Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(2): e0137223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38214525

RESUMO

Nipah virus (NiV) and Hendra virus (HeV) are pathogenic paramyxoviruses that cause mild-to-severe disease in humans. As members of the Henipavirus genus, NiV and HeV use an attachment (G) glycoprotein and a class I fusion (F) glycoprotein to invade host cells. The F protein rearranges from a metastable prefusion form to an extended postfusion form to facilitate host cell entry. Prefusion NiV F elicits higher neutralizing antibody titers than postfusion NiV F, indicating that stabilization of prefusion F may aid vaccine development. A combination of amino acid substitutions (L104C/I114C, L172F, and S191P) is known to stabilize NiV F in its prefusion conformation, although the extent to which substitutions transfer to other henipavirus F proteins is not known. Here, we perform biophysical and structural studies to investigate the mechanism of prefusion stabilization in F proteins from three henipaviruses: NiV, HeV, and Langya virus (LayV). Three known stabilizing substitutions from NiV F transfer to HeV F and exert similar structural and functional effects. One engineered disulfide bond, located near the fusion peptide, is sufficient to stabilize the prefusion conformations of both HeV F and LayV F. Although LayV F shares low overall sequence identity with NiV F and HeV F, the region around the fusion peptide exhibits high sequence conservation across all henipaviruses. Our findings indicate that substitutions targeting this site of conformational change might be applicable to prefusion stabilization of other henipavirus F proteins and support the use of NiV as a prototypical pathogen for henipavirus vaccine antigen design.IMPORTANCEPathogenic henipaviruses such as Nipah virus (NiV) and Hendra virus (HeV) cause respiratory symptoms, with severe cases resulting in encephalitis, seizures, and coma. The work described here shows that the NiV and HeV fusion (F) proteins share common structural features with the F protein from an emerging henipavirus, Langya virus (LayV). Sequence alignment alone was sufficient to predict which known prefusion-stabilizing amino acid substitutions from NiV F would stabilize the prefusion conformations of HeV F and LayV F. This work also reveals an unexpected oligomeric interface shared by prefusion HeV F and NiV F. Together, these advances lay a foundation for future antigen design targeting henipavirus F proteins. In this way, Nipah virus can serve as a prototypical pathogen for the development of protective vaccines and monoclonal antibodies to prepare for potential henipavirus outbreaks.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Henipavirus , Vírus Nipah , Proteínas Virais , Humanos , Glicoproteínas/metabolismo , Vírus Hendra/fisiologia , Henipavirus/fisiologia , Vírus Nipah/genética , Vírus Nipah/metabolismo , Peptídeos/metabolismo , Proteínas Virais de Fusão , Proteínas Virais/metabolismo
2.
Front Cell Infect Microbiol ; 13: 1180344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577376

RESUMO

Nipah virus (NiV) and Hendra virus (HeV) are newly emerging dangerous zoonotic pathogens of the Henipavirus genus of the Paramyxoviridae family. NiV and HeV (HNVs) which are transmitted by bats cause acute respiratory disease and fatal encephalitis in humans. To date, as there is a lack of antiviral drugs or effective antiviral therapies, the development of vaccines against those two viruses is of primary importance, and the immunogen design is crucial to the success of vaccines. In this study, the full-length protein (G), the ectodomain (Ge) and the head domain (Gs) of NiV attachment glycoprotein were delivered by the replication-defective type 5 adenovirus vector (Ad5) respectively, and the recombinant Ad5-NiV vaccine candidates (Ad5-NiVG, Ad5-NiVGe and Ad5-NiVGs) were constructed and their immunogenicity were evaluated in mice. The results showed that all the vaccine candidates stimulated specific humoral and cellular immune responses efficiently and rapidly against both NiV and HeV, and the Ad5-NiVGe elicited the strongest immune responses after a single-dose immunization. Furthermore, the potent conserved T-cell epitope DTLYFPAVGFL shared by NiV and HeV was identified in the study, which may provide valid information on the mechanism of HNVs-specific cellular immunity. In summary, this study demonstrates that the Ad5-NiVGe could be a potent vaccine candidate against HNVs by inducing robust humoral and cellular immune responses.


Assuntos
Vírus Hendra , Vírus Nipah , Humanos , Animais , Camundongos , Vírus Hendra/fisiologia , Vírus Nipah/genética , Vírus Nipah/metabolismo , Ligação Viral , Glicoproteínas/genética , Glicoproteínas/metabolismo , Vacinas Sintéticas , Imunidade Celular , Adenoviridae/genética
3.
Viruses ; 13(12)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34960622

RESUMO

Hendra virus (HeV) is a zoonotic enveloped member of the family Paramyoxviridae. To successfully infect a host cell, HeV utilizes two surface glycoproteins: the attachment (G) protein to bind, and the trimeric fusion (F) protein to merge the viral envelope with the membrane of the host cell. The transmembrane (TM) region of HeV F has been shown to have roles in F protein stability and the overall trimeric association of F. Previously, alanine scanning mutagenesis has been performed on the C-terminal end of the protein, revealing the importance of ß-branched residues in this region. Additionally, residues S490 and Y498 have been demonstrated to be important for F protein endocytosis, needed for the proteolytic processing of F required for fusion. To complete the analysis of the HeV F TM, we performed alanine scanning mutagenesis to explore the residues in the N-terminus of this region (residues 487-506). In addition to confirming the critical roles for S490 and Y498, we demonstrate that mutations at residues M491 and L492 alter F protein function, suggesting a role for these residues in the fusion process.


Assuntos
Vírus Hendra/genética , Infecções por Henipavirus/virologia , Fusão de Membrana , Proteínas Virais de Fusão/metabolismo , Alanina/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Membrana Celular/metabolismo , Chlorocebus aethiops , Endocitose , Endossomos/metabolismo , Genes Reporter , Vírus Hendra/fisiologia , Humanos , Mutagênese Sítio-Dirigida , Domínios Proteicos , Estabilidade Proteica , Células Vero , Proteínas Virais de Fusão/genética
4.
Proc Natl Acad Sci U S A ; 116(50): 25057-25067, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767754

RESUMO

Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes frequent outbreaks of severe neurologic and respiratory disease in humans with high case fatality rates. The 2 glycoproteins displayed on the surface of the virus, NiV-G and NiV-F, mediate host-cell attachment and membrane fusion, respectively, and are targets of the host antibody response. Here, we provide a molecular basis for neutralization of NiV through antibody-mediated targeting of NiV-F. Structural characterization of a neutralizing antibody (nAb) in complex with trimeric prefusion NiV-F reveals an epitope at the membrane-distal domain III (DIII) of the molecule, a region that undergoes substantial refolding during host-cell entry. The epitope of this monoclonal antibody (mAb66) is primarily protein-specific and we observe that glycosylation at the periphery of the interface likely does not inhibit mAb66 binding to NiV-F. Further characterization reveals that a Hendra virus-F-specific nAb (mAb36) and many antibodies in an antihenipavirus-F polyclonal antibody mixture (pAb835) also target this region of the molecule. Integrated with previously reported paramyxovirus F-nAb structures, these data support a model whereby the membrane-distal region of the F protein is targeted by the antibody-mediated immune response across henipaviruses. Notably, our domain-specific sequence analysis reveals no evidence of selective pressure at this region of the molecule, suggestive that functional constraints prevent immune-driven sequence variation. Combined, our data reveal the membrane-distal region of NiV-F as a site of vulnerability on the NiV surface.


Assuntos
Anticorpos Neutralizantes , Vírus Hendra , Proteínas Virais de Fusão , Internalização do Vírus , Anticorpos Monoclonais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Linhagem Celular Tumoral , Glicosilação , Células HEK293 , Vírus Hendra/química , Vírus Hendra/imunologia , Vírus Hendra/metabolismo , Vírus Hendra/fisiologia , Humanos , Modelos Moleculares , Ligação Proteica , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/metabolismo
5.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30971473

RESUMO

Nipah and Hendra viruses (NiV and HeV) exhibit high lethality in humans and are biosafety level 4 (BSL-4) paramyxoviruses in the growing genus Henipavirus The attachment (G) and fusion (F) envelope glycoproteins are both required for viral entry into cells and for cell-cell fusion, which is pathognomonic of henipaviral infections. Here, we compared the fusogenic capacities between homologous and heterologous pairs of NiV and HeV glycoproteins. Importantly, to accurately measure their fusogenic capacities, as these depend on glycoprotein cell surface expression (CSE) levels, we inserted identical extracellular tags to both fusion (FLAG tags) or both attachment (hemagglutinin [HA] tags) glycoproteins. Importantly, these tags were placed in extracellular sites where they did not affect glycoprotein expression or function. NiV and HeV glycoproteins induced comparable levels of homologous HEK293T cell-cell fusion. Surprisingly, however, while the heterologous NiV F/HeV G (NF/HG) combination yielded a hypofusogenic phenotype, the heterologous HeV F/NiV G (HF/NG) combination yielded a hyperfusogenic phenotype. Pseudotyped viral entry levels primarily corroborated the fusogenic phenotypes of the glycoprotein pairs analyzed. Furthermore, we constructed G and F chimeras that allowed us to map the overall regions in G and F that contributed to these hyperfusogenic or hypofusogenic phenotypes. Importantly, the fusogenic phenotypes of the glycoprotein combinations negatively correlated with the avidities of F-G interactions, supporting the F/G dissociation model of henipavirus-induced membrane fusion, even in the context of heterologous glycoprotein pairs.IMPORTANCE The NiV and HeV henipaviruses are BSL-4 pathogens transmitted from bats. NiV and HeV often lead to human death and animal diseases. The formation of multinucleated cells (syncytia) is a hallmark of henipaviral infections and is caused by fusion of cells coordinated by interactions of the viral attachment (G) and fusion (F) glycoproteins. We found via various assays that viral entry and syncytium formation depend on the viral origin of the glycoproteins, with HeV F and NiV G promoting higher membrane fusion levels than their counterparts. This is important knowledge, since both viruses use the same bat vector species and potential coinfections of these or subsequent hosts may alter the outcome of disease.


Assuntos
Glicoproteínas/metabolismo , Vírus Hendra/fisiologia , Infecções por Henipavirus/virologia , Vírus Nipah/fisiologia , Fenótipo , Proteínas Virais de Fusão/fisiologia , Células Gigantes/metabolismo , Glicoproteínas/genética , Células HEK293 , Vírus Hendra/genética , Humanos , Fusão de Membrana , Vírus Nipah/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia , Proteínas Virais de Fusão/genética , Ligação Viral , Internalização do Vírus
6.
J Virol Methods ; 228: 48-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26585033

RESUMO

Hendra virus (HeV) is an emerging zoonotic paramyxovirus within the genus Henipavirus that has caused severe morbidity and mortality in humans and horses in Australia since 1994. HeV infection of host cells is mediated by the membrane bound attachment (G) and fusion (F) glycoproteins, that are essential for receptor binding and fusion of viral and cellular membranes. The eukaryotic unicellular parasite Leishmania tarentolae has recently been established as a powerful tool to express recombinant proteins with mammalian-like glycosylation patterns, but only few viral proteins have been expressed in this system so far. Here, we describe the purification of a truncated, Strep-tag labelled and soluble version of the HeV attachment protein (sHeV G) expressed in stably transfected L. tarentolae cells. After Strep-tag purification the identity of sHeV G was confirmed by immunoblotting and mass spectrometry. The functional binding of sHeV G to the HeV cell entry receptor ephrin-B2 was confirmed in several binding assays. Generated polyclonal rabbit antiserum against sHeV G reacted with both HeV and Nipah virus (NiV) G proteins in immunofluorescence assay and efficiently neutralised NiV infection, thus further supporting the preserved antigenicity of the purified protein.


Assuntos
Vírus Hendra/química , Leishmania/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Animais , Austrália , Efrina-B2/metabolismo , Vírus Hendra/genética , Vírus Hendra/imunologia , Vírus Hendra/fisiologia , Cavalos , Humanos , Leishmania/metabolismo , Oligopeptídeos/metabolismo , Engenharia de Proteínas , Coelhos , Receptores Virais/metabolismo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/isolamento & purificação , Ligação Viral , Internalização do Vírus
7.
J Virol ; 89(14): 7235-47, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25948743

RESUMO

UNLABELLED: Hendra virus (HeV) and Nipah virus (NiV) are reportedly the most deadly pathogens within the Paramyxoviridae family. These two viruses bind the cellular entry receptors ephrin B2 and/or ephrin B3 via the viral attachment glycoprotein G, and the concerted efforts of G and the viral fusion glycoprotein F result in membrane fusion. Membrane fusion is essential for viral entry into host cells and for cell-cell fusion, a hallmark of the disease pathobiology. HeV G is heavily N-glycosylated, but the functions of the N-glycans remain unknown. We disrupted eight predicted N-glycosylation sites in HeV G by conservative mutations (Asn to Gln) and found that six out of eight sites were actually glycosylated (G2 to G7); one in the stalk (G2) and five in the globular head domain (G3 to G7). We then tested the roles of individual and combined HeV G N-glycan mutants and found functions in the modulation of shielding against neutralizing antibodies, intracellular transport, G-F interactions, cell-cell fusion, and viral entry. Between the highly conserved HeV and NiV G glycoproteins, similar trends in the effects of N-glycans on protein functions were observed, with differences in the levels at which some N-glycan mutants affected such functions. While the N-glycan in the stalk domain (G2) had roles that were highly conserved between HeV and NiV G, individual N-glycans in the head affected the levels of several protein functions differently. Our findings are discussed in the context of their contributions to our understanding of HeV and NiV pathogenesis and immune responses. IMPORTANCE: Viral envelope glycoproteins are important for viral pathogenicity and immune evasion. N-glycan shielding is one mechanism by which immune evasion can be achieved. In paramyxoviruses, viral attachment and membrane fusion are governed by the close interaction of the attachment proteins H/HN/G and the fusion protein F. In this study, we show that the attachment glycoprotein G of Hendra virus (HeV), a deadly paramyxovirus, is N-glycosylated at six sites (G2 to G7) and that most of these sites have important roles in viral entry, cell-cell fusion, G-F interactions, G oligomerization, and immune evasion. Overall, we found that the N-glycan in the stalk domain (G2) had roles that were very conserved between HeV G and the closely related Nipah virus G, whereas individual N-glycans in the head quantitatively modulated several protein functions differently between the two viruses.


Assuntos
Vírus Hendra/fisiologia , Vírus Nipah/fisiologia , Polissacarídeos/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Vírus Hendra/genética , Vírus Hendra/imunologia , Humanos , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Vírus Nipah/genética , Vírus Nipah/imunologia , Proteínas do Envelope Viral/genética
8.
J Virol ; 88(22): 13099-110, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25210190

RESUMO

UNLABELLED: Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. IMPORTANCE: Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people, and smaller outbreaks have since occurred in Bangladesh and India. In this study, we have defined, for the first time, host factors that interact with henipavirus M proteins and contribute to viral particle assembly. We have also defined a new host protein-viral protein binding interface that can potentially be targeted for the inhibition of paramyxovirus infections.


Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo , Vírus Hendra/fisiologia , Interações Hospedeiro-Patógeno , Vírus Nipah/fisiologia , Mapeamento de Interação de Proteínas , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus , Humanos , Imunoprecipitação , Espectrometria de Massas
9.
Curr Top Microbiol Immunol ; 359: 59-78, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22695915

RESUMO

Nipah (NiV) and Hendra (HeV) viruses are the deadliest human pathogens within the Paramyxoviridae family, which include human and animal pathogens of global biomedical importance. NiV and HeV infections cause respiratory and encephalitic illness with high mortality rates in humans. Henipaviruses (HNV) are the only Paramyxoviruses classified as biosafety level 4 (BSL4) pathogens due to their extreme pathogenicity, potential for bioterrorism, and lack of licensed vaccines and therapeutics. HNV use ephrin-B2 and ephrin-B3, highly conserved proteins, as viral entry receptors. This likely accounts for their unusually broad species tropism, and also provides opportunities to study how receptor usage, cellular tropism, and end-organ pathology relates to the pathobiology of HNV infections. The clinical and pathologic manifestations of NiV and HeV virus infections are reviewed in the chapters by Wong et al. and Geisbert et al. in this issue. Here, we will review the biology of the HNV receptors, and how receptor usage relates to HNV cell tropism in vitro and in vivo.


Assuntos
Efrina-B2/metabolismo , Efrina-B3/metabolismo , Vírus Hendra/fisiologia , Vírus Nipah/fisiologia , Receptores Virais/metabolismo , Proteínas Virais de Fusão/metabolismo , Tropismo Viral , Animais , Vasos Sanguíneos/patologia , Vasos Sanguíneos/virologia , Encéfalo/patologia , Encéfalo/virologia , Células Endoteliais/patologia , Células Endoteliais/virologia , Efrina-B2/química , Efrina-B3/química , Vírus Hendra/patogenicidade , Infecções por Henipavirus/patologia , Infecções por Henipavirus/virologia , Humanos , Modelos Moleculares , Vírus Nipah/patogenicidade , Receptores Virais/química , Proteínas Virais de Fusão/química , Internalização do Vírus
10.
Curr Top Microbiol Immunol ; 359: 79-94, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22427111

RESUMO

Nipah (NiV) and Hendra (HeV) viruses cause cell-cell fusion (syncytia) in brain, lung, heart, and kidney tissues, leading to encephalitis, pneumonia, and often death. Membrane fusion is essential to both viral entry and virus-induced cell-cell fusion, a hallmark of henipavirus infections. Elucidiation of the mechanism(s) of membrane fusion is critical to understanding henipavirus pathobiology and has the potential to identify novel strategies for the development of antiviral therapeutic agents. Henipavirus membrane fusion requires the coordinated actions of the viral attachment (G) and fusion (F) glycoproteins. Current henipavirus fusion models posit that attachment of NiV or HeV G to its cell surface receptors releases F from its metastable pre-fusion conformation to mediate membrane fusion. The identification of ephrinB2 and ephrinB3 as henipavirus receptors has paved the way for recent advances in our understanding of henipavirus membrane fusion. These advances highlight mechanistic similarities and differences between membrane fusion for the henipavirus and other genera within the Paramyxoviridae family. Here, we review these mechanisms and the current gaps in our knowledge in the field.


Assuntos
Efrina-B2/metabolismo , Efrina-B3/metabolismo , Vírus Hendra/fisiologia , Vírus Nipah/fisiologia , Receptores Virais/metabolismo , Proteínas Virais de Fusão/metabolismo , Animais , Encéfalo/patologia , Encéfalo/virologia , Efrina-B2/química , Efrina-B3/química , Vírus Hendra/patogenicidade , Infecções por Henipavirus/patologia , Infecções por Henipavirus/virologia , Humanos , Rim/patologia , Rim/virologia , Pulmão/patologia , Pulmão/virologia , Fusão de Membrana , Vírus Nipah/patogenicidade , Receptores Virais/química , Proteínas Virais de Fusão/química , Internalização do Vírus
11.
J Virol ; 84(20): 10928-32, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20702638

RESUMO

Triggering of the Hendra virus fusion (F) protein is required to initiate the conformational changes which drive membrane fusion, but the factors which control triggering remain poorly understood. Mutation of a histidine predicted to lie near the fusion peptide to alanine greatly reduced fusion despite wild-type cell surface expression levels, while asparagine substitution resulted in a moderate restoration in fusion levels. Slowed kinetics of six-helix bundle formation, as judged by sensitivity to heptad repeat B-derived peptides, was observed for all H372 mutants. These data suggest that side chain packing beneath the fusion peptide is an important regulator of Hendra virus F triggering.


Assuntos
Vírus Hendra/fisiologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/fisiologia , Substituição de Aminoácidos , Animais , Chlorocebus aethiops , Cristalografia por Raios X , Vírus Hendra/genética , Vírus Hendra/patogenicidade , Humanos , Técnicas In Vitro , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/fisiologia , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Transfecção , Células Vero , Proteínas Virais de Fusão/genética , Internalização do Vírus
12.
J Virol ; 84(12): 6208-17, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20375167

RESUMO

Hendra virus is a negative-sense single-stranded RNA virus within the Paramyxoviridae family which, together with Nipah virus, forms the Henipavirus genus. Infection with bat-borne Hendra virus leads to a disease with high mortality rates in humans. We determined the crystal structure of the unliganded six-bladed beta-propeller domain and compared it to the previously reported structure of Hendra virus attachment glycoprotein (HeV-G) in complex with its cellular receptor, ephrin-B2. As observed for the related unliganded Nipah virus structure, there is plasticity in the Glu579-Pro590 and Lys236-Ala245 ephrin-binding loops prior to receptor engagement. These data reveal that henipaviral attachment glycoproteins undergo common structural transitions upon receptor binding and further define the structural template for antihenipaviral drug design. Our analysis also provides experimental evidence for a dimeric arrangement of HeV-G that exhibits striking similarity to those observed in crystal structures of related paramyxovirus receptor-binding glycoproteins. The biological relevance of this dimer is further supported by the positional analysis of glycosylation sites from across the paramyxoviruses. In HeV-G, the sites lie away from the putative dimer interface and remain accessible to alpha-mannosidase processing on oligomerization. We therefore propose that the overall mode of dimer assembly is conserved for all paramyxoviruses; however, while the geometry of dimerization is rather closely similar for those viruses that bind flexible glycan receptors, significant (up to 60 degrees ) and different reconfigurations of the subunit packing (associated with a significant decrease in the size of the dimer interface) have accompanied the independent switching to high-affinity protein receptor binding in Hendra and measles viruses.


Assuntos
Vírus Hendra/fisiologia , Infecções por Henipavirus/virologia , Proteínas do Envelope Viral/química , Montagem de Vírus , Linhagem Celular , Dimerização , Vírus Hendra/química , Vírus Hendra/genética , Humanos , Conformação Molecular , Estrutura Secundária de Proteína , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
13.
PLoS One ; 4(12): e8266, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20011515

RESUMO

BACKGROUND: Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. METHODOLOGY/FINDINGS: Black flying foxes (Pteropus alecto) were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. CONCLUSIONS/SIGNIFICANCE: The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study.


Assuntos
Técnicas de Cultura de Células/métodos , Linhagem Celular Transformada/citologia , Quirópteros , Animais , Forma Celular/efeitos dos fármacos , Clonagem Molecular , Vírus Hendra/efeitos dos fármacos , Vírus Hendra/fisiologia , Infecções por Henipavirus/virologia , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Interferons/genética , Vírus Nipah/efeitos dos fármacos , Vírus Nipah/fisiologia , Poli I-C/farmacologia , Vírus 40 dos Símios/genética
14.
J Virol ; 83(17): 8998-9001, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19553334

RESUMO

Hendra virus F protein-promoted membrane fusion requires the presence of the viral attachment protein, G. However, events leading to the association of these glycoproteins remain unclear. Results presented here demonstrate that Hendra virus G undergoes slower secretory pathway trafficking than is observed for Hendra virus F. This slowed trafficking is not dependent on the G protein cytoplasmic tail, the presence of the G receptor ephrin B2, or interaction with other viral proteins. Instead, Hendra virus G was found to undergo intrinsically slow oligomerization within the endoplasmic reticulum. These results suggest that the critical F-G interactions occur only after the initial steps of synthesis and cellular transport.


Assuntos
Vírus Hendra/fisiologia , Multimerização Proteica , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/metabolismo , Animais , Chlorocebus aethiops , Retículo Endoplasmático/química , Dobramento de Proteína , Transporte Proteico , Células Vero
15.
J Virol ; 83(10): 5148-55, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19264786

RESUMO

Nipah (NiV) and Hendra (HeV) viruses are emerging zoonotic paramyxoviruses that cause encephalitis in humans, with fatality rates of up to 75%. We designed a new high-throughput screening (HTS) assay for inhibitors of infection based on envelope glycoprotein pseudotypes. The assay simulates multicycle replication and thus identifies inhibitors that target several stages of the viral life cycle, but it still can be carried out under biosafety level 2 (BSL-2) conditions. These features permit a screen for antivirals for emerging viruses and select agents that otherwise would require BSL-4 HTS facilities. The screening of a small compound library identified several effective molecules, including the well-known compound chloroquine, as highly active inhibitors of pseudotyped virus infection. Chloroquine inhibited infection with live HeV and NiV at a concentration of 1 microM in vitro (50% inhibitory concentration, 2 microM), which is less than the plasma concentrations present in humans receiving chloroquine treatment for malaria. The mechanism for chloroquine's antiviral action likely is the inhibition of cathepsin L, a cellular enzyme that is essential for the processing of the viral fusion glycoprotein and the maturation of newly budding virions. Without this processing step, virions are not infectious. The identification of a compound that inhibits a known cellular target that is important for viral maturation but that had not previously been shown to have antiviral activity for henipaviruses highlights the validity of this new screening assay. Given the established safety profile and broad experience with chloroquine in humans, the results described here provide an option for treating individuals infected by these deadly viruses.


Assuntos
Antivirais/farmacologia , Cloroquina/farmacologia , Descoberta de Drogas/métodos , Vírus Hendra/efeitos dos fármacos , Vírus Nipah/efeitos dos fármacos , Animais , Chlorocebus aethiops , Vírus Hendra/fisiologia , Infecções por Henipavirus/tratamento farmacológico , Humanos , Vírus Nipah/fisiologia , Células Vero , Proteínas do Envelope Viral/metabolismo , Replicação Viral
16.
J Virol ; 82(22): 11398-409, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18799571

RESUMO

Hendra virus (HeV) is a member of the broadly tropic and highly pathogenic paramyxovirus genus Henipavirus. HeV is enveloped and infects cells by using membrane-anchored attachment (G) and fusion (F) glycoproteins. G possesses an N-terminal cytoplasmic tail, an external membrane-proximal stalk domain, and a C-terminal globular head that binds the recently identified receptors ephrinB2 and ephrinB3. Receptor binding is presumed to induce conformational changes in G that subsequently trigger F-mediated fusion. The stalk domains of other attachment glycoproteins appear important for oligomerization and F interaction and specificity. However, this region of G has not been functionally characterized. Here we performed a mutagenesis analysis of the HeV G stalk, targeting a series of isoleucine residues within a hydrophobic alpha-helical domain that is well conserved across several attachment glycoproteins. Nine of 12 individual HeV G alanine substitution mutants possessed a complete defect in fusion-promotion activity yet were cell surface expressed and recognized by a panel of conformation-dependent monoclonal antibodies (MAbs) and maintained their oligomeric structure. Interestingly, these G mutations also resulted in the appearance of an additional electrophoretic species corresponding to a slightly altered glycosylated form. Analysis revealed that these G mutants appeared to adopt a receptor-bound conformation in the absence of receptor, as measured with a panel of MAbs that preferentially recognize G in a receptor-bound state. Further, this phenotype also correlated with an inability to associate with F and in triggering fusion even after receptor engagement. Together, these data suggest the stalk domain of G plays an important role in the conformational stability and receptor binding-triggered changes leading to productive fusion, such as the dissociation of G and F.


Assuntos
Efrina-B2/metabolismo , Efrina-B3/metabolismo , Vírus Hendra/fisiologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Fusão Celular , Linhagem Celular , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Proteínas do Envelope Viral/genética
17.
J Infect Dis ; 197(6): 846-53, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18271743

RESUMO

We have previously identified neutralizing human monoclonal antibodies against Nipah virus (NiV) and Hendra virus (HeV) by panning a large nonimmune antibody library against a soluble form of the HeV attachment-envelope glycoprotein G (sG HeV). One of these antibodies, m102, which exhibited the highest level of cross-reactive neutralization of both NiV and HeV G, was affinity maturated by light-chain shuffling combined with random mutagenesis of its heavy-chain variable domain and panning against sGHeV. One of the selected antibody Fab clones, m102.4, had affinity of binding to sGHeV that was equal to or higher than that of the other Fabs; it was converted to IgG1 and tested against infectious NiV and HeV. It exhibited exceptionally potent and cross-reactive inhibitory activity with 50% inhibitory concentrations below 0.04 and 0.6 microg/mL, respectively. The virus-neutralizing activity correlated with the binding affinity of the antibody to sG HeV and sG NiV. m102.4 bound a soluble form of NiV G (sG NiV) better than it bound sG HeV, and it neutralized NiV better than HeV, despite being originally selected against sG HeV. These results suggest that m102.4 has potential as a therapeutic agent for the treatment of diseases caused by henipaviruses. It could be also used for prophylaxis and diagnosis, and as a research reagent.


Assuntos
Anticorpos Monoclonais/farmacologia , Vírus Hendra/fisiologia , Infecções por Henipavirus/imunologia , Vírus Nipah/fisiologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Linhagem Celular Tumoral , Chlorocebus aethiops , Reações Cruzadas , Epitopos/imunologia , Glioblastoma , Meia-Vida , Células HeLa , Vírus Hendra/imunologia , Infecções por Henipavirus/virologia , Humanos , Fragmentos de Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Testes de Neutralização , Vírus Nipah/imunologia , Células Vero , Proteínas do Envelope Viral/imunologia
18.
J Virol ; 81(19): 10567-74, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17652384

RESUMO

Hendra virus (HeV) and Nipah virus (NiV) constitute the Henipavirus genus of paramyxoviruses, both fatal in humans and with the potential for subversion as agents of bioterrorism. Binding of the HeV/NiV attachment protein (G) to its receptor triggers a series of conformational changes in the fusion protein (F), ultimately leading to formation of a postfusion six-helix bundle (6HB) structure and fusion of the viral and cellular membranes. The ectodomain of paramyxovirus F proteins contains two conserved heptad repeat regions, the first (the N-terminal heptad repeat [HRN]) adjacent to the fusion peptide and the second (the C-terminal heptad repeat [HRC]) immediately preceding the transmembrane domain. Peptides derived from the HRN and HRC regions of F are proposed to inhibit fusion by preventing activated F molecules from forming the 6HB structure that is required for fusion. We previously reported that a human parainfluenza virus 3 (HPIV3) F peptide effectively inhibits infection mediated by the HeV glycoproteins in pseudotyped-HeV entry assays more effectively than the comparable HeV-derived peptide, and we now show that this peptide inhibits live-HeV and -NiV infection. HPIV3 F peptides were also effective in inhibiting HeV pseudotype virus entry in a new assay that mimics multicycle replication. This anti-HeV/NiV efficacy can be correlated with the greater potential of the HPIV3 C peptide to interact with the HeV F N peptide coiled-coil trimer, as evaluated by thermal unfolding experiments. Furthermore, replacement of a buried glutamic acid (glutamic acid 459) in the C peptide with valine enhances antiviral potency and stabilizes the 6HB conformation. Our results strongly suggest that conserved interhelical packing interactions in the F protein fusion core are important determinants of C peptide inhibitory activity and offer a strategy for the development of more-potent analogs of F peptide inhibitors.


Assuntos
Antivirais/farmacologia , Henipavirus/efeitos dos fármacos , Mimetismo Molecular , Peptídeos/farmacologia , Fosfoproteínas/farmacologia , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas Virais/farmacologia , Internalização do Vírus/efeitos dos fármacos , Sequência de Aminoácidos , Antivirais/química , Linhagem Celular , Sequência Conservada , Vírus Hendra/efeitos dos fármacos , Vírus Hendra/fisiologia , Henipavirus/fisiologia , Humanos , Dados de Sequência Molecular , Mutação , Vírus Nipah/efeitos dos fármacos , Vírus Nipah/fisiologia , Paramyxovirinae/efeitos dos fármacos , Peptídeos/química , Peptídeos/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas Virais/química , Proteínas Virais/genética
19.
J Virol ; 81(19): 10804-14, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17652392

RESUMO

The henipaviruses, Nipah virus (NiV) and Hendra virus (HeV), are lethal emerging paramyxoviruses. EphrinB2 and ephrinB3 have been identified as receptors for henipavirus entry. NiV and HeV share similar cellular tropisms and likely use an identical receptor set, although a quantitative comparison of receptor usage by NiV and HeV has not been reported. Here we show that (i) soluble NiV attachment protein G (sNiV-G) bound to cell surface-expressed ephrinB3 with a 30-fold higher affinity than that of sHeV-G, (ii) NiV envelope pseudotyped reporter virus (NiVpp) entered ephrinB3-expressing cells much more efficiently than did HeV pseudotyped particles (HeVpp), and (iii) NiVpp but not HeVpp entry was inhibited efficiently by soluble ephrinB3. These data underscore the finding that NiV uses ephrinB3 more efficiently than does HeV. Henipavirus G chimeric protein analysis implicated residue 507 in the G ectodomain in efficient ephrinB3 usage. Curiously, alternative versions of published HeV-G sequences show variations at residue 507 that can clearly affect ephrinB3 but not ephrinB2 usage. We further defined surrounding mutations (W504A and E505A) that diminished ephrinB3-dependent binding and viral entry without compromising ephrinB2 receptor usage and another mutation (E533Q) that abrogated both ephrinB2 and -B3 usage. Our results suggest that ephrinB2 and -B3 binding determinants on henipavirus G are distinct and dissociable. Global expression analysis showed that ephrinB3, but not ephrinB2, is expressed in the brain stem. Thus, ephrinB3-mediated viral entry and pathology may underlie the severe brain stem neuronal dysfunction seen in fatal Nipah viral encephalitis. Characterizing the determinants of ephrinB2 versus -B3 usage will further our understanding of henipavirus pathogenesis.


Assuntos
Efrina-B2/metabolismo , Efrina-B3/metabolismo , Vírus Hendra/fisiologia , Vírus Nipah/fisiologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Encéfalo/metabolismo , Células CHO , Cricetinae , Cricetulus , Efrina-B2/análise , Efrina-B2/genética , Efrina-B3/análise , Efrina-B3/genética , Humanos , Camundongos , Dados de Sequência Molecular , Conformação Proteica , Mapeamento de Interação de Proteínas , Serina/química , Serina/genética , Treonina/química , Treonina/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
20.
Virology ; 363(2): 419-29, 2007 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-17328935

RESUMO

Hendra virus, like most paramyxoviruses, requires both a fusion (F) and attachment (G) protein for promotion of cell-cell fusion. Recent studies determined that Hendra F is proteolytically processed by the cellular protease cathepsin L after endocytosis. This unique cathepsin L processing results in a small percentage of Hendra F on the cell surface. To determine how the surface densities of the two Hendra glycoproteins affect fusion promotion, we performed experiments that varied the levels of glycoproteins expressed in transfected cells. Using two different fusion assays, we found a marked increase in fusion when expression of the Hendra G protein was increased, with a 1:1 molar ratio of Hendra F:G on the cell surface resulting in optimal membrane fusion. Our results also showed that Hendra G protein levels are modulated by both more rapid protein turnover and slower protein trafficking than is seen for Hendra F.


Assuntos
Vírus Hendra/fisiologia , Infecções por Henipavirus/virologia , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/metabolismo , Animais , Antígenos de Superfície , Catepsina L , Catepsinas/metabolismo , Fusão Celular , Linhagem Celular , Cisteína Endopeptidases/metabolismo , Vírus Hendra/patogenicidade , Humanos , Fusão de Membrana , Peptídeo Hidrolases/metabolismo , Transporte Proteico , Proteínas do Envelope Viral/análise , Proteínas Virais de Fusão/análise , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA