Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(3): 72, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36840772

RESUMO

Replication of viruses requires interaction with host cell factors and repression of innate immunity. Recent findings suggest that a subset of intracellular mono-ADP-ribosylating PARPs, which are induced by type I interferons, possess antiviral activity. Moreover, certain RNA viruses, including Chikungunya virus (CHIKV), encode mono-ADP-ribosylhydrolases. Together, this suggests a role for mono-ADP-ribosylation (MARylation) in host-virus conflicts, but the relevant substrates have not been identified. We addressed which PARP restricts CHIKV replication and identified PARP10 and PARP12. For PARP10, this restriction was dependent on catalytic activity. Replication requires processing of the non-structural polyprotein nsP1-4 by the protease located in nsP2 and the assembly of the four individual nsP1-nsP4 into a functional replication complex. PARP10 and PARP12 inhibited the production of nsP3, indicating a defect in polyprotein processing. The nsP3 protein encodes a macrodomain with de-MARylation activity, which is essential for replication. In support for MARylation affecting polyprotein processing, de-MARylation defective CHIKV replicons revealed reduced production of nsP2 and nsP3. We hypothesized that MARylation regulates the proteolytic function of nsP2. Indeed, we found that nsP2 is MARylated by PARP10 and, as a consequence, its proteolytic activity was inhibited. NsP3-dependent de-MARylation reactivated the protease. Hence, we propose that PARP10-mediated MARylation prevents polyprotein processing and consequently virus replication. Together, our findings provide a mechanistic explanation for the role of the viral MAR hydrolase in CHIKV replication.


Assuntos
Vírus Chikungunya , Poli(ADP-Ribose) Polimerases , ADP-Ribosilação , Vírus Chikungunya/genética , Vírus Chikungunya/metabolismo , Peptídeo Hidrolases/genética , Poliproteínas/genética , Poliproteínas/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo
2.
J Biol Inorg Chem ; 28(1): 101-115, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36484824

RESUMO

Chikungunya virus (CHIKV) is the causative agent of chikungunya fever, a disease that can result in disability. Until now, there is no antiviral treatment against CHIKV, demonstrating that there is a need for development of new drugs. Studies have shown that thiosemicarbazones and their metal complexes possess biological activities, and their synthesis is simple, clean, versatile, and results in high yields. Here, we evaluated the mechanism of action (MOA) of a cobalt(III) thiosemicarbazone complex named [CoIII(L1)2]Cl based on its in vitro potent antiviral activity against CHIKV previously evaluated (80% of inhibition on replication). Furthermore, the complex has no toxicity in healthy cells, as confirmed by infecting BHK-21 cells with CHIKV-nanoluciferase in the presence of the compound, showing that [CoIII(L1)2]Cl inhibited CHIKV infection with the selective index of 3.26. [CoIII(L1)2]Cl presented a post-entry effect on viral replication, emphasized by the strong interaction of [CoIII(L1)2]Cl with CHIKV non-structural protein 4 (nsP4) in the microscale thermophoresis assay, suggesting a potential mode of action of this compound against CHIKV. Moreover, in silico analyses by molecular docking demonstrated potential interaction of [CoIII(L1)2]Cl with nsP4 through hydrogen bonds, hydrophobic and electrostatic interactions. The evaluation of ADME-Tox properties showed that [CoIII(L1)2]Cl presents appropriate lipophilicity, good human intestinal absorption, and has no toxicological effect as irritant, mutagenic, reproductive, and tumorigenic side effects.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/metabolismo , Vírus Chikungunya/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/farmacologia , Proteínas não Estruturais Virais/uso terapêutico , Cobalto/farmacologia , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/uso terapêutico
3.
PLoS Pathog ; 17(1): e1009033, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411764

RESUMO

The p53 transcription factor plays a key role both in cancer and in the cell-intrinsic response to infections. The ORFEOME project hypothesized that novel p53-virus interactions reside in hitherto uncharacterized, unknown, or hypothetical open reading frames (orfs) of human viruses. Hence, 172 orfs of unknown function from the emerging viruses SARS-Coronavirus, MERS-Coronavirus, influenza, Ebola, Zika (ZIKV), Chikungunya and Kaposi Sarcoma-associated herpesvirus (KSHV) were de novo synthesized, validated and tested in a functional screen of p53 signaling. This screen revealed novel mechanisms of p53 virus interactions and two viral proteins KSHV orf10 and ZIKV NS2A binding to p53. Originally identified as the target of small DNA tumor viruses, these experiments reinforce the notion that all viruses, including RNA viruses, interfere with p53 functions. These results validate this resource for analogous systems biology approaches to identify functional properties of uncharacterized viral proteins, long non-coding RNAs and micro RNAs.


Assuntos
Doenças Transmissíveis Emergentes/virologia , Vírus de RNA/metabolismo , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/metabolismo , Vírus Chikungunya/genética , Vírus Chikungunya/metabolismo , Coronavirus/genética , Coronavirus/metabolismo , Ebolavirus/genética , Ebolavirus/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Fases de Leitura Aberta , Vírus de RNA/genética , Proteína Supressora de Tumor p53/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/genética , Zika virus/metabolismo
4.
Arch Med Res ; 52(1): 48-57, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33131924

RESUMO

BACKGROUND: Ras-GTPase activating protein SH3-domain-binding proteins (G3BP) are a small family of RNA-binding proteins implicated in regulating gene expression. Changes in expression of G3BPs are correlated to several cancers including thyroid, colon, pancreatic and breast cancer. G3BPs are important regulators of stress granule (SG) formation and function. SG are ribonucleoprotein (RNP) particles that respond to cellular stresses to triage mRNA resulting in transcripts being selectively degraded, stored or translated resulting in a change of gene expression which confers a survival response to the cell. These changes in gene expression contribute to the development of drug resistance. Many RNA viruses, including Chikungunya (and potentially Coronavirus), dismantle SG so that the cell cannot respond to the viral infection. Non-structural protein 3 (nsP3), from the Chikungunya virus, has been shown to translocate G3BP away from SG. Interestingly in cancer cells, the formation of SG is correlated to drug-resistance and blocking SG formation has been shown to reestablish the efficacy of the anticancer drug bortezomib. METHODS: Chikungunya nsP3 was transfected into breast cancer cell lines T47D and MCF7 to disrupt SG formation. Changes in the cytotoxicity of bortezomib were measured. RESULTS: Bortezomib cytotoxicity in breast cancer cell lines changed with a 22 fold decrease in its IC50 for T47D and a 7 fold decrease for MCF7 cells. CONCLUSIONS: Chikungunya nsP3 disrupts SG formation. As a result, it increases the cytotoxicity of the FDA approved drug, bortezomib. In addition, the increased cytotoxicity appears to correlate to improved bortezomib selectivity when compared to control cell lines.


Assuntos
Bortezomib/farmacologia , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/genética , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Febre de Chikungunya/metabolismo , Febre de Chikungunya/patologia , Vírus Chikungunya/metabolismo , Chlorocebus aethiops , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/patologia , DNA Helicases/genética , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Feminino , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Transfecção , Células Vero , Proteínas não Estruturais Virais/administração & dosagem , Proteínas não Estruturais Virais/genética
5.
Virology ; 552: 52-62, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33059320

RESUMO

Chikungunya virus (CHIKV) is a mosquito-borne RNA virus that causes Chikungunya fever in humans. In this study, we generated two DNA-based CHIKV infectious clones derived from an Indian Ocean Lineage SL11131 strain and a prototype Ross strain. When the replication capabilities of the infectious CHIKV in various cell lines were evaluated, the SL11131 strain was found to replicate more efficiently than the Ross strain in Aedes albopictus C6/36 cells, whereas SL11131 underwent limited replication in a BHK-21-derivative cell line named BHK-DRV. Infection experiments using chimeric CHIKV between SL11131 and Ross revealed that these different replication activities of SL11131 in C6/36 and BHK-DRV cells were determined by structural and nonstructural genes, respectively. Therefore, the infectious clones created in this study will be a useful tool for investigating the virological features of a recent epidemic strain of CHIKV and benefit the development of effective prevention and treatment of CHIKV infection.


Assuntos
Aedes/virologia , Vírus Chikungunya/genética , Vírus Chikungunya/metabolismo , Quimera/genética , Quimera/metabolismo , Animais , Linhagem Celular , Febre de Chikungunya/virologia , Chlorocebus aethiops , Cricetinae , Genes Virais , Células HeLa , Células Hep G2 , Humanos , Células Vero , Replicação Viral
6.
J Microbiol Biotechnol ; 30(12): 1801-1809, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33323678

RESUMO

Chikungunya virus (CHIKV) was first identified in 1952 as a causative agent of outbreaks. CHIKV is transmitted by two mosquito species, Aedes aegypti and A. albopictus. Symptoms after CHIKV infection in human are typically fever and joint pain, but can also include headache, muscle pain, joint swelling, polyarthralgia, and rash. CHIKV is an enveloped single-stranded, positive-sense RNA virus with a diameter of approximately 70 nm. The pathogenesis of CHIKV infection and the mechanism by which the virus evades the innate immune system remain poorly understood. Moreover, little is known about the roles of CHIKV-encoded genes in the viral evasion of host immune responses, especially type I interferon (IFN) responses. Therefore, in the present study, we screened CHIKV-encoded genes for their regulatory effect on the activation of nuclear factor kappa B (NF-κB), a critical transcription factor for the optimal activation of IFN-ß. Among others, nonstructural protein 2 (nsP2) strongly inhibited melanoma differentiation-associated protein 5 (MDA5)-mediated induction of the NF-κB pathway in a dose-dependent manner. Elucidation of the detailed mechanisms of nsP2-mediated inhibition of the MDA5/RIG-I signaling pathway is anticipated to contribute to the development of virus-specific therapeutics against CHIKV infection.


Assuntos
Febre de Chikungunya/imunologia , Vírus Chikungunya/metabolismo , Proteína DEAD-box 58/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , NF-kappa B/metabolismo , Receptores Imunológicos/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular , Vírus Chikungunya/genética , Proteína DEAD-box 58/genética , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Interferon beta/metabolismo , Receptores Imunológicos/genética , Transdução de Sinais , Proteínas não Estruturais Virais/genética
7.
Mikrochim Acta ; 187(12): 674, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33241435

RESUMO

The critical goal of sensitive virus detection should apply in the early stage of infection, which may increase the probable survival rate. To achieve the low detection limit for the early stage where a small number of viruses are present in the sample, proper amplified signals from a sensor can make readable and reliable detection. In this work, a new model of fluorescent and electrochemical dual-mode detection system has been developed to detect virus, taking recombinant Chikungunya virus E1 protein (CHIK-VP) as an example. The hydrophobic quantum dots (QDs) embedded in the lipid bilayer of liposome and methylene blue (MB) encapsulated in the inner core of liposomes played a role of dual-signaling modulator. After CHIK-VP addition, the nanocomposites and APTES-coated Fe3O4 nanoparticles (Fe3O4 NPs) were conjugated with antibodies to form a sandwich structure and separated from the medium magnetically. The nanoconjugates have been burst out by chloroform as surfactant, and both the QDs and MB are released from the liposome and were then monitored through changes in the fluorescence and electrochemical signals, respectively. These two fluorometric and electrochemical signals alteration quantified the CHIK-VP in the range of femtogram to nanogram per milliliter level with a LOD of 32 fg mL-1, making this liposomal system a potential matrix in a virus detection platform. Graphical abstract.


Assuntos
Vírus Chikungunya/metabolismo , Técnicas Eletroquímicas/métodos , Corantes Fluorescentes/química , Fluorometria/métodos , Lipossomos/química , Proteínas do Envelope Viral/análise , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Óxido Ferroso-Férrico/química , Limite de Detecção , Nanopartículas de Magnetita/química , Azul de Metileno/química , Oxirredução , Pontos Quânticos/química , Proteínas Recombinantes/análise , Proteínas Recombinantes/biossíntese , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo
8.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938768

RESUMO

Chikungunya virus (CHIKV), a mosquito-transmitted alphavirus, enters a cell through endocytosis, followed by viral and cell membrane fusion. The fusion protein, E1, undergoes an acid pH-induced pre- to postfusion conformation change during membrane fusion. As part of the conformation change, E1 dissociates from the receptor-binding protein, E2, and swivels its domains I and II over domain III to form an extended intermediate and then eventually to form a postfusion hairpin homotrimer. In this study, we tested if the domain I-III linker acts as a "hinge" for the swiveling motion of E1 domains. We found a conserved spring-twisted structure in the linker, stabilized by a salt bridge between a conserved arginine-aspartic acid pair, as a "hinge point" for domain swiveling. Molecular dynamics (MD) simulation of the CHIKV E1 or E2-E1 structure predicted that the spring-twisted region untwists at pH 5.5. Corroborating the prediction, introduction of a "cystine staple" at the hinge point, replacing the conserved arginine-aspartic acid pair with cysteine residues, resulted in loss of fusion activity of E1. MD simulation also predicted domain I-III swiveling at acidic pH. We tested if breaking the His 331-Lys 16 H bond between domains I and III, seen only in the prefusion conformation, is important for domain swiveling. When domains I and III are "stapled" by introducing a disulfide bond in between, E1 showed loss of fusion activity, implying that domain I and III dissociation is a critical acid pH-induced step in membrane fusion. However, replacement of His 331 with an acidic residue did not affect the pH threshold for fusion, suggesting His 331 is not an acid-sensing residue.IMPORTANCEAedes mosquito-transmitted viruses such as the Zika, dengue, and chikungunya viruses have spread globally. CHIKV, similar to many other enveloped viruses, enters cells in sequential steps: step 1 involves receptor binding followed by endocytosis, and step 2 involves viral-cell membrane fusion in the endocytic vesicle. The viral envelope surface protein, E1, performs membrane fusion. E1 is triggered to undergo conformational changes by acidic pH of the maturing endosome. Different domains of E1 rearrange during the pre- to postfusion conformation change. Using in silico analysis of the E1 structure and different biochemical experiments, we explained a structural mechanism of key conformational changes in E1 triggered by acidic pH. We noted two important structural changes in E1 at acidic pH. In the first, a spring-twisted region in a loop connecting two domains (I and III) untwists, bringing a swiveling motion of domains on each other. In the second, breaking of interactions between domains I and III and domain separation are required for membrane fusion. This knowledge will help devise new therapeutic strategies to block conformation changes in E1 and thus viral entry.


Assuntos
Vírus Chikungunya/metabolismo , Domínios Proteicos , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Endocitose , Concentração de Íons de Hidrogênio , Fusão de Membrana , Glicoproteínas de Membrana/química , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/genética , Internalização do Vírus
9.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132240

RESUMO

In mammalian cells, alphavirus replication complexes are anchored to the plasma membrane. This interaction with lipid bilayers is mediated through the viral methyl/guanylyltransferase nsP1 and reinforced by palmitoylation of cysteine residue(s) in the C-terminal region of this protein. Lipid content of membranes supporting nsP1 anchoring remains poorly studied. Here, we explore the membrane binding capacity of nsP1 with regard to cholesterol. Using the medically important chikungunya virus (CHIKV) as a model, we report that nsP1 cosegregates with cholesterol-rich detergent-resistant membrane microdomains (DRMs), also called lipid rafts. In search for the critical factor for cholesterol partitioning, we identify nsP1 palmitoylated cysteines as major players in this process. In cells infected with CHIKV or transfected with CHIKV trans-replicase plasmids, nsP1, together with the other nonstructural proteins, are detected in DRMs. While the functional importance of CHIKV nsP1 preference for cholesterol-rich membrane domains remains to be determined, we observed that U18666A- and imipramine-induced sequestration of cholesterol in late endosomes redirected nsP1 to these compartments and simultaneously dramatically decreased CHIKV genome replication. A parallel study of Sindbis virus (SINV) revealed that nsP1 from this divergent alphavirus displays a low affinity for cholesterol and only moderately segregates with DRMs. Behaviors of CHIKV and SINV with regard to cholesterol, therefore, match with the previously reported differences in the requirement for nsP1 palmitoylation, which is dispensable for SINV but strictly required for CHIKV replication. Altogether, this study highlights the functional importance of nsP1 segregation with DRMs and provides new insight into the functional role of nsP1 palmitoylated cysteines during alphavirus replication.IMPORTANCE Functional alphavirus replication complexes are anchored to the host cell membranes through the interaction of nsP1 with the lipid bilayers. In this work, we investigate the importance of cholesterol for such an association. We show that nsP1 has affinity for cholesterol-rich membrane microdomains formed at the plasma membrane and identify conserved palmitoylated cysteine(s) in nsP1 as the key determinant for cholesterol affinity. We demonstrate that drug-induced cholesterol sequestration in late endosomes not only redirects nsP1 to this compartment but also dramatically decreases genome replication, suggesting the functional importance of nsP1 targeting to cholesterol-rich plasma membrane microdomains. Finally, we show evidence that nsP1 from chikungunya and Sindbis viruses displays different sensitivity to cholesterol sequestering agents that parallel with their difference in the requirement for nsP1 palmitoylation for replication. This research, therefore, gives new insight into the functional role of palmitoylated cysteines in nsP1 for the assembly of functional alphavirus replication complexes in their mammalian host.


Assuntos
Vírus Chikungunya/metabolismo , Colesterol/metabolismo , Cisteína/metabolismo , Lipoilação/fisiologia , Microdomínios da Membrana/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Animais , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/virologia , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Chlorocebus aethiops , Endossomos/metabolismo , Células HEK293 , Células HeLa , Humanos , Sindbis virus , Células Vero , Proteínas não Estruturais Virais/genética , Replicação Viral/genética
10.
Talanta ; 208: 120338, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816752

RESUMO

Arboviruses have been emerging as a significant global health problem due to the recurrent epidemics. Arboviruses require the development of new diagnostic devices due to the nonspecific clinical manifestations. Herein, we report a biosensor based on cysteine (Cys), zinc oxide nanoparticles (ZnONp), and Concanavalin A (ConA) lectin to differentiate between arboviruses infections. ConA is capable of interacting with the saccharide components of the viral capsid. In this study, we evaluated the reproducibility, sensitivity, and specificity of the sensor for the virus of Dengue type 2 (DENV2), Zika (ZIKV), Chikungunya (CHIKV), and Yellow fever (YFV). Atomic force microscopy measurements confirmed the electrode surface modification and revealed a heterogeneous topography during the biorecognition process. Cyclic voltammetry (CV) and impedance spectroscopy (EIS) were used to characterize the biosensor. The blockage of the oxidation-reduction process is related to the formation of Cys-ZnONp-ConA system on the electroactive area and its subsequent interaction with viral glycoproteins. The sensor exhibited a linear response to different concentrations of the studied arboviruses. Our study demonstrates that ConA lectin recognizes the structural glycoproteins of the DENV2, ZIKV, CHIKV, and YFV. DENV2 is the most structurally similar to ZIKV. Our results have shown that the impedimetric response correlates with the structural glycoproteins, as follow: DENV2 (18.6 kΩ) > ZIKV (14.6 kΩ) > CHIKV (6.86 kΩ) > YFV (5.98 kΩ). The homologous structural regions contribute to ConA-arboviruses recognition. Our results demonstrate the use of the proposed system for the development of biosensors for arboviruses infections.


Assuntos
Infecções por Arbovirus/diagnóstico , Arbovírus/metabolismo , Técnicas Biossensoriais/métodos , Concanavalina A/química , Eletroquímica/métodos , Eletrodos , Nanopartículas Metálicas/química , Infecções por Arbovirus/sangue , Infecções por Arbovirus/virologia , Arbovírus/isolamento & purificação , Febre de Chikungunya/sangue , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/virologia , Vírus Chikungunya/isolamento & purificação , Vírus Chikungunya/metabolismo , Cisteína/química , Dengue/sangue , Dengue/diagnóstico , Dengue/virologia , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/metabolismo , Diagnóstico Diferencial , Glucose/análise , Humanos , Manose/análise , Febre Amarela/sangue , Febre Amarela/diagnóstico , Febre Amarela/virologia , Vírus da Febre Amarela/isolamento & purificação , Vírus da Febre Amarela/metabolismo , Zika virus/isolamento & purificação , Zika virus/metabolismo , Infecção por Zika virus/sangue , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/virologia , Óxido de Zinco/química
11.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396899

RESUMO

Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins' functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.


Assuntos
Processamento de Proteína Pós-Traducional , Infecções por Vírus de RNA/enzimologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/metabolismo , Vírus de RNA/patogenicidade , Proteínas Virais/metabolismo , Acetilação , Vírus Chikungunya/metabolismo , Coronavirus/metabolismo , Coronavirus/patogenicidade , Efeito Citopatogênico Viral , Glicosilação , HIV/metabolismo , HIV/patogenicidade , Interações entre Hospedeiro e Microrganismos , Humanos , Fosforilação , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/metabolismo , Vírus de RNA/imunologia , Ubiquitinação , Replicação Viral/fisiologia , Zika virus/metabolismo , Zika virus/patogenicidade
12.
J Microbiol Biotechnol ; 29(11): 1852-1859, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31635445

RESUMO

Chikungunya virus (CHIKV) is a single-stranded positive-sense RNA virus, belonging to the genus Alphavirus of the Togaviridae family. It causes multiple symptoms, including headache, fever, severe joint and muscle pain, and arthralgia. Since CHIKV was first isolated in Tanzania in 1952, there have been multiple outbreaks of chikungunya fever. However, its pathogenesis and mechanisms of viral immune evasion have been poorly understood. In addition, the exact roles of individual CHIKV genes on the host innate immune response remain largely unknown. To investigate if CHIKV-encoded genes modulate the type I interferon (IFN) response, each and every CHIKV gene was screened for its effects on the induction of the IFN-ß promoter. Here we report that CHIKV nsP2, E2 and E1 strongly suppressed activation of the IFN-ß promoter induced by the MDA5/RIG-I receptor signaling pathway, suggesting that nsP2, E2, and E1 are the major antagonists against induction of IFN-ß. Delineation of underlying mechanisms of CHIKV-mediated inhibition of the IFN-ß pathway may help develop virus-specific therapeutics and vaccines.


Assuntos
Vírus Chikungunya/metabolismo , Interferon beta/antagonistas & inibidores , Transdução de Sinais , Proteínas Virais/metabolismo , Vírus Chikungunya/genética , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Regiões Promotoras Genéticas , Receptores Imunológicos , Proteínas Virais/genética
13.
PLoS Pathog ; 15(9): e1007934, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31479495

RESUMO

Mayaro virus (MAYV) is an arbovirus that circulates in Latin America and is emerging as a potential threat to public health. Infected individuals develop Mayaro fever, a severe inflammatory disease characterized by high fever, rash, arthralgia, myalgia and headache. The disease is often associated with a prolonged arthralgia mediated by a chronic inflammation that can last months. Although the immune response against other arboviruses, such as chikungunya virus (CHIKV), dengue virus (DENV) and Zika virus (ZIKV), has been extensively studied, little is known about the pathogenesis of MAYV infection. In this study, we established models of MAYV infection in macrophages and in mice and found that MAYV can replicate in bone marrow-derived macrophages and robustly induce expression of inflammasome proteins, such as NLRP3, ASC, AIM2, and Caspase-1 (CASP1). Infection performed in macrophages derived from Nlrp3-/-, Aim2-/-, Asc-/-and Casp1/11-/-mice indicate that the NLRP3, but not AIM2 inflammasome is essential for production of inflammatory cytokines, such as IL-1ß. We also determined that MAYV triggers NLRP3 inflammasome activation by inducing reactive oxygen species (ROS) and potassium efflux. In vivo infections performed in inflammasome-deficient mice indicate that NLRP3 is involved with footpad swelling, inflammation and pain, establishing a role of the NLRP3 inflammasome in the MAYV pathogenesis. Accordingly, we detected higher levels of caspase1-p20, IL-1ß and IL-18 in the serum of MAYV-infected patients as compared to healthy individuals, supporting the participation of the NLRP3-inflammasome during MAYV infection in humans.


Assuntos
Infecções por Alphavirus/imunologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Adulto , Idoso , Infecções por Alphavirus/metabolismo , Animais , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Vírus Chikungunya/metabolismo , Vírus da Dengue/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamassomos/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Espécies Reativas de Oxigênio/metabolismo , Togaviridae/patogenicidade , Zika virus/metabolismo
14.
Biosci Rep ; 39(6)2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31167876

RESUMO

Receptor binding is the first step in viral cell entry. In enveloped virus cell entry, viral and host membrane fusion follows receptor binding. Viral surface receptor-binding protein associates with membrane fusion protein and masks its structure, to prevent pre-mature fusion activity. Dissociation of receptor-binding protein from fusion protein is an essential step before membrane fusion. Mechanism of receptor binding leading to dissociation of receptor binding and fusion protein is poorly understood in alphaviruses. Chikungunya virus (CHIKV), an alphavirus, re-emerged as a global pathogen in recent past. CHIKV surface envelope proteins, E2 and E1, function as receptor binding and fusion protein, respectively. Site of heparan sulfate (HS) receptor binding on E2-E1 heterodimer and its effect on E2-E1 heterodimer conformation is not known. Using molecular docking, we mapped HS binding to a positively charged pocket on E2 that is structurally conserved in alphaviruses. Based on our results from docking and sequence analysis, we identified a novel HS-binding sequence motif in E2. Purified E2 binds to heparin and HS specifically through charge interactions. Binding affinity of E2 to HS is comparable with other known HS-protein interactions (Kd ∼ 1.8 µM). Mutation of charged residues in the predicted HS-binding motif of E2 to alanine resulted in reduction of HS binding. Molecular dynamics (MD) simulations on E2, after docking HS, predicted allosteric domain movements. Fluorescence spectroscopy, far-UV circular dichroism spectroscopy, fluorescence resonance energy transfer experiments on HS-bound E2 corroborate our findings from MD simulations. We propose a mechanism where receptor-binding results in allosteric domain movements in E2, explaining E2-E1 dissociation.


Assuntos
Vírus Chikungunya/química , Heparitina Sulfato/química , Simulação de Acoplamento Molecular , Proteínas do Envelope Viral/química , Internalização do Vírus , Substituição de Aminoácidos , Vírus Chikungunya/genética , Vírus Chikungunya/metabolismo , Heparitina Sulfato/metabolismo , Mutação de Sentido Incorreto , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
15.
J Virol ; 93(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31217251

RESUMO

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus. It has a positive-sense RNA genome that also serves as the mRNA for four nonstructural proteins (nsPs) representing subunits of the viral replicase. Coupling of nsP and RNA synthesis complicates analysis of viral RNA replication. We developed trans-replication systems, where production of replication-competent RNA and expression of viral replicase are uncoupled. Mammalian and mosquito RNA polymerase I promoters were used to produce noncapped RNA templates, which are poorly translated relative to CHIKV replicase-generated capped RNAs. It was found that, in human cells, constructs driven by RNA polymerase I promoters of human and Chinese hamster origin performed equally well. In contrast, RNA polymerase I promoters from Aedes mosquitoes exhibited strong species specificity. In both mammalian and mosquito cells, novel trans-replicase assays had exceptional sensitivity, with up to 105-fold higher reporter expression in the presence of replicase relative to background. Using this highly sensitive assay to analyze CHIKV nsP1 functionality, several mutations that severely reduced, but did not completely block, CHIKV replicase activity were identified: (i) nsP1 tagged at its N terminus with enhanced green fluorescent protein; (ii) mutations D63A and Y248A, blocking the RNA capping; and (iii) mutation R252E, affecting nsP1 membrane anchoring. In contrast, a mutation in the nsP1 palmitoylation site completely inactivated CHIKV replicase in both human and mosquito cells and was lethal for the virus. Our data confirm that this novel system provides a valuable tool to study CHIKV replicase, RNA replication, and virus-host interactions.IMPORTANCE Chikungunya virus (CHIKV) is a medically important pathogen responsible for recent large-scale epidemics. The development of efficient therapies against CHIKV has been hampered by gaps in our understanding of how nonstructural proteins (nsPs) function to form the viral replicase and replicate virus RNA. Here we describe an extremely sensitive assay to analyze the effects of mutations on the virus RNA synthesis machinery in cells of both mammalian (host) and mosquito (vector) origin. Using this system, several lethal mutations in CHIKV nsP1 were shown to reduce but not completely block the ability of its replicase to synthesize viral RNAs. However, in contrast to related alphaviruses, CHIKV replicase was completely inactivated by mutations preventing palmitoylation of nsP1. These data can be used to develop novel, virus-specific antiviral treatments.


Assuntos
RNA Polimerase I/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Aedes/virologia , Animais , Antivirais/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Febre de Chikungunya/virologia , Vírus Chikungunya/metabolismo , Chlorocebus aethiops , Humanos , Mamíferos/genética , Mosquitos Vetores , Mutação , RNA Polimerase I/fisiologia , RNA Viral/genética , Células Vero , Proteínas não Estruturais Virais/genética
16.
Cell ; 177(7): 1725-1737.e16, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31080061

RESUMO

Mxra8 is a receptor for multiple arthritogenic alphaviruses that cause debilitating acute and chronic musculoskeletal disease in humans. Herein, we present a 2.2 Å resolution X-ray crystal structure of Mxra8 and 4 to 5 Å resolution cryo-electron microscopy reconstructions of Mxra8 bound to chikungunya (CHIKV) virus-like particles and infectious virus. The Mxra8 ectodomain contains two strand-swapped Ig-like domains oriented in a unique disulfide-linked head-to-head arrangement. Mxra8 binds by wedging into a cleft created by two adjacent CHIKV E2-E1 heterodimers in one trimeric spike and engaging a neighboring spike. Two binding modes are observed with the fully mature VLP, with one Mxra8 binding with unique contacts. Only the high-affinity binding mode was observed in the complex with infectious CHIKV, as viral maturation and E3 occupancy appear to influence receptor binding-site usage. Our studies provide insight into how Mxra8 binds CHIKV and creates a path for developing alphavirus entry inhibitors.


Assuntos
Vírus Chikungunya/química , Proteínas de Membrana/química , Proteínas do Envelope Viral/química , Vírus Chikungunya/metabolismo , Vírus Chikungunya/ultraestrutura , Microscopia Crioeletrônica , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Domínios Proteicos , Proteínas do Envelope Viral/metabolismo
17.
Cell ; 177(7): 1714-1724.e12, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31080063

RESUMO

Arthritogenic alphaviruses, such as Chikungunya virus (CHIKV), cause severe and debilitating rheumatic diseases worldwide, resulting in severe morbidity and economic costs. Recently, MXRA8 was reported as an entry receptor. Here, we present the crystal structures of the mouse MXRA8, human MXRA8 in complex with the CHIKV E protein, and the cryo-electron microscopy structure of human MXRA8 and CHIKV virus-like particle. MXRA8 has two Ig-like domains with unique structural topologies. This receptor binds in the "canyon" between two protomers of the E spike on the surface of the virion. The atomic details at the interface between the two binding entities reveal that both the two domains and the hinge region of MXRA8 are involved in interaction with CHIKV E1-E2 residues from two protomers. Notably, the stalk region of MXRA8 is critical for CHIKV virus entry. This finding provides important information regarding the development of therapeutic countermeasures against those arthritogenic alphaviruses.


Assuntos
Vírus Chikungunya/química , Proteínas de Membrana/química , Proteínas do Envelope Viral/química , Internalização do Vírus , Animais , Vírus Chikungunya/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Domínios Proteicos , Células Vero , Proteínas do Envelope Viral/metabolismo
18.
Proc Natl Acad Sci U S A ; 116(19): 9558-9567, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31000599

RESUMO

Chikungunya virus (CHIKV) is transmitted to humans through mosquitoes and causes Chikungunya fever. Nonstructural protein 2 (nsP2) exhibits the protease and RNA helicase activities that are required for viral RNA replication and transcription. Unlike for the C-terminal protease, the structure of the N-terminal RNA helicase (nsP2h) has not been determined. Here, we report the crystal structure of the nsP2h bound to the conserved 3'-end 14 nucleotides of the CHIKV genome and the nonhydrolyzable transition-state nucleotide analog ADP-AlF4 Overall, the structural analysis revealed that nsP2h adopts a uniquely folded N-terminal domain followed by a superfamily 1 RNA helicase fold. The conserved helicase motifs establish polar contacts with the RNA backbone. There are three hydrophobic residues (Y161, F164, and F287) which form stacking interactions with RNA bases and thereby bend the RNA backbone. An F287A substitution that disrupted these stacking interactions increased the basal ATPase activity but decreased the RNA binding affinity. Furthermore, the F287A substitution reduced viral infectivity by attenuating subgenomic RNA synthesis. Replication of the mutant virus was restored by pseudoreversion (A287V) or adaptive mutations in the RecA2 helicase domain (T358S or V410I). Y161A and/or F164A substitutions, which were designed to disrupt the interactions with the RNA molecule, did not affect the ATPase activity but completely abolished the replication and transcription of viral RNA and the infectivity of CHIKV. Our study sheds light on the roles of the RNA helicase region in viral replication and provides insights that might be applicable to alphaviruses and other RNA viruses in general.


Assuntos
Difosfato de Adenosina/análogos & derivados , Vírus Chikungunya/química , Compostos Organometálicos/química , RNA Helicases/química , RNA Viral/química , Proteínas Virais/química , Difosfato de Adenosina/química , Vírus Chikungunya/metabolismo , Domínios Proteicos , RNA Helicases/metabolismo , RNA Viral/biossíntese , Proteínas Virais/metabolismo
19.
Biochem Biophys Res Commun ; 513(4): 919-924, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31005258

RESUMO

Chikungunya virus (CHIKV) is a re-emerging mosquito-transmitted RNA virus causing joint and muscle pain. Although the protein-protein interactions (PPIs) between nonstructural proteins of CHIKV have been extensively established, the complete CHIKV intraviral interactome remains to be elucidated. In this study, we examined all possible CHIKV intraviral PPIs by immunoprecipitation and constructed the intraviral interactome of CHIKV. We reported 19 novel PPIs including the homo-oligomerization of TF. Disulfide bonds promoted the oligomerization of CHIKV TF protein. 2-BP, a palmitoylation inhibitor reduced the palmitoylation of TF and increased TF oligomerization. A quadruple mutant of Cys33, Cys35, Cys41, and Cys43 in TF blocked its palmitoylation and reduced oligomerization. Furthermore, we determined the association of TF with nsP1 and nsP3 in a palmitoylation-dependent manner. Construction of intraviral interactome of CHIKV provides the basis for further studying the function of CHIKV proteins.


Assuntos
Vírus Chikungunya/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas Virais/metabolismo , Imunoprecipitação , Lipoilação , Multimerização Proteica , Proteínas não Estruturais Virais/metabolismo , Proteínas Estruturais Virais/metabolismo
20.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463980

RESUMO

Beyond their role in cellular RNA metabolism, DExD/H-box RNA helicases are hijacked by various RNA viruses in order to assist replication of the viral genome. Here, we identify the DExH-box RNA helicase 9 (DHX9) as a binding partner of chikungunya virus (CHIKV) nsP3 mainly interacting with the C-terminal hypervariable domain. We show that during early CHIKV infection, DHX9 is recruited to the plasma membrane, where it associates with replication complexes. At a later stage of infection, DHX9 is, however, degraded through a proteasome-dependent mechanism. Using silencing experiments, we demonstrate that while DHX9 negatively controls viral RNA synthesis, it is also required for optimal mature nonstructural protein translation. Altogether, this study identifies DHX9 as a novel cofactor for CHIKV replication in human cells that differently regulates the various steps of CHIKV life cycle and may therefore mediate a switch in RNA usage from translation to replication during the earliest steps of CHIKV replication.IMPORTANCE The reemergence of chikungunya virus (CHIKV), an alphavirus that is transmitted to humans by Aedes mosquitoes, is a serious global health threat. In the absence of effective antiviral drugs, CHIKV infection has a significant impact on human health, with chronic arthritis being one of the most serious complications. The molecular understanding of host-virus interactions is a prerequisite to the development of targeted therapeutics capable to interrupt viral replication and transmission. Here, we identify the host cell DHX9 DExH-Box helicase as an essential cofactor for early CHIKV genome translation. We demonstrate that CHIKV nsP3 protein acts as a key factor for DHX9 recruitment to replication complexes. Finally, we establish that DHX9 behaves as a switch that regulates the progression of the viral cycle from translation to genome replication. This study might therefore have a significant impact on the development of antiviral strategies.


Assuntos
Vírus Chikungunya/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , RNA Helicases DEAD-box/genética , DNA Helicases/metabolismo , Genômica , Células HEK293 , Células HeLa , Humanos , Proteínas de Neoplasias/genética , Biossíntese de Proteínas/genética , RNA Helicases/metabolismo , RNA Viral/metabolismo , Células Vero , Replicação Viral/genética , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA