Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Arch Virol ; 165(12): 2877-2881, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32885326

RESUMO

Avian leukosis virus (ALV) is associated with immune suppression, neoplasia, and reduced performance in chickens. In this study, two strains of ALV were isolated from Luxi gamecocks by DF-1 cell culture and identified by PCR, immunofluorescence assay, and sequencing of the viral genome. These strains were found to be novel recombinant viruses with nucleotide sequence identity of over 93.0% in the LTR and 94.4% in U3 to ALV-J, over 95.0% in the 5'UTR to ALV-C, over 93.4% in gp85 to ALV-B, and over 96.0% in gp37 to ALV-E. These results indicate that these two isolates are recombinants between ALV-J, ALV-C, ALV-E and ALV-B.


Assuntos
Vírus da Leucose Aviária/isolamento & purificação , Leucose Aviária/virologia , Galinhas/virologia , Genoma Viral , Doenças das Aves Domésticas/virologia , Vírus Reordenados/isolamento & purificação , Animais , Vírus da Leucose Aviária/patogenicidade , Sequência de Bases , China , Filogenia , Vírus Reordenados/patogenicidade , Análise de Sequência , Proteínas do Envelope Viral/genética , Virulência
2.
Virology ; 550: 1-7, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32853833

RESUMO

Avian coronavirus infectious bronchitis virus (IBV) is an important pathogen threatening poultry production worldwide. Here, two recombinant IBVs (rYN-1a-aYN and rYN-1b-aYN) were generated in which ORF1a or ORF1b of the virulent YN genome were replaced by the corresponding regions from the attenuated strain aYN. The pathogenicity and virulence of rIBVs were evaluated in ovo and in vivo. The results revealed that mutations in the ORF1a gene during passage in embryonated eggs caused the decreased pathogenicity of virulent IBV YN strain, proven by determination of virus replication in ECEs and CEK cells, the observation of clinical signs, gross lesions, microscopic lesions, tracheal ciliary activity and virus distribution in chickens following exposure to rIBVs. However, mutations in ORF1b had no obvious effect on virus replication in both ECEs and CEK cells, or pathogenicity in chickens. Our findings demonstrate that the replicase 1a gene of avian coronavirus IBV is a determinant of pathogenicity.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/patogenicidade , Doenças das Aves Domésticas/patologia , RNA Polimerase Dependente de RNA/genética , Vírus Reordenados/patogenicidade , Proteínas Virais/genética , Fatores de Virulência/genética , Animais , Linhagem Celular , Embrião de Galinha , Galinhas , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Cricetulus , Células Epiteliais/patologia , Células Epiteliais/virologia , Expressão Gênica , Vida Livre de Germes , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Mutação , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , RNA Polimerase Dependente de RNA/metabolismo , Vírus Reordenados/genética , Vírus Reordenados/crescimento & desenvolvimento , Proteínas Virais/metabolismo , Virulência , Fatores de Virulência/metabolismo , Replicação Viral
3.
Vet Microbiol ; 245: 108663, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32456810

RESUMO

Reassortant strains of Infectious Bursal Disease Virus (IBDV) were detected in commercial broiler flocks in the Netherlands, Belgium, Denmark, Czech Republic and Germany and in layers and organic broilers in Sweden in the period of 2017-19. Genetic analysis, based on hypervariable region of VP2 gene showed grouping together with very virulent IBDV strains (vvIBDV, Genogroup 3), but these recent viruses formed a separate cluster, which was most closely related to Latvian IBDV strains from 2010-13. VP1 gene of these isolates was most closely related to D78 attenuated IBDV strain. The recently described reassortant IBDV strain (Bpop/03/PL) from Poland with similar genomic constellation (segment A from vvIBDV, segment B from attenuated strain) retained its pathogenicity (80 % mortality in SPF chickens). Infection with the North-West European reassortant IBDVs described in this study showed subclinical feature in the field (without complicating agents) and when tested under standardized pathogenicity test in SPF layer chickens (no mortality or clinical signs, but marked bursa atrophy was observed). Although these recent North-West European reassortant strains had all amino acid residues in their VP2 gene which are considered as markers of vvIBDV strains, they exhibited typical amino acid changes compared to vvIBDV reference strains that should contribute to the determination of pathogenicity. Diagnostic investigations indicated that co-infection with fowl adenovirus or chicken infectious anaemia virus exaggerated the outcome of the IBDV infection (10-20 % mortality). Widespread presence of this reassortant IBDV group in clinically healthy flocks draws attention to the importance of active surveillance.


Assuntos
Galinhas/virologia , Genótipo , Vírus da Doença Infecciosa da Bursa/genética , Vírus da Doença Infecciosa da Bursa/patogenicidade , Proteínas Estruturais Virais/genética , Sequência de Aminoácidos , Animais , Europa (Continente)/epidemiologia , Feminino , Masculino , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Virulência/genética , Replicação Viral
4.
J Neuroimmune Pharmacol ; 14(3): 391-400, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31209775

RESUMO

HIV-associated neurocognitive disorders (HAND) have been linked to dysregulation of glutamate metabolism in the central nervous system (CNS) culminating in elevated extracellular glutamate and disrupted glutamatergic neurotransmission. Increased glutamate synthesis via upregulation of glutaminase (GLS) activity in brain immune cells has been identified as one potential source of excess glutamate in HAND. However, direct evidence for this hypothesis in an animal model is lacking, and the viability of GLS as a drug target has not been explored. In this brief report, we demonstrate that GLS inhibition with the glutamine analogue 6-diazo-5-oxo-L-norleucine (DON) can reverse cognitive impairment in the EcoHIV-infected mouse model of HAND. However, due to peripheral toxicity DON is not amenable to clinical use in a chronic disease such as HAND. We thus tested JHU083, a novel, brain penetrant DON prodrug predicted to exhibit improved tolerability. Systemic administration of JHU083 reversed cognitive impairment in EcoHIV-infected mice similarly to DON, and simultaneously normalized EcoHIV-induced increases in cerebrospinal fluid (CSF) glutamate and GLS activity in microglia-enriched brain CD11b + cells without observed toxicity. These studies support the mechanistic involvement of elevated microglial GLS activity in HAND pathogenesis, and identify JHU083 as a potential treatment option. Graphical Abstract Please provide Graphical Abstract caption.Glutamine Antagonist JHU083 Normalizes Aberrant Glutamate Production and Cognitive Deficits in the EcoHIV Murine Model of HIV-Associated Neurocognitive Disorders .


Assuntos
Complexo AIDS Demência , Compostos Azo/uso terapêutico , Caproatos/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Glutamatos/biossíntese , Glutamina/antagonistas & inibidores , Pró-Fármacos/uso terapêutico , Animais , Compostos Azo/farmacocinética , Antígeno CD11b/análise , Caproatos/farmacocinética , Transtornos Cognitivos/líquido cefalorraquidiano , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/virologia , Condicionamento Clássico/efeitos dos fármacos , Medo , Glutamatos/líquido cefalorraquidiano , HIV-1/genética , HIV-1/patogenicidade , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/patogenicidade , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Norleucina/análogos & derivados , Norleucina/uso terapêutico , Pró-Fármacos/farmacocinética , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Aprendizagem Espacial/efeitos dos fármacos
5.
J Clin Virol ; 112: 1-9, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30654207

RESUMO

Adenoviral epidemic keratoconjunctivitis (EKC) presents as severe conjunctival inflammations involving the cornea that can lead to the development of corneal opacities and blurred vision, which can persist for months. EKC is highly contagious and responsible for outbreaks worldwide, therefore accurate diagnosis and rapid containment are imperative. EKC is caused by a number of types within Human adenovirus species D (HAdV-D): 8, 37 and 64 (formerly known as 19a) and these types were considered the major causes of EKC for over fifty years. Nonetheless, recent improved molecular typing methodologies have identified recombinant HAdV-D types 53, 54 and 56, as newly emerging etiologic agents of EKC infections worldwide. EKC cases due to these recombinant types have potentially been underdiagnosed and underestimated as a source of new EKC outbreaks. Recombination events among circulating HAdV-D types represent a source of new infectious disease threats. Also, the growing number of adenoviral types enabled genomic and phenotypic comparisons to determine pathological properties related to EKC. This review covers the clinical features of EKC, current challenges in clinical practice and recent progress in EKC-related HAdV research, which focuses on the development of novel diagnostic and therapeutic approaches.


Assuntos
Adenovírus Humanos/patogenicidade , Gerenciamento Clínico , Ceratoconjuntivite/diagnóstico , Ceratoconjuntivite/tratamento farmacológico , Vírus Reordenados/patogenicidade , Infecções por Adenovirus Humanos/diagnóstico , Infecções por Adenovirus Humanos/tratamento farmacológico , Infecções por Adenovirus Humanos/epidemiologia , Adenovírus Humanos/genética , DNA Viral/genética , Surtos de Doenças , Genoma Viral , Humanos , Ceratoconjuntivite/epidemiologia , Tipagem Molecular , Filogenia , Recombinação Genética
6.
Virology ; 526: 38-44, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30340154

RESUMO

Envelope glycoprotein E2 of Classical Swine Fever Virus (CSFV) is involved in several critical virus functions. To analyze the role of E2 in virus replication, a series of recombinant CSFVs harboring chimeric forms of E2 CSFV and Bovine viral diarrhea virus (BVDV) were created and tested for their ability to infect swine or bovine cell lines. Substitution of native CSFV E2 by BVDV E2 abrogates virus replication in both cell lines. Substitution of individual domains in CSFV Brescia E2 by the homologous from BVDV produces chimeras that efficiently replicate in SK6 cells with the exception of a chimera harboring BVDV E2 residues 93-168. Further mapping revealed a critical area in E2 required for CSFV replication in SK6 cells between protein residues 136-156. This is the first report categorically defining a discrete portion of E2 as essential to pestivirus infection in susceptible cells.


Assuntos
Vírus da Febre Suína Clássica/fisiologia , Vírus da Diarreia Viral Bovina/fisiologia , Infecções por Pestivirus/virologia , Domínios Proteicos/genética , Proteínas do Envelope Viral/química , Replicação Viral/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Bovinos , Linhagem Celular , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/patogenicidade , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/patogenicidade , Especificidade de Hospedeiro , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Vírus Reordenados/fisiologia , Suínos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
7.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29563294

RESUMO

Coxsackievirus A6 (CV-A6) is an emerging pathogen associated with hand, foot, and mouth disease (HFMD). Its genetic characterization and pathogenic properties are largely unknown. Here, we report 39 circulating CV-A6 strains isolated in 2013 from HFMD patients in northeast China. Three major clusters of CV-A6 were identified and related to CV-A6, mostly from Shanghai, indicating that domestic CV-A6 strains were responsible for HFMD emerging in northeast China. Four full-length CV-A6 genomes representing each cluster were sequenced and analyzed further. Bootscanning tests indicated that all four CV-A6-Changchun strains were most likely recombinants between the CV-A6 prototype Gdula and prototype CV-A4 or CV-A4-related viruses, while the recombination pattern was related to, yet distinct from, the strains isolated from other regions of China. Furthermore, different CV-A6 strains showed different capabilities of viral replication, release, and pathogenesis in a mouse model. Further analyses indicated that viral protein 2C contributed to the diverse pathogenic abilities of CV-A6 by causing autophagy and inducing cell death. To our knowledge, this study is the first to report lethal and nonlethal strains of CV-A6 associated with HFMD. The 2C protein region may play a key role in the pathogenicity of CV-A6 strains.IMPORTANCE Hand, foot, and mouth disease (HFMD) is a major and persistent threat to infants and children. Besides the most common pathogens, such as enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16), other enteroviruses are increasingly contributing to HFMD. The present study focused on the recently emerged CV-A6 strain. We found that CV-A6 strains isolated in Changchun City in northeast China were associated with domestic origins. These Changchun viruses were novel recombinants of the CV-A6 prototype Gdula and CV-A4. Our results imply that measures to control CV-A6 transmission are urgently needed. Further analyses revealed differing pathogenicities in strains isolated in a neonatal mouse model. One of the possible causes has been narrowed down to the viral protein 2C, using phylogenetic studies, viral sequences, and direct tests on cultured human cells. Thus, the viral 2C protein is a promising target for antiviral drugs to prevent CV-A6-induced tissue damage.


Assuntos
Enterovirus Humano A/classificação , Enterovirus Humano A/genética , Doença de Mão, Pé e Boca/virologia , Vírus Reordenados/genética , Recombinação Genética/genética , Animais , Linhagem Celular Tumoral , China , Modelos Animais de Doenças , Surtos de Doenças , Enterovirus Humano A/isolamento & purificação , Doença de Mão, Pé e Boca/patologia , Humanos , Camundongos , Camundongos Endogâmicos ICR , Filogenia , Vírus Reordenados/patogenicidade
8.
PLoS Pathog ; 13(12): e1006772, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29261800

RESUMO

Epstein-Barr virus (EBV) and related lymphocryptoviruses (LCV) from non-human primates infect B cells, transform their growth to facilitate life-long viral persistence in the host, and contribute to B cell oncogenesis. Co-evolution of LCV with their primate hosts has led to species-specificity so that LCVs preferentially immortalize B cells from their natural host in vitro. We investigated whether the master regulator of transcription, EBV nuclear antigen 2 (EBNA2), is involved in LCV species-specificity. Using recombinant EBVs, we show that EBNA2 orthologues of LCV isolated from chimpanzees, baboons, cynomolgus or rhesus macaques cannot replace EBV EBNA2 for the immortalization of human B cells. Thus, LCV species-specificity is functionally linked to viral proteins expressed during latent, growth-transforming infection. In addition, we identified three independent domains within EBNA2 that act through species-specific mechanisms. Importantly, the EBNA2 orthologues and species-specific EBNA2 domains separate unique roles for EBNA2 in the initiation of B cell immortalization from those responsible for maintaining the immortalized state. Investigating LCV species-specificity provides a novel approach to identify critical steps underlying EBV-induced B cell growth transformation, persistent infection, and oncogenesis.


Assuntos
Linfócitos B/virologia , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/patogenicidade , Proteínas Virais/imunologia , Animais , Transformação Celular Viral/genética , Transformação Celular Viral/imunologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Especificidade de Hospedeiro/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Lymphocryptovirus/genética , Lymphocryptovirus/imunologia , Lymphocryptovirus/patogenicidade , Macaca fascicularis , Macaca mulatta , Pan troglodytes , Papio , Vírus Reordenados/genética , Vírus Reordenados/imunologia , Vírus Reordenados/patogenicidade , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Ativação Transcricional , Proteínas Virais/genética
9.
Vet Microbiol ; 191: 1-8, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27374900

RESUMO

Since 2009, strains of the naturally recombinant TW I genotype of infectious bronchitis virus (IBV) have caused considerable damage to the Chinese poultry industry. To better understand the antigenicity and pathogenesis of this genotype, the characteristics of the ck/CH/LDL/140520 strain were compared to those of four commercial IB vaccine strains that are used commonly in China, as well as four attenuated viruses that represent two types of IBV strains, which are believed to have originated in China and are the predominant IBV types circulating in chicken flocks in China and many other parts of the world. The results showed that all eight strains were genetically and serotypically different from the strain ck/CH/LDL/140520. Furthermore, neither the vaccine strains nor the attenuated viruses could provide complete respiratory protection of chickens against a challenge with the ck/CH/LDL/140520 strain, indicating that it is necessary to develop new live vaccines or to evaluate the use of established vaccines in combination to control naturally recombinant TW I-type IBV strains in the future. Our results showed that strain ck/CH/LDL/140520 is very pathogenic, and that it is able to cause cystic oviducts in a high percentage of birds, as well as mortality due to nephritis and respiratory distress with complete tracheal ciliostasis, especially in chickens infected at 1day of age.


Assuntos
Imunogenicidade da Vacina/imunologia , Vírus da Bronquite Infecciosa/patogenicidade , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Vírus Reordenados/patogenicidade , Vacinas Virais/normas , Animais , Galinhas , China , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Genótipo , Vírus da Bronquite Infecciosa/imunologia , Doenças das Aves Domésticas/imunologia , Vírus Reordenados/imunologia , Sorogrupo , Especificidade da Espécie , Vacinas Atenuadas/normas
10.
J Virol ; 90(14): 6235-6243, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27122581

RESUMO

UNLABELLED: Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mammals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and ferrets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding affinity for human-like SAα2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1 virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely track their continual adaptation in humans. IMPORTANCE: Extended epizootics and panzootics of H5N1 viruses have led to the emergence of the novel 2.3.4.4 clade of H5 virus subtypes, including H5N2, H5N6, and H5N8 reassortants. Avian H5N6 viruses from this clade have caused three fatalities out of six severe human infections in China since the first case in 2014. However, the biological properties of this subtype, especially the pathogenicity and transmission in mammals, are not known. Here, we found that natural avian H5N6 viruses have acquired a high affinity for human-type virus receptor. Compared to the parental clade 2.3.4 H5N1 virus, emergent H5N6 isolates showed less severe pathogenicity in mice and ferrets but acquired efficient in-contact transmission in ferrets. These findings suggest that the threat of avian H5N6 viruses to humans should not be ignored.


Assuntos
Vírus da Influenza A/patogenicidade , Influenza Humana/transmissão , Infecções por Orthomyxoviridae/transmissão , Vírus Reordenados/patogenicidade , Receptores de Superfície Celular/metabolismo , Ligação Viral , Animais , China , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A/classificação , Influenza Humana/patologia , Influenza Humana/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Filogenia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Virulência
11.
J Virol ; 90(1): 222-31, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26468540

RESUMO

UNLABELLED: PB1-F2 protein, the 11th influenza A virus (IAV) protein, is considered to play an important role in primary influenza virus infection and postinfluenza secondary bacterial pneumonia in mice. The functional role of PB1-F2 has been reported to be a strain-specific and host-specific phenomenon. Its precise contribution to the pathogenicity and transmission of influenza virus in mammalian host, such as swine, and avian hosts, such as turkeys, remain largely unknown. In this study, we explored the role of PB1-F2 protein of triple-reassortant (TR) H3N2 swine influenza virus (SIV) in pigs and turkeys. Using the eight-plasmid reverse genetics system, we rescued wild-type SIV A/swine/Minnesota/1145/2007 (H3N2) (SIV 1145-WT), a PB1-F2 knockout mutant (SIV 1145-KO), and its N66S variant (SIV 1145-N66S). The ablation of PB1-F2 in SIV 1145 modulated early-stage apoptosis but did not affect the viral replication in swine alveolar macrophage cells. In pigs, PB1-F2 expression did not affect nasal shedding, lung viral load, immunophenotypes, and lung pathology. On the other hand, in turkeys, SIV 1145-KO infected poults, and its in-contacts developed clinical signs earlier than SIV 1145-WT groups and also displayed more extensive histopathological changes in intestine. Further, turkeys infected with SIV 1145-N66S displayed poor infectivity and transmissibility. The more extensive histopathologic changes in intestine and relative transmission advantage observed in turkeys infected with SIV 1145-KO need to be further explored. Taken together, these results emphasize the host-specific roles of PB1-F2 in the pathogenicity and transmission of IAV. IMPORTANCE: Novel triple-reassortant H3N2 swine influenza virus emerged in 1998 and spread rapidly among the North American swine population. Subsequently, it showed an increased propensity to reassort, generating a range of reassortants. Unlike classical swine influenza virus, TR SIV produces a full-length PB1-F2 protein, which is considered an important virulence marker of IAV pathogenicity. Our study demonstrated that the expression of PB1-F2 does not impact the pathogenicity of TR H3N2 SIV in pigs. On the other hand, deletion of PB1-F2 caused TR H3N2 SIV to induce clinical disease early and resulted in effective transmission among the turkey poults. Our study emphasizes the continuing need to better understand the virulence determinants for IAV in intermediate hosts, such as swine and turkeys, and highlights the host-specific role of PB1-F2 protein.


Assuntos
Vírus da Influenza A Subtipo H3N2/fisiologia , Vírus Reordenados/fisiologia , Proteínas Virais/metabolismo , Animais , Apoptose , Especificidade de Hospedeiro , Influenza Aviária/patologia , Influenza Aviária/transmissão , Influenza Aviária/virologia , Intestinos/patologia , Pulmão/patologia , Pulmão/virologia , Macrófagos/fisiologia , Macrófagos/virologia , Camundongos , América do Norte , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/crescimento & desenvolvimento , Vírus Reordenados/patogenicidade , Genética Reversa/métodos , Suínos , Doenças dos Suínos/patologia , Doenças dos Suínos/virologia , Perus , Carga Viral , Virulência , Replicação Viral , Eliminação de Partículas Virais
12.
Genet Mol Res ; 14(4): 11780-90, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26436503

RESUMO

Porcine circovirus type 2 (PCV2) is considered to be the main pathogen in PC-associated diseases, and significantly affects the global pig-producing industry. PCV2 continuously evolves by point mutations and genome recombinations. In the present study, we aimed to further identify recombinant PCV2 strains. We used polymerase chain reaction to detect PCV2 in the carcasses of pigs with suspected infections from different regions of Guangdong Province in China. DNA was extracted from samples with confirmed infection and full- genome amplification, sequencing, phylogenetic tree construction, gene recombination detection, and sequence alignment were performed in gene recombination analysis. Our results show that recombination occurred between the strains SHC (DQ104421) and ZhuJi2003 (AY579893). The recombination resulted in three recombinants: GD003 (KM503044), GD005 (KM487708), and GD008 (KM487709). Further analyses revealed that these novel recombinants appeared to result from recombination between the PCV2a and PCV2b strains, with crossover regions located in ORF2. This study was a comprehensive analysis that used several different methods, which demonstrated that a cluster of PCV2 strains resulted from the same type of inter-genotypic recombination pattern, with a breakpoint in the structural protein coding region. The results of our study provide both information on the recombination mechanism and disease pathogenesis and useful data for the prevention of PCV2 in the swine industry.


Assuntos
Infecções por Circoviridae/virologia , Circovirus/genética , DNA Viral/genética , Vírus Reordenados/genética , Recombinação Genética , Animais , Sequência de Bases , Linhagem Celular , Infecções por Circoviridae/patologia , Circovirus/classificação , Circovirus/patogenicidade , Células Epiteliais/patologia , Células Epiteliais/virologia , Linfonodos/patologia , Linfonodos/virologia , Dados de Sequência Molecular , Filogenia , Vírus Reordenados/patogenicidade , Alinhamento de Sequência , Baço/patologia , Baço/virologia , Suínos
13.
J Virol ; 89(20): 10286-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26223637

RESUMO

UNLABELLED: A novel highly pathogenic avian influenza (HPAI) H5N8 virus, first detected in January 2014 in poultry and wild birds in South Korea, has spread throughout Asia and Europe and caused outbreaks in Canada and the United States by the end of the year. The spread of H5N8 and the novel reassortant viruses, H5N2 and H5N1 (H5Nx), in domestic poultry across multiple states in the United States pose a potential public health risk. To evaluate the potential of cross-species infection, we determined the pathogenicity and transmissibility of two Asian-origin H5Nx viruses in mammalian animal models. The newly isolated H5N2 and H5N8 viruses were able to cause severe disease in mice only at high doses. Both viruses replicated efficiently in the upper and lower respiratory tracts of ferrets; however, the clinical symptoms were generally mild, and there was no evidence of systemic dissemination of virus to multiple organs. Moreover, these influenza H5Nx viruses lacked the ability to transmit between ferrets in a direct contact setting. We further assessed viral replication kinetics of the novel H5Nx viruses in a human bronchial epithelium cell line, Calu-3. Both H5Nx viruses replicated to a level comparable to a human seasonal H1N1 virus, but significantly lower than a virulent Asian-lineage H5N1 HPAI virus. Although the recently isolated H5N2 and H5N8 viruses displayed moderate pathogenicity in mammalian models, their ability to rapidly spread among avian species, reassort, and generate novel strains underscores the need for continued risk assessment in mammals. IMPORTANCE: In 2015, highly pathogenic avian influenza (HPAI) H5 viruses have caused outbreaks in domestic poultry in multiple U.S. states. The economic losses incurred with H5N8 and H5N2 subtype virus infection have raised serious concerns for the poultry industry and the general public due to the potential risk of human infection. This recent outbreak underscores the need to better understand the pathogenesis and transmission of these viruses in mammals, which is an essential component of pandemic risk assessment. This study demonstrates that the newly isolated H5N2 and H5N8 viruses lacked the ability to transmit between ferrets and exhibited low to moderate virulence in mammals. In human bronchial epithelial (Calu-3) cells, both H5N8 and H5N2 viruses replicated to a level comparable to a human seasonal virus, but significantly lower than a virulent Asian-lineage H5N1 (A/Thailand/16/2004) virus. The results of this study are important for the evaluation of public health risk.


Assuntos
Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H5N2/patogenicidade , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/transmissão , Vírus Reordenados/patogenicidade , Animais , Aves/virologia , Linhagem Celular , Monitoramento Epidemiológico , Células Epiteliais/patologia , Células Epiteliais/virologia , Europa (Continente)/epidemiologia , Feminino , Furões/virologia , Humanos , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H5N2/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , América do Norte/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/mortalidade , Aves Domésticas/virologia , Saúde Pública , Vírus Reordenados/genética , República da Coreia/epidemiologia , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Análise de Sobrevida , Virulência
14.
J Virol ; 89(1): 2-13, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25320305

RESUMO

UNLABELLED: The recently identified H7N9 influenza A virus has caused severe economic losses and worldwide public concern. Genetic analysis indicates that its six internal genes all originated from H9N2 viruses. However, the H7N9 virus is more highly pathogenic in humans than H9N2, which suggests that the internal genes of H7N9 have mutated. To analyze which H7N9 virus internal genes contribute to its high pathogenicity, a series of reassortants was generated by reverse genetics, with each virus containing a single internal gene of the typical A/Anhui/1/2013 (H7N9) (AH-H7N9) virus in the genetic background of the A/chicken/Shandong/lx1023/2007 (H9N2) virus. The replication ability, polymerase activity, and pathogenicity of these viruses were then evaluated in vitro and in vivo. These recombinants displayed high genetic compatibility, and the H7N9-derived PB2, M, and NP genes were identified as the virulence genes for the reassortants in mice. Further investigation confirmed that the PB2 K627 residue is critical for the high pathogenicity of the H7N9 virus and the reassortant containing the H7N9-derived PB2 segment (H9N2-AH/PB2). Notably, the H7N9-derived PB2 gene displayed greater compatibility with the H9N2 genome than that of H7N9, endowing the H9N2-AH/PB2 reassortant with greater viability and virulence than the parental H7N9 virus. In addition, the H7N9 virus, with the exception of the H9N2 reassortants, could effectively replicate in human A549 cells. Our results indicate that PB2, M, and NP are the key virulence genes, together with the surface hemagglutinin (HA) and neuraminidase (NA) proteins, contributing to the high infectivity of the H7N9 virus in humans. IMPORTANCE: To date, the novel H7N9 influenza A virus has caused 437 human infections, with approximately 30% mortality. Previous work has primarily focused on the two viral surface proteins, HA and NA, but the contribution of the six internal genes to the high pathogenicity of H7N9 has not been systematically studied. Here, the H9N2 virus was used as a genetic backbone to evaluate the virulence genes of H7N9 virus in vitro and in vivo. Our data indicate that the PB2, M, and NP genes play important roles in viral infection in mice and, together with HA and NA, contribute to the high infectivity of the H7N9 virus in humans.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Embrião de Galinha , Modelos Animais de Doenças , Células Epiteliais/virologia , Feminino , Humanos , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/fisiologia , Camundongos Endogâmicos BALB C , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Genética Reversa , Virulência , Replicação Viral
15.
mBio ; 5(6): e02116, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25406382

RESUMO

UNLABELLED: Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. IMPORTANCE: Influenza viruses from birds can cause outbreaks in humans and may contribute to the development of pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its main surface protein, an H1 subtype hemagglutinin, was identified as a key mammalian virulence factor. In a previous study, a 1918 virus expressing an avian H1 gene was as virulent in mice as the reconstructed 1918 virus. Here, a set of avian influenza viruses was constructed, differing only by hemagglutinin subtype. Viruses with the avian H1, H6, H7, H10, and H15 subtypes caused severe disease in mice and damaged human lung cells. Consequently, infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals, and therefore surveillance for human infections with these subtypes may be important in controlling future outbreaks.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/crescimento & desenvolvimento , Influenza Aviária/virologia , Fatores de Virulência/metabolismo , Animais , Aves , Efeito Citopatogênico Viral , Modelos Animais de Doenças , Células Epiteliais/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Pulmão/imunologia , Pulmão/patologia , Macrófagos/imunologia , Mamíferos , Camundongos , Neutrófilos/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/genética , Vírus Reordenados/crescimento & desenvolvimento , Vírus Reordenados/patogenicidade , Genética Reversa , Fatores de Virulência/genética
16.
Nat Commun ; 5: 4794, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25183443

RESUMO

Genetic diversity of influenza A viruses (IAV) acquired through the error-prone RNA-dependent RNA polymerase (RdRP) or through genetic reassortment enables perpetuation of IAV in humans through epidemics or pandemics. Here, to assess the biological significance of genetic diversity acquired through RdRP, we characterize an IAV fidelity variant derived from passaging a seasonal H3N2 virus in the presence of ribavirin, a purine analogue that increases guanosine-to-adenosine mutations. We demonstrate that a single PB1-V43I mutation increases selectivity to guanosine in A/Wuhan/359/95 (H3N2) and A/Vietnam/1203/04 (H5N1) viruses. The H5N1 PB1-V43I-recombinant virus replicates to comparable titres as the wild-type virus in vitro or in the mouse lungs. However, a decrease in viral population diversity at day 3 post inoculation is associated with a tenfold reduced lethality and neurotropism in mice. Applying a fidelity variant with reduced mutational frequency, we provide direct experimental evidence for the role of genetic diversity in IAV pathogenesis.


Assuntos
Vírus da Influenza A Subtipo H3N2/genética , Virus da Influenza A Subtipo H5N1/genética , Mutação/efeitos dos fármacos , RNA Polimerase Dependente de RNA/genética , Vírus Reordenados/genética , Proteínas Virais/genética , Adenosina/genética , Animais , Antivirais/farmacologia , Farmacorresistência Viral/genética , Feminino , Variação Genética , Guanosina/genética , Vírus da Influenza A Subtipo H3N2/patogenicidade , Virus da Influenza A Subtipo H5N1/patogenicidade , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , RNA Polimerase Dependente de RNA/metabolismo , Vírus Reordenados/patogenicidade , Ribavirina/farmacologia , Análise de Sobrevida , Proteínas Virais/metabolismo , Tropismo Viral
17.
J Virol ; 88(21): 12339-47, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25122786

RESUMO

UNLABELLED: Live attenuated influenza vaccines in the United States are derived from a human virus that is temperature sensitive (ts), characterized by restricted (≥ 100-fold) replication at 39 °C. The ts genetic signature (ts sig) has been mapped to 5 loci in 3 genes: PB1 (391 E, 581 G, and 661 T), PB2 (265 S), and NP (34 G). However, when transferred into avian and swine influenza viruses, only partial ts and attenuation phenotypes occur. To investigate the reason for this, we introduced the ts sig into the human origin virus A/WSN/33 (WSN), the avian-origin virus A/Vietnam/1203/04 (VN04), and the swine origin triple-reassortant 2009 pandemic H1N1 virus A/California/07/2009 (CA07), which contains gene segments from human, avian, and swine viruses. The VN04(ts sig) and CA07(ts sig) viruses replicated efficiently in Madin-Darby canine kidney (MDCK) cells at 39 °C, but the replication of WSN(ts sig) was restricted ≥ 100-fold compared to that at 33 °C. Reassortant CA07(ts sig) viruses were generated with individual polymerase gene segments from WSN, and vice versa. Only ts sig viruses with a PB2 gene segment derived from WSN were restricted in replication ≥ 100-fold at 39 °C. In ferrets, the CA07(ts sig) virus replicated in the upper and lower respiratory tract, but the replication of a reassortant CA07(ts sig) virus with a WSN PB2 gene was severely restricted in the lungs. Taken together, these data suggest that the origin of the PB2 gene segment influences the ts phenotype in vitro and attenuation in vivo. This could have implications for the design of novel live vaccines against animal origin influenza viruses. IMPORTANCE: Live attenuated influenza vaccines (LAIVs) on temperature-sensitive (ts) backbones derived from animal origin influenza viruses are being sought for use in the poultry and swine industries and to protect people against animal origin influenza. However, inserting the ts genetic signature from a licensed LAIV backbone fails to fully attenuate these viruses. Our data indicate this is associated with the presence of a PB2 gene segment derived from an avian influenza virus. We show that a reassortant 2009 pandemic H1N1 virus with the ts signature from a licensed LAIV donor virus is ts in vitro and attenuated in vivo when the PB2 gene is derived from a human origin virus but not from an avian virus. Our study provides information that could benefit the rational design of alternative LAIV backbones against animal origin influenza viruses.


Assuntos
Vírus da Influenza A/fisiologia , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Vírus Reordenados/fisiologia , Proteínas do Core Viral/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/efeitos da radiação , Animais , Aves , Linhagem Celular , Modelos Animais de Doenças , Cães , Feminino , Furões , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/efeitos da radiação , Mutação , Proteínas do Nucleocapsídeo , Orthomyxoviridae , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Proteínas de Ligação a RNA/genética , RNA Polimerase Dependente de RNA/genética , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Vírus Reordenados/efeitos da radiação , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Genética Reversa , Suínos , Temperatura , Estados Unidos , Proteínas do Core Viral/genética , Proteínas Virais/genética
18.
J Virol ; 88(19): 11617-23, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25031355

RESUMO

Marek's disease virus (MDV) is a growing threat for the poultry industry. Unfortunately, despite successful vaccination against the disease, MDV remains in circulation within vaccinated flocks, leading to the selection of increasingly virulent pathotypes. Detailed knowledge of the virus biology and the host-virus interaction is required to improve the vaccine efficiency. In the present study, I engineered an original, dual-reporter MDV to track and quantify virus replication in vitro and in vivo.


Assuntos
Genoma Viral , Herpesvirus Galináceo 2/patogenicidade , Doença de Marek/virologia , Vírus Reordenados/patogenicidade , Replicação Viral , Animais , Comunicação Celular , Linhagem Celular Tumoral , Galinhas , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/metabolismo , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Doença de Marek/mortalidade , Doença de Marek/patologia , Microscopia de Fluorescência , Regiões Promotoras Genéticas , Vírus Reordenados/genética , Vírus Reordenados/metabolismo , Análise de Sobrevida , Suínos , Teschovirus/genética , Virulência
19.
Virol J ; 10: 45, 2013 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-23374292

RESUMO

BACKGROUND: Wild ducks are the natural hosts of influenza A viruses. Duck influenza, therefore, has been believed inapparent infection with influenza A viruses, including highly pathogenic avian influenza viruses (HPAIVs) in chickens. In fact, ducks experimentally infected with an HPAIV strain, A/Hong Kong/483/1997 (H5N1) (HK483), did not show any clinical signs. Another HPAIV strain, A/whooper swan/Mongolia/3/2005 (H5N1) (MON3) isolated from a dead swan, however, caused neurological dysfunction and death in ducks. METHOD: To understand the mechanism whereby MON3 shows high pathogenicity in ducks, HK483, MON3, and twenty-four reassortants generated between these two H5N1 viruses were compared for their pathogenicity in domestic ducks. RESULTS: None of the ducks infected with MON3-based single-gene reassortants bearing the PB2, NP, or NS gene segment of HK483 died, and HK483-based single-gene reassortants bearing PB2, NP, or NS genes of MON3 were not pathogenic in ducks, suggesting that multiple gene segments contribute to the pathogenicity of MON3 in ducks. All the ducks infected with the reassortant bearing PB2, PA, HA, NP, and NS gene segments of MON3 died within five days post-inoculation, as did those infected with MON3. Each of the viruses was assessed for replication in ducks three days post-inoculation. MON3 and multi-gene reassortants pathogenic in ducks were recovered from all of the tissues examined and replicated with high titers in the brains and lungs. CONCLUSION: The present results indicate that multigenic factors are responsible for efficient replication of MON3 in ducks. In particular, virus growth in the brain might correlate with neurological dysfunction and the disease severity.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Animais , Patos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/fisiologia , Proteínas do Nucleocapsídeo , Proteínas de Ligação a RNA/genética , RNA Polimerase Dependente de RNA/genética , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/patogenicidade , Vírus Reordenados/fisiologia , Proteínas do Core Viral/genética , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética , Virulência , Replicação Viral
20.
Arch Virol ; 158(3): 685-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23129132

RESUMO

We determined the complete nucleotide sequence of an infectious bursal disease (IBD) virus (IBDV) isolate (designated KZC-104) from a confirmed IBD outbreak in Lusaka in 2004. The genome consisted of 3,074 and 2,651 nucleotides in the coding regions of segments A and B, respectively. Alignment of both nucleotide and deduced amino acid sequences and phylogenetic analysis revealed that the genome segment A of KZC-104 was derived from a very virulent (VV) strain, whereas its segment B was derived from a classical attenuated strain. On BLAST search, the full-length segment A and B sequences showed 98 % nucleotide sequence identity to the VV strain D6948 and 99.8 % nucleotide sequence identity to the classical attenuated strain D78. This is a unique IBDV reassortant strain that has emerged in nature, involving segment B of a cell-culture-adapted attenuated vaccine.


Assuntos
Infecções por Birnaviridae/veterinária , Galinhas , Genoma Viral , Vírus da Doença Infecciosa da Bursa/genética , Doenças das Aves Domésticas/virologia , Vírus Reordenados/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Infecções por Birnaviridae/virologia , Surtos de Doenças/veterinária , Vírus da Doença Infecciosa da Bursa/classificação , Vírus da Doença Infecciosa da Bursa/isolamento & purificação , Vírus da Doença Infecciosa da Bursa/patogenicidade , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/patogenicidade , Alinhamento de Sequência , Análise de Sequência de DNA , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética , Zâmbia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA