis of the ratio of bound antibodies to epitopes implied that CHIKV fusion is a highly cooperative process. Further, dissociation of the antibody at lower pH results in a finely balanced kinetic competition between inhibition and fusion, suggesting a window of opportunity for the spike proteins to act and mediate fusion, even in the presence of the antibody.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus Chikungunya/imunologia , Vírus Chikungunya/fisiologia , Internalização do Vírus , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Linhagem Celular , Concentração de Íons de Hidrogênio , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Vírion/fisiologia , Ligação Viral
9.
Viruses ; 14(2)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35215875

RESUMO

Chikungunya virus (CHIKV) is an emerging arthropod-borne virus that has spread globally during the last two decades. The virus is mainly transmitted by Aedes aegypti and Aedes albopictus mosquitos and is thus capable of replicating in both human and mosquito cells. CHIKV has a broad tropism in vivo, capable of replicating in various tissues and cell types but largely excluding blood cells. This was reflected in vitro by a broad array of adherent cell lines supporting CHIKV infection. One marked exception to this general rule is the resistance of the lung cancer-derived A549 cell line to CHIKV infection. We verified that A549 cells were restrictive to infection by multiple alphaviruses while being completely permissive to flavivirus infection. The adaptive growth of a primary CHIKV strain through multiple passages allowed the emergence of a CHIKV strain that productively infected A549 cells while causing overt cytopathic effects and without a fitness cost for replication in otherwise CHIKV-susceptible cells. Whole genome sequencing of polyclonal and monoclonal preparations of the adapted virus showed that a limited number of mutations consistently emerged in both structural (2 mutations in E2) and non-structural proteins (1 mutation in nsP1 and 1 mutation in nsP2). The introduction of the adaptive mutations, individually or in combinations, into a wild-type molecular clone of CHIKV allowed us to determine the relative contributions of the mutations to the new phenotype. We found that the mutations in the E2 envelope protein and non-structural proteins contributed significantly to the acquired phenotype. The nsP mutations were introduced in a split-genome trans-replicase assay to monitor their effect on viral genome replication efficiency. Interestingly, neither mutation supported increased viral genomic replication in either Vero or A549 cells.


Assuntos
Adaptação Fisiológica , Vírus Chikungunya/fisiologia , Genoma Viral , Adaptação ao Hospedeiro , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética , Células A549 , Animais , Vírus Chikungunya/genética , Chlorocebus aethiops , Efeito Citopatogênico Viral , Humanos , Mutação , Fenótipo , Células Vero , Tropismo Viral , Ligação Viral , Replicação Viral
10.
J Virol ; 96(4): e0158621, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34935436

RESUMO

Chikungunya virus (CHIKV) is a reemerging arthropod-borne alphavirus and a serious threat to human health. Therefore, efforts toward elucidating how this virus causes disease and the molecular mechanisms underlying steps of the viral replication cycle are crucial. Using an in vivo transmission system that allows intrahost evolution, we identified an emerging CHIKV variant carrying a mutation in the E1 glycoprotein (V156A) in the serum of mice and saliva of mosquitoes. E1 V156A has since emerged in humans during an outbreak in Brazil, cooccurring with a second mutation, E1 K211T, suggesting an important role for these residues in CHIKV biology. Given the emergence of these variants, we hypothesized that they function to promote CHIKV infectivity and subsequent disease. Here, we show that E1 V156A and E1 K211T modulate virus attachment and fusion and impact binding to heparin, a homolog of heparan sulfate, a key entry factor on host cells. These variants also exhibit differential neutralization by antiglycoprotein monoclonal antibodies, suggesting structural impacts on the particle that may be responsible for altered interactions at the host membrane. Finally, E1 V156A and E1 K211T exhibit increased titers in an adult arthritic mouse model and induce increased foot-swelling at the site of injection. Taken together, this work has revealed new roles for E1 where discrete regions of the glycoprotein are able to modulate cell attachment and swelling within the host. IMPORTANCE Alphaviruses represent a growing threat to human health worldwide. The reemerging alphavirus chikungunya virus (CHIKV) has rapidly spread to new geographic regions in the last several decades, causing overwhelming outbreaks of disease, yet there are no approved vaccines or therapeutics. The CHIKV glycoproteins are key determinants of CHIKV adaptation and virulence. In this study, we identify and characterize the emerging E1 glycoprotein variants, V156A and K211T, that have since emerged in nature. We demonstrate that E1 V156A and K211T function in virus attachment to cells, a role that until now has only been attributed to specific residues of the CHIKV E2 glycoprotein. We also demonstrate E1 V156A and K211T increase foot-swelling of the ipsilateral foot in mice infected with these variants. Observing that these variants and other pathogenic variants occur at the E1-E1 interspike interface, we highlight this structurally important region as critical for multiple steps during CHIKV infection. Together, these studies further define the function of E1 in CHIKV infection and can inform the development of therapeutic or preventative strategies.


Assuntos
Vírus Chikungunya/fisiologia , Vírus Chikungunya/patogenicidade , Proteínas do Envelope Viral/metabolismo , Ligação Viral , Aedes/virologia , Animais , Anticorpos Monoclonais/imunologia , Febre de Chikungunya/patologia , Febre de Chikungunya/transmissão , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Vírus Chikungunya/imunologia , Modelos Animais de Doenças , Heparina/metabolismo , Humanos , Inflamação , Camundongos , Mutação , Testes de Neutralização , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Internalização do Vírus , Replicação Viral
11.
mBio ; 12(6): e0273821, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34749526

RESUMO

Previous studies have shown that the adaptation of Indian Ocean lineage (IOL) chikungunya virus (CHIKV) strains for Aedes albopictus transmission was mediated by an E1-A226V substitution, followed by either a single substitution in E2 or synergistic substitutions in the E2 and E3 envelope glycoproteins. Here, we examined whether Asian lineage strains, including those that descended from the 2014 Caribbean introduction, are likely to acquire these A. albopictus-adaptive E2 substitutions. Because Asian lineage strains cannot adapt through the E1-A226V substitution due to an epistatic constraint, we first determined that the beneficial effect of these E2 mutations in IOL strains is independent of E1-A226V. We then introduced each of these E2 adaptive mutations into the Asian lineage backbone to determine if they improve infectivity for A. albopictus. Surprisingly, our results indicated that in the Asian lineage backbone, these E2 mutations significantly decreased CHIKV fitness in A. albopictus. Furthermore, we tested the effects of these mutations in Aedes aegypti and observed different results from those in A. albopictus, suggesting that mosquito species-specific factors that interact with the envelope proteins are involved in vector infection efficiency. Overall, our results indicate that the divergence between Asian lineage and IOL CHIKVs has led them onto different adaptive landscapes with differing potentials to expand their vector host range. IMPORTANCE Since its introduction into the Caribbean in October 2013, CHIKV has rapidly spread to almost the entire neotropical region. However, its potential to further spread globally, including into more temperate climates, depends in part on its ability to be transmitted efficiently by Aedes albopictus, which can survive colder winters than A. aegypti. We examined in an Asian lineage backbone A. albopictus-adaptive mutations that arose from 2005 to 2009 in Indian Ocean lineage (IOL) strains. Our results predict that the Asian CHIKV lineage now in the Americas will not readily adapt for enhanced A. albopictus transmission via the same mechanisms or adaptive mutations used previously by IOL strains. The vector species- and CHIKV lineage-specific effects caused by adaptive CHIKV envelope glycoprotein substitutions may elucidate our understanding of the mechanisms of mosquito infection and spread.


Assuntos
Vírus Chikungunya/classificação , Vírus Chikungunya/genética , Mosquitos Vetores/virologia , Adaptação Fisiológica , Aedes/fisiologia , Aedes/virologia , Substituição de Aminoácidos , Animais , Vírus Chikungunya/fisiologia , Evolução Molecular , Mosquitos Vetores/fisiologia , Mutação , Filogenia , Especificidade da Espécie , Proteínas do Envelope Viral/genética
12.
Cells ; 10(11)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34831310

RESUMO

Zika virus (ZIKV) infection during pregnancy can cause devastating fetal neuropathological abnormalities, including microcephaly. Most studies of ZIKV infection in pregnancy have focused on post-implantation stage embryos. Currently, we have limited knowledge about how a pre-implantation stage embryo deals with a viral infection. This study investigates ZIKV infection on mouse trophoblast stem cells (TSCs) and their in vitro differentiated TSCs (DTSCs), which resemble the cellular components of the trophectoderm layer of the blastocyst that later develops into the placenta. We demonstrate that TSCs and DTSCs are permissive to ZIKV infection; however, ZIKV propagated in TSCs and DTSCs exhibit substantially lower infectivity, as shown in vitro and in a mouse model compared to ZIKV that was generated in Vero cells or mouse embryonic fibroblasts (MEFs). We further show that the low infectivity of ZIKV propagated in TSCs and DTSCs is associated with a reduced level of glycosylation on the viral envelope (E) proteins, which are essential for ZIKV to establish initial attachment by binding to cell surface glycosaminoglycans (GAGs). The decreased level of glycosylation on ZIKV E is, at least, partially due to the low-level expression of a glycosylation-related gene, Hexa, in TSCs and DTSCs. Furthermore, this finding is not limited to ZIKV since similar observations have been made as to the chikungunya virus (CHIKV) and West Nile virus (WNV) propagated in TSCs and DTSCs. In conclusion, our results reveal a novel phenomenon suggesting that murine TSCs and their differentiated cells may have adapted a cellular glycosylation system that can limit viral infectivity by altering the glycosylation of viral envelope proteins, therefore serving as a unique, innate anti-viral mechanism in the pre-implantation stage embryo.


Assuntos
Diferenciação Celular , Células-Tronco/citologia , Trofoblastos/citologia , Proteínas do Envelope Viral/metabolismo , Zika virus/fisiologia , Animais , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Glicosilação , Camundongos Endogâmicos C57BL , Modelos Biológicos , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/metabolismo , Células-Tronco/metabolismo , Células-Tronco/virologia , Trofoblastos/virologia , Células Vero , Vírus do Nilo Ocidental/fisiologia , Zika virus/patogenicidade
13.
Viruses ; 13(8)2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34452467

RESUMO

Type III interferons (lambda IFNs) are a quite new, small family of three closely related cytokines with interferon-like activity. Attention to IFN-λ is mainly focused on direct antiviral activity in which, as with IFN-α, viral genome replication is inhibited without the participation of immune system cells. The heterodimeric receptor for lambda interferons is exposed mainly on epithelial cells, which limits its possible action on other cells, thus reducing the likelihood of developing undesirable side effects compared to type I IFN. In this study, we examined the antiviral potential of exogenous human IFN-λ1 in cellular models of viral infection. To study the protective effects of IFN-λ1, three administration schemes were used: 'preventive' (pretreatment); 'preventive/therapeutic' (pre/post); and 'therapeutic' (post). Three IFN-λ1 concentrations (from 10 to 500 ng/mL) were used. We have shown that human IFN-λ1 restricts SARS-CoV-2 replication in Vero cells with all three treatment schemes. In addition, we have shown a decrease in the viral loads of CHIKV and IVA with the 'preventive' and 'preventive/therapeutic' regimes. No significant antiviral effect of IFN-λ1 against AdV was detected. Our study highlights the potential for using IFN-λ as a broad-spectrum therapeutic agent against respiratory RNA viruses.


Assuntos
Adenovírus Humanos/efeitos dos fármacos , Vírus Chikungunya/efeitos dos fármacos , Vírus da Influenza A/efeitos dos fármacos , Interferons/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células A549 , Adenovírus Humanos/fisiologia , Animais , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Humanos , Vírus da Influenza A/fisiologia , Interferons/uso terapêutico , Interleucinas , Infecções por Vírus de RNA/tratamento farmacológico , Infecções por Vírus de RNA/prevenção & controle , Proteínas Recombinantes/farmacologia , SARS-CoV-2/fisiologia , Células Vero , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Interferon lambda
14.
J Gen Virol ; 102(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34328830

RESUMO

The 5' capped, message-sense RNA genome of Chikungunya virus (CHIKV) utilizes the host cell machinery for translation. Translation is regulated by eIF2 alpha at the initiation phase and by eIF4F at cap recognition. Translational suppression by eIF2 alpha phosphorylation occurs as an early event in many alphavirus infections. We observe that in CHIKV-infected HEK293 cells, this occurs as a late event, by which time the viral replication has reached an exponential phase, implying its minimal role in virus restriction. The regulation by eIF4F is mediated through the PI3K-Akt-mTOR, p38 MAPK and RAS-RAF-MEK-ERK pathways. A kinetic analysis revealed that CHIKV infection did not modulate AKT phosphorylation, but caused a significant reduction in p38 MAPK phosphorylation. It caused degradation of phospho-ERK 1/2 by increased autophagy, leaving the PI3K-Akt-mTOR and p38 MAPK pathways for pharmacological targeting. mTOR inhibition resulted in moderate reduction in viral titre, but had no effect on CHIKV E2 protein expression, indicating a minimal role of the mTOR complex in virus replication. Inhibition of p38 MAPK using SB202190 caused a significant reduction in viral titre and CHIKV E2 and nsP3 protein expression. Furthermore, inhibiting the two pathways together did not offer any synergism, indicating that inhibiting the p38 MAPK pathway alone is sufficient to cause restriction of CHIKV replication. Meanwhile, in uninfected cells the fully functional RAS-RAF-MEK-ERK pathway can circumvent the effect of p38 MAPK inhibition on cap-dependent translation. Thus, our results show that host-directed antiviral strategies targeting cellular p38 MAPK are worth exploring against Chikungunya as they could be selective against CHIKV-infected cells with minimal effects on uninfected host cells.


Assuntos
Autofagia , Vírus Chikungunya/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imidazóis/farmacologia , Biossíntese de Proteínas , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Apoptose , Linhagem Celular Tumoral , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Regulação para Baixo , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Capuzes de RNA , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Replicação Viral/efeitos dos fármacos
15.
Nat Commun ; 12(1): 4636, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330906

RESUMO

Chikungunya virus (CHIKV) is a reemerging mosquito-borne virus that causes swift outbreaks. Major concerns are the persistent and disabling polyarthralgia in infected individuals. Here we present the results from a first-in-human trial of the candidate simian adenovirus vectored vaccine ChAdOx1 Chik, expressing the CHIKV full-length structural polyprotein (Capsid, E3, E2, 6k and E1). 24 adult healthy volunteers aged 18-50 years, were recruited in a dose escalation, open-label, nonrandomized and uncontrolled phase 1 trial (registry NCT03590392). Participants received a single intramuscular injection of ChAdOx1 Chik at one of the three preestablished dosages and were followed-up for 6 months. The primary objective was to assess safety and tolerability of ChAdOx1 Chik. The secondary objective was to assess the humoral and cellular immunogenicity. ChAdOx1 Chik was safe at all doses tested with no serious adverse reactions reported. The vast majority of solicited adverse events were mild or moderate, and self-limiting in nature. A single dose induced IgG and T-cell responses against the CHIKV structural antigens. Broadly neutralizing antibodies against the four CHIKV lineages were found in all participants and as early as 2 weeks after vaccination. In summary, ChAdOx1 Chik showed excellent safety, tolerability and 100% PRNT50 seroconversion after a single dose.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Febre de Chikungunya/imunologia , Vírus Chikungunya/imunologia , Vacinas Virais/imunologia , Adolescente , Adulto , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/virologia , Vírus Chikungunya/classificação , Vírus Chikungunya/fisiologia , Citocinas/imunologia , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Fadiga/induzido quimicamente , Feminino , Cefaleia/induzido quimicamente , Humanos , Imunoglobulina G/imunologia , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinação/métodos , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Adulto Jovem
16.
Cell Immunol ; 367: 104411, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34325085

RESUMO

Chikungunya virus (CHIKV) is known to have a wide range of tropism in human cell types throughout infection, including keratinocytes, fibroblasts, endothelial cells, monocytes, and macrophages. We reported that human monocytes-derived macrophages (MDMs) are permissive to CHIKV infection in vitro. We found that the peak of CHIKV replication was at 24 hpi; however, at 48 hpi, a significant reduction in viral titer was observed that correlated with high expression levels of genes encoding antiviral proteins (AVPs) in an IFN-independent manner. To explore the molecular mechanisms involved in the induction of antiviral response in CHIKV-infected MDMs, we performed transcriptomic analysis by RNA-sequencing. Differential expression of genes at 24 hpi showed that CHIKV infection abrogated the expression of all types of IFNs in MDMs. However, we observed that CHIKV-infected MDMs activated the JAK-STAT signaling and induced a robust antiviral response associated with control of CHIKV replication. We identified that the IL27 pathway is activated in CHIKV-infected MDMs and that kinetics of IL27p28 mRNA expression and IL27 protein production correlated with the expression of AVPs in CHIKV-infected MDMs. Furthermore, we showed that stimulation of THP-1-derived macrophages with recombinant-human IL27 induced the activation of the JAK-STAT signaling and induced a robust pro-inflammatory and antiviral response, comparable to CHIKV-infected MDMs. Furthermore, pre-treatment of MDMs with recombinant-human IL27 inhibits CHIKV replication in a dose-dependently manner (IC50 = 1.83 ng/mL). Altogether, results show that IL27 is highly expressed in CHIKV-infected MDMs, leading to activation of JAK-STAT signaling and stimulation of pro-inflammatory and antiviral response to control CHIKV replication in an IFN-independent manner.


Assuntos
Febre de Chikungunya/imunologia , Vírus Chikungunya/fisiologia , Interleucina-27/metabolismo , Macrófagos/imunologia , Monócitos/imunologia , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Interferons/metabolismo , Janus Quinases/metabolismo , Camundongos , Fatores de Transcrição STAT/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Replicação Viral
17.
Biomolecules ; 11(5)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069869

RESUMO

Several RNA viruses, including SARS-CoV-2, can infect or use the eye as an entry portal to cause ocular or systemic diseases. Povidone-Iodine (PVP-I) is routinely used during ocular surgeries and eye banking as a cost-effective disinfectant due to its broad-spectrum antimicrobial activity, including against viruses. However, whether PVP-I can exert antiviral activities in virus-infected cells remains elusive. In this study, using Zika (ZIKV) and Chikungunya (CHIKV) virus infection of human corneal and retinal pigment epithelial cells, we report antiviral mechanisms of PVP-I. Our data showed that PVP-I, even at the lowest concentration (0.01%), drastically reduced viral replication in corneal and retinal cells without causing cellular toxicity. Antiviral effects of PVP-I against ZIKV and CHIKV were mediated by direct viral inactivation, thus attenuating the ability of the virus to infect host cells. Moreover, one-minute PVP-I exposure of infected ocular cells drastically reduced viral replication and the production of infectious progeny virions. Furthermore, viral-induced (CHIKV) expression of inflammatory genes (TNF-α, IL-6, IL-8, and IL1ß) were markedly reduced in PVP-I treated corneal epithelial cells. Together, our results demonstrate potent antiviral effects of PVP-I against ZIKV and CHIKV infection of ocular cells. Thus, a low dose of PVP-I can be used during tissue harvesting for corneal transplants to prevent potential transmission of RNA viruses via infected cells.


Assuntos
Antivirais/farmacologia , Povidona-Iodo/farmacologia , Vírus de RNA/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/virologia , SARS-CoV-2/fisiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Células Vero , Zika virus/fisiologia
18.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33568506

RESUMO

Chikungunya virus (CHIKV, family Togaviridae) is a mosquito-transmitted alphavirus. The positive-sense RNA genome of CHIKV encodes four nonstructural proteins (nsP1 to nsP4) that are virus-specific subunits of the RNA replicase. Among nsP functions, those of nsP3 are the least understood. The C-terminal hypervariable domain (HVD) in nsP3 is disordered and serves as a platform for interactions with multiple host proteins. For Sindbis virus (SINV) and Semliki Forest virus (SFV), the nsP3 HVD has been shown to be phosphorylated. Deletion of phosphorylated regions has a mild effect on the growth of SFV and SINV in vertebrate cells. Using radiolabeling, we demonstrated that nsP3 in CHIKV and o'nyong-nyong virus is also phosphorylated. We showed that the phosphorylated residues in CHIKV nsP3 are not clustered at the beginning of the HVD. The substitution of 20 Ser/Thr residues located in the N-terminal half of the HVD or 26 Ser/Thr residues located in its C-terminal half with Ala residues reduced the activity of the CHIKV replicase and the infectivity of CHIKV in mammalian cells. Furthermore, the substitution of all 46 potentially phosphorylated residues resulted in the complete loss of viral RNA synthesis and infectivity. The mutations did not affect the interaction of the HVD in nsP3 with the host G3BP1 protein; interactions with CD2AP, BIN1, and FHL1 proteins were significantly reduced but not abolished. Thus, CHIKV differs from SFV and SINV both in the location of the phosphorylated residues in the HVD in nsP3 and, significantly, in their effect on replicase activity and virus infectivity.IMPORTANCE CHIKV outbreaks have affected millions of people, creating a need for the development of antiviral approaches. nsP3 is a component of the CHIKV RNA replicase and is involved in interactions with host proteins and signaling cascades. Phosphorylation of the HVD in nsP3 is important for the virulent alphavirus phenotype. Here, we demonstrate that nsP3 in CHIKV is phosphorylated and that the phosphorylation sites in the HVD are distributed in a unique pattern. Furthermore, the abrogation of some of the phosphorylation sites results in the attenuation of CHIKV, while abolishing all the phosphorylation sites completely blocked its replicase activity. Thus, the phosphorylation of nsP3 and/or the phosphorylation sites in nsP3 have a major impact on CHIKV infectivity. Therefore, they represent promising targets for antiviral compounds and CHIKV attenuation. In addition, this new information offers valuable insight into the vast network of virus-host interactions.


Assuntos
Infecções por Alphavirus/virologia , Vírus Chikungunya , Interações Hospedeiro-Patógeno , Proteínas não Estruturais Virais , Replicação Viral/genética , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Vírus Chikungunya/patogenicidade , Vírus Chikungunya/fisiologia , Cricetinae , DNA Helicases/metabolismo , Fibroblastos , Humanos , Vírus O'nyong-nyong/patogenicidade , Vírus O'nyong-nyong/fisiologia , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Ligação Proteica , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Viral/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/fisiologia
19.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33328310

RESUMO

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for chikungunya fever. Nonstructural protein 2 (nsP2), a multifunctional protein essential for viral replication, has an N-terminal helicase region (nsP2h), which has both nucleotide triphosphatase and RNA triphosphatase activities, as well as a C-terminal cysteine protease region (nsP2p), which is responsible for nonstructural polyprotein processing. The two functional units are connected through a linker of 14 residues. Although crystal structures of the helicase and protease regions of CHIKV nsP2 have been solved separately, the conformational arrangement of the full-length nsP2 and the biological role of the linker remain elusive. Using the small-angle X-ray scattering (SAXS) method, we demonstrated that the full-length nsP2 is elongated and partially folded in solution. The reconstructed model of the structure of nsP2 contains a flexible interdomain linker, and there is no direct interaction between the two structured regions. To examine the function of the interdomain linker, we constructed and characterized a set of CHIKV mutants. The deletion of three or five amino acid residues in the linker region resulted in a modest defect in viral RNA replication and transcription but completely abolished viral infectivity. In contrast, increasing the flexibility of nsP2 by lengthening the interdomain linker increased both genomic RNA replication and viral infectivity. The enzymatic activities of the corresponding mutant proteins were largely unaffected. This work suggests that increasing the interdomain flexibility of nsP2 could facilitate the assembly of the replication complex (RC) with increased efficiency and promote virus production.IMPORTANCE CHIKV nsP2 plays multiple roles in viral RNA replication and virus-host interactions. The helicase and protease regions of nsP2 are connected through a short linker. Here, we determined that the conformation of full-length CHIKV nsP2 is elongated and that the protein is flexible in solution. We also highlight the importance of the flexibility of the interdomain of nsP2 on viral RNA synthesis and infectivity. CHIKV mutants harboring shortened linkers fail to produce infectious virus particles despite showing only relatively mild defects in genomic and subgenomic RNA synthesis. Mutations increasing the length of the interdomain linker have only mild and generally beneficial impacts on virus replication. Thus, our findings link interdomain flexibility with the regulation of viral RNA replication and infectivity of the viral genome.


Assuntos
Vírus Chikungunya/fisiologia , Cisteína Endopeptidases/química , RNA Helicases/química , Proteínas do Complexo da Replicase Viral/química , Replicação Viral , Sequência de Aminoácidos , Animais , Linhagem Celular , Vírus Chikungunya/química , Vírus Chikungunya/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Humanos , Mutação , Estrutura Terciária de Proteína , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Viral/metabolismo , Proteínas do Complexo da Replicase Viral/genética , Proteínas do Complexo da Replicase Viral/metabolismo
20.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32999033

RESUMO

Chikungunya virus (CHIKV) is an arthritogenic alphavirus that causes debilitating musculoskeletal disease. CHIKV displays broad cell, tissue, and species tropism, which may correlate with the attachment factors and entry receptors used by the virus. Cell surface glycosaminoglycans (GAGs) have been identified as CHIKV attachment factors. However, the specific types of GAGs and potentially other glycans to which CHIKV binds and whether there are strain-specific differences in GAG binding are not fully understood. To identify the types of glycans bound by CHIKV, we conducted glycan microarray analyses and discovered that CHIKV preferentially binds GAGs. Microarray results also indicate that sulfate groups on GAGs are essential for CHIKV binding and that CHIKV binds most strongly to longer GAG chains of heparin and heparan sulfate. To determine whether GAG binding capacity varies among CHIKV strains, a representative strain from each genetic clade was tested. While all strains directly bound to heparin and chondroitin sulfate in enzyme-linked immunosorbent assays (ELISAs) and depended on heparan sulfate for efficient cell binding and infection, we observed some variation by strain. Enzymatic removal of cell surface GAGs and genetic ablation that diminishes GAG expression reduced CHIKV binding and infectivity of all strains. Collectively, these data demonstrate that GAGs are the preferred glycan bound by CHIKV, enhance our understanding of the specific GAG moieties required for CHIKV binding, define strain differences in GAG engagement, and provide further evidence for a critical function of GAGs in CHIKV cell attachment and infection.IMPORTANCE Alphavirus infections are a global health threat, contributing to outbreaks of disease in many parts of the world. Recent epidemics caused by CHIKV, an arthritogenic alphavirus, resulted in more than 8.5 million cases as the virus has spread into new geographic regions, including the Western Hemisphere. CHIKV causes disease in the majority of people infected, leading to severe and debilitating arthritis. Despite the severity of CHIKV disease, there are no licensed therapeutics. Since attachment factors and receptors are determinants of viral tropism and pathogenesis, understanding these virus-host interactions can enhance our knowledge of CHIKV infection. We analyzed over 670 glycans and identified GAGs as the main glycan bound by CHIKV. We defined specific GAG components required for CHIKV binding and assessed strain-specific differences in GAG binding capacity. These studies provide insight about cell surface molecules that CHIKV binds, which could facilitate the development of antiviral therapeutics targeting the CHIKV attachment step.


Assuntos
Vírus Chikungunya/fisiologia , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Ligação Viral , Animais , Artrite , Linhagem Celular , Febre de Chikungunya/virologia , Glucuronosiltransferase/genética , Heparitina Sulfato/metabolismo , Humanos , Polissacarídeos/metabolismo , Tropismo Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA