Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
1.
Microb Pathog ; 192: 106709, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810766

RESUMO

This study prepared a novel monoclonal antibody (MAb) against mink enteritis parvovirus (MEV) and identified its antigen epitope. The antibody subclass is identified as IgG1, the titers of the MAb is up to 1:1 × 106 and keeps stably after low-temperature storage for 9 months or 11 passages of the MAb cells. The MAb can specifically recognize MEV in the cells in IFA, but not Aleutian disease virus (ADV) or canine distemper virus (CDV). Its antigen epitope was identified as a polypeptide containing 5 key amino acids (378YAFGR382) and the homology in 20 MEV strains, 4 canine parvovirus strains, and 4 feline panleukopenia virus strains was 100%. This study supplies a biological material for developing new methods to detect MEV.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Vírus da Cinomose Canina , Epitopos , Vírus da Enterite do Vison , Animais , Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Vírus da Enterite do Vison/imunologia , Vírus da Cinomose Canina/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Vison/imunologia , Imunoglobulina G/imunologia , Vírus da Doença Aleutiana do Vison/imunologia , Parvovirus Canino/imunologia , Vírus da Panleucopenia Felina/imunologia , Mapeamento de Epitopos , Camundongos , Camundongos Endogâmicos BALB C , Enterite Viral do Vison/imunologia
2.
Vaccine ; 42(12): 3099-3106, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38604911

RESUMO

Both genetic and non-genetic factors contribute to individual variation in the immune response to vaccination. Understanding how genetic background influences variation in both magnitude and persistence of vaccine-induced immunity is vital for improving vaccine development and identifying possible causes of vaccine failure. Dogs provide a relevant biomedical model for investigating mammalian vaccine genetics; canine breed structure and long linkage disequilibrium simplify genetic studies in this species compared to humans. The objective of this study was to estimate the heritability of the antibody response to vaccination against viral and bacterial pathogens, and to identify genes driving variation of the immune response to vaccination in Beagles. Sixty puppies were immunized following a standard vaccination schedule with an attenuated combination vaccine containing antigens for canine adenovirus type 2, canine distemper virus, canine parainfluenza virus, canine parvovirus, and four strains of Leptospira bacteria. Serum antibody measurements for each viral and bacterial component were measured at multiple time points. Heritability estimations and GWAS were conducted using SNP genotypes at 279,902 markers together with serum antibody titer phenotypes. The heritability estimates were: (1) to Leptospira antigens, ranging from 0.178 to 0.628; and (2) to viral antigens, ranging from 0.199 to 0.588. There was not a significant difference between overall heritability of vaccine-induced immune response to Leptospira antigens compared to viral antigens. Genetic architecture indicates that SNPs of low to high effect contribute to immune response to vaccination. GWAS identified two genetic markers associated with vaccine-induced immune response phenotypes. Collectively, these findings indicate that genetic regulation of the immune response to vaccination is antigen-specific and influenced by multiple genes of small effect.


Assuntos
Adenovirus Caninos , Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Vacinas Virais , Animais , Cães , Humanos , Estudo de Associação Genômica Ampla , Projetos Piloto , Anticorpos Antivirais , Adenovirus Caninos/genética , Antígenos Virais , Vacinação/veterinária , Vacinas Atenuadas , Imunidade , Vírus da Cinomose Canina/genética , Doenças do Cão/prevenção & controle , Mamíferos
3.
Viruses ; 16(4)2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38675892

RESUMO

Canine distemper virus (CDV) can cause fatal infections in giant pandas. Vaccination is crucial to prevent CDV infection in giant pandas. In this study, two bacterium-like particle vaccines F3-GEM and H4-GEM displaying the trimeric F protein or tetrameric H protein of CDV were constructed based on the Gram-positive enhanced-matrix protein anchor (GEM-PA) surface display system. Electron microscopy and Western blot results revealed that the F or H protein was successfully anchored on the surface of GEM particles. Furthermore, one more bacterium-like particle vaccine F3 and H4-GEM was also designed, a mixture consisting of F3-GEM and H4-GEM at a ratio of 1:1. To evaluate the effect of the three vaccines, mice were immunized with F3-GEM, H4-GEM or F3 and H4-GEM. It was found that the level of IgG-specific antibodies and neutralizing antibodies in the F3 and H4-GEM group was higher than the other two groups. Additionally, F3 and H4-GEM also increased the secretion of Th1-related and Th2-related cytokines. Moreover, F3 and H4-GEM induce IgG and neutralizing antibodies' response in dogs. Conclusions: In summary, F3 and H4-GEM can provoke better immune responses to CDV in mice and dogs. The bacterium-like particle vaccine F3 and H4-GEM might be a potential vaccine candidate for giant pandas against CDV infection.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Cinomose Canina , Cinomose , Vacinas Virais , Animais , Vírus da Cinomose Canina/imunologia , Cães , Camundongos , Cinomose/prevenção & controle , Cinomose/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Feminino , Imunoglobulina G/sangue , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Camundongos Endogâmicos BALB C , Citocinas/metabolismo , Vacinação
4.
Braz J Microbiol ; 55(1): 933-941, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38305952

RESUMO

Infectious diseases are one of the most concerning threats to maned wolves (Chrysocyon brachyurus) due to the potential impact on free-ranging populations. The species is currently classified as vulnerable according to the national list of threatened species and occurs mainly in open habitats, such as the Cerrado, a tropical savannah, which comprises its main distribution area in Brazil. In the northeastern region, it occurs in the Cerrado of Bahia, Piauí, Maranhão, and Tocantins states. Therefore, this study aimed to investigate the occurrence of infectious agents in Chrysocyon brachyurus through an epidemiological assessment of free-ranging individuals in western Bahia, specifically in the Barreiras microregion, a Cerrado area intensely fragmented and anthropized by agricultural activity. Eleven specimens were evaluated for serological titration, antigen research, and genetic material research for canine distemper virus (CDV), canine parvovirus (CPV), adenovirus-canine-type 1 (CAdV-1), canine coronavirus (CCoV), Leptospira interrogans and Toxoplasma gondii from 2020 to 2022. In addition to maned wolves, domestic dogs were also evaluated and tested. All maned wolves (100%) evaluated by the dot-ELISA technique exhibited immunoglobulin M (IgM) and seven (64%) exhibited immunoglobulin G (IgG) against CDV and CPV, while 100% exhibited IgG against CDV when using the immunochromatographic technique. Regarding CAdV-1, 90% were seropositive for IgG, while 64% exhibited IgG against T. gondii. Nine dogs from the region were also sampled, and all (100%) exhibited IgM and IgG against CDV and CPV. For IgG against T. gondii and against CAdV-1, 90% of the animals were seropositive. Molecular evaluation yielded negative results for all maned wolves and dogs assessed for CAdV-1, CDV, and T. gondii, as well as the CCoV antigen. These data indicate the occurrence of viral agents and Toxoplasma gondii in maned wolves and dogs, suggesting circulation in both populations.


Assuntos
Canidae , Vírus da Cinomose Canina , Parvovirus Canino , Toxoplasma , Lobos , Animais , Cães , Brasil/epidemiologia , Imunoglobulina G , Toxoplasma/genética , Imunoglobulina M
5.
Oncol Res Treat ; 47(1-2): 10-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38008084

RESUMO

INTRODUCTION: Oncolytic virotherapy is a novel strategy for cancer treatment in humans and companion animals. Canine distemper virus (CDV) is known to induce apoptosis in tumor cells, thus serving as a potential candidate for oncolytic therapy. However, the mechanism of viral oncolytic activity is less studied and varies depending on the type of cancer and cell lines. METHODS: In the present study, the susceptibility of the MCF-7 cell line to CDV infection was assessed using the CDV strain, which was confirmed previously through sequence analysis in the Vero cell line. The impact of CDV infection on cell proliferation and apoptosis was studied by evaluating the expression of four target genes including the myeloid cell leukemia 1 (MCL-1), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), transcription factor (SP1), and DNA (cytosine-5)-methyltransferase 3A (DNMT3A). RESULTS: CDV replication in the cells induced cytopathic effect and decreased in the cell proliferation rates compared to the uninfected control. MCL-1, SP1, and PIK3R1 gene expression was down-regulated, while the expression of DNMT3A was up-regulated 3 days post-infection. The expression levels of the target genes suggest that CDV may be inducing the intrinsic apoptotic pathway in the cancer cell line. CONCLUSION: Overall, the results strongly propose CDV strain as a potential candidate for cancer therapy after detailed studies.


Assuntos
Neoplasias da Mama , Vírus da Cinomose Canina , Animais , Chlorocebus aethiops , Humanos , Feminino , Vírus da Cinomose Canina/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides , Células Vero , Apoptose , Neoplasias da Mama/terapia
6.
J Virol Methods ; 323: 114853, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979697

RESUMO

Canine distemper virus (CDV) is a major threat to domestic dogs and wildlife worldwide. Molecular assays are the most sensitive and specific tests to diagnose the disease, however, the high CDV genetic variability may compromise laboratory diagnosis. Herein, we designed a high-coverage primer set for end-point (RT-PCR) and real-time (RT-qPCR) for CDV detection. Initially, we collected 194 complete/near-complete CDV genomes (GenBank) and analyzed them for highly conserved regions for primer design. We then assessed the in silico coverage, analytical sensitivity, specificity and diagnostic performance of RT-PCR/RT-qPCR reactions based on our primers. Furthermore, the coverage of our primers, as well as their analytical sensitivity and diagnostic performance, were compared to a commonly used primer set for CDV detection (named PP-I). Our forward (F) and reverse (R) primers fully matched 100 % (194/194) and 99 % (192/194) of the analyzed sequences, whereas the PP-I F and R primers fully matched 15 % (29/194) and 9 % (18/194) sequences, respectively. The detection limit of our RT-PCR and RT-qPCR was equivalent to that of PP-I primers (0.001 TCID50/mL). Out of 70 clinical samples tested, 38 were positive by our RT-PCR/RT-qPCR assays, whereas reactions with primers PP-I failed to detect 9/28 (32 %) positive samples selected for comparison purposes. In addition, our assays did not amplify other canine viruses associated with respiratory and neurological diseases: canine adenovirus 2, canine parainfluenza virus 2, canine herpesvirus 1 and rabies virus. Overall, we describe a high-coverage primer set for CDV detection, which represents an attractive tool for laboratory diagnosis of canine distemper.


Assuntos
Vírus da Cinomose Canina , Cinomose , Animais , Cães , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus da Cinomose Canina/genética , Sensibilidade e Especificidade , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Cinomose/diagnóstico
7.
J Zoo Wildl Med ; 54(2): 252-261, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37428687

RESUMO

The Wildlife Conservation Society (WCS) has housed fennec foxes (Vulpes zerda) at its facilities since the early 1900s and currently has one of the largest populations managed by the fennec fox Species Survival Plan. Of the 83 foxes held by WCS institutions between 1980 and 2019, 52 medical records and 48 postmortem reports were available for review. Common causes of morbidity included trauma and dermatologic disease, especially atopic dermatitis. Average age at death for animals surviving past 10 wk was 9.76 yr. Common causes of death or euthanasia were neoplasia (15/48, 31%) and infectious disease (14/48, 29%), with neoplastic processes incidentally identified in an additional seven animals. Significant antemortem cardiac changes were identified in 22 animals. Hepatocellular carcinoma (HCC) was diagnosed in nine animals, consistent with previous documentation of HCC as one of the most common neoplasms in this species. Four animals were suspected to have succumbed to vaccine-induced canine distemper virus after receiving a modified live vaccine. No canine distemper infections have been documented after 1981 in this population and since the use of a canarypox-vectored recombinant vaccine. Recommendations for management of this species include routine screening for hepatic neoplasia in adult animals, regular cardiac evaluations including electrocardiogram, echocardiogram, and dermatologic examination as described by the current consensus statement on canine atopic dermatitis. This descriptive morbidity and mortality report is the first for the fennec fox.


Assuntos
Carcinoma Hepatocelular , Dermatite Atópica , Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Neoplasias Hepáticas , Animais , Cães , Carcinoma Hepatocelular/veterinária , Raposas , Neoplasias Hepáticas/veterinária , Estudos Retrospectivos , Dermatite Atópica/veterinária , Animais Selvagens , Morbidade , Vacinas Atenuadas
8.
Vet Immunol Immunopathol ; 262: 110630, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37418822

RESUMO

Canine core vaccine titer screenings are becoming increasingly popular in veterinary practice as a tool to guide vaccination decisions, despite a lack of supportive, peer-reviewed evidence-based literature. Additionally, it has been suggested that the canine core vaccine duration of host protective immunity can persist past the currently recommended vaccination interval. Thus, this study evaluated serum antibody titers against three core antigens in dogs with known vaccination histories and lifestyles, analyzing the effect of life stage, exposure risk, and time since last vaccination (TSLV). Clinically healthy dogs (n = 188) presenting to the primary care services of three colleges of veterinary medicine were selected to represent a variety of ages, breeds, and vaccination history. Serum antibody titers for canine parvovirus (CPV), canine distemper virus (CDV), and canine adenovirus-2 (CAV2) were measured via virus neutralization and hemagglutination inhibition. CAV2 and CPV titers decreased, while CDV titers had a decreasing trend with increasing time since last vaccination or vaccination interval. When assessing circulating antibody levels historially associated with protective immunity across various vaccination intervals, 62% (95%CI 36-82%; 8/13) of dogs had positive titers for CDV 5 years post last vaccination, while 92% (95%CI 67-99%; 12/13) of dogs were positive for CAV2 and CPV. Both advanced age and life stage were associated with lower titers and thus, identify a canine population cohort likely at higher disease risk. The results of this study revealed that patient duration of core vaccine-mediated immunity changes with a number of variables, with animal aging and time since vaccination influencing host humoral immunity. This provides further support for the performance of canine core antibody titers to assess whether a vaccine booster and/or specific type of booster is warranted.


Assuntos
Infecções por Adenoviridae , Adenovirus Caninos , Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Infecções por Parvoviridae , Parvovirus Canino , Vacinas Virais , Animais , Cães , Adenoviridae , Infecções por Parvoviridae/prevenção & controle , Infecções por Parvoviridae/veterinária , Anticorpos Antivirais , Vacinação/veterinária , Infecções por Adenoviridae/veterinária
9.
Vet J ; 298-299: 106017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37524148

RESUMO

Guidelines recommend that dogs are vaccinated for canine distemper virus (CDV), canine parvovirus (CPV), and canine adenovirus (CAV) every 3 years. Alternatively, their antibody titers are measured and vaccines given when titers fall below a protective threshold. In this study, a point-of-care (POC) assay was compared to hemagglutination inhibition (for CPV) and virus neutralization (for CAV and CDV) assays to predict the need for revaccination Ninety-two dogs presented for vaccination were enrolled. The POC assay indicated protective titers against CDV in 79/80, CPV in 89/90, and CAV in 91/91 dogs with reference standard antibody measurements that were over a protective threshold. The sensitivity of the POC assay for to detect protective concentrations of CDV antibodies was 99% (95% confidence interval [CI 95%], 93.3-99.9%). Ten dogs were falsely considered protected against CDV by the POC assay with a specificity of 17% (CI 95%, 3.0-44.8%). The sensitivity of the POC assay for protective concentrations of CPV titers was 99% (CI 95%, 93.9-99.9%). The sensitivity of the POC assay to detect protective concentrations of CAV antibodies was 100% (CI 95%, 95.9-100%). Only classifying high-positive CDV and CPV titers on the POC assay as protective improved assay specificity to 100%, but sensitivity decreased to 51% and 76% respectively. This POC assay had a high sensitivity for the detection of protective antibody titers; however, some dogs were falsely categorized as protected, especially for CDV.


Assuntos
Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Infecções por Parvoviridae , Parvovirus Canino , Vacinas , Vacinas Virais , Viroses , Cães , Animais , Cinomose/diagnóstico , Cinomose/prevenção & controle , Sistemas Automatizados de Assistência Junto ao Leito , Infecções por Parvoviridae/diagnóstico , Infecções por Parvoviridae/prevenção & controle , Infecções por Parvoviridae/veterinária , Anticorpos Antivirais , Doenças do Cão/diagnóstico , Doenças do Cão/prevenção & controle , Viroses/veterinária
10.
mSphere ; 8(4): e0008223, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37377421

RESUMO

Canine distemper virus (CDV) causes systemic infection resulting in severe and often fatal disease in a large spectrum of animal host species. The virus is closely related to measles virus and targets myeloid, lymphoid, and epithelial cells, but CDV is more virulent and the infection spreads more rapidly within the infected host. Here, we aimed to study the pathogenesis of wild-type CDV infection by experimentally inoculating ferrets with recombinant CDV (rCDV) based on an isolate directly obtained from a naturally infected raccoon. The recombinant virus was engineered to express a fluorescent reporter protein, facilitating assessment of viral tropism and virulence. In ferrets, this wild type-based rCDV infected myeloid, lymphoid, and epithelial cells, and the infection resulted in systemic dissemination to multiple tissues and organs, especially those of the lymphatic system. High infection percentages in immune cells resulted in depletion of these cells both from circulation and from lymphoid tissues. The majority of CDV-infected ferrets reached their humane endpoints within 20 d and had to be euthanized. In that period, the virus also reached the central nervous system in several ferrets, but we did not observe the development of neurological complications during the study period of 23 d. Two out of 14 ferrets survived CDV infection and developed neutralizing antibodies. We show for the first time the pathogenesis of a non-adapted wild type-based rCDV in ferrets. IMPORTANCE Infection of ferrets with recombinant canine distemper virus (rCDV) expressing a fluorescent reporter protein has been used as proxy to understand measles pathogenesis and immune suppression in humans. CDV and measles virus use the same cellular receptors, but CDV is more virulent, and infection is often associated with neurological complications. rCDV strains in current use have complicated passage histories, which may have affected their pathogenesis. Here, we studied the pathogenesis of the first wild type-based rCDV in ferrets. We used macroscopic fluorescence to identify infected cells and tissues; multicolor flow cytometry to determine viral tropism in immune cells; and histopathology and immunohistochemistry to characterize infected cells and lesions in tissues. We conclude that CDV often overwhelmed the immune system, resulting in viral dissemination to multiple tissues in the absence of a detectable neutralizing antibody response. This virus is a promising tool to study the pathogenesis of morbillivirus infections.


Assuntos
Vírus da Cinomose Canina , Cinomose , Humanos , Cães , Animais , Vírus da Cinomose Canina/genética , Furões , Cinomose/patologia , Células Epiteliais/patologia , Vírus do Sarampo/genética , Anticorpos Neutralizantes , Sistema Imunitário/patologia
11.
J Cancer Res Clin Oncol ; 149(12): 9903-9918, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37249647

RESUMO

BACKGROUND: Canine distemper virus (CDV) has been shown to have oncolytic activity against primary canine tumors. Previous studies from this laboratory had confirmed that CDV induces apoptosis in canine mammary tumor (CMT) cells, although the molecular mechanism remains unknown. METHODS: The CDV N, P, M, F, H, L, C, and V genes were identified in CDV-L and cloned separately. Mutants with deletions in the 5' region (pCMV-F L△60, pCMV-FL△107, and pCMV-FL△114) or with site-directed mutagenesis in the 3' region (pCMV-FLA602-610) of the F gene were generated. Late-stage apoptotic cells were detected by Hoechst 33342. Early-stage apoptotic cells were detected by AnnexinV-FITC/PI. Quantitative real-time PCR was performed to detect the mRNA levels of target genes of apoptotic and NF-κB pathway. Western blot analysis was performed to detect the expression or phosphorylation levels of target proteins of apoptotic or NF-κB pathway. Immunofluorescence assay was performed to detect the nuclear translocation of p65 protein. Recombinant viruses (rCDV-FL△60 and rCDV-FLA602-610) were rescued by a BHK-T7-based system. 5-week-old female BALB/c nude mice were used to detect the oncolytic activity of recombinant viruses. RESULTS: In this study, it was first confirmed that none of the structural or non-structural proteins of CDV-L, a vaccine strain, was individually able to induce apoptosis in canine mammary tubular adenocarcinoma cells (CIPp) or intraductal papillary carcinoma cells (CMT-7364). However, when CIPp or CMT-7364 cells were co-transfected with glycoprotein fusion (F) and hemagglutinin (H) proteins of CDV-L, nuclear fragmentation was observed and a high proportion of early apoptotic cells were detected, as well as cleaved caspase-3, caspase-8 and poly (ATP ribose) polymerase (PARP). Cleaved caspase-3 and PARP were down-regulated by apoptosis broad-spectrum inhibitor Z-VAD-FMK and caspase-8 pathway inhibitor Z-IETD-FMK, confirming that the F and H proteins coinduced apoptosis in CMT cells via the caspase-8 and caspase-3 pathways. F and H proteins co-induced phosphorylation of p65 and IκBα and nuclear translocation of p65, confirming activation of the NF-κB pathway, inhibition of which down-regulated cleaved caspase-3 and cleaved PARP. Recombinant F protein with enhanced fusion activity and H protein co-induced more cleaved caspase-3 and PARP than parental F protein, while the corresponding recombinant virus exhibited the same properties both in CIPp cells and in a subcutaneous xenograft mouse model. CONCLUSIONS: F and H proteins of CDV-L co-induce apoptosis in CMT cells, while the NF-κB pathway and fusion activity of F protein paly essential roles in the process.


Assuntos
Neoplasias da Mama , Vírus da Cinomose Canina , Feminino , Animais , Cães , Humanos , Camundongos , Caspase 3 , Vírus da Cinomose Canina/genética , Hemaglutininas/genética , Caspase 8 , NF-kappa B , Camundongos Nus , Inibidores de Poli(ADP-Ribose) Polimerases , Apoptose
12.
Braz J Microbiol ; 54(1): 587-595, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36749535

RESUMO

The present case is the first description of a co-infection with canine distemper virus (CDV) and canine adenovirus type 1 (CAdV-1) in a free-living hoary fox pup from Brazil. The animal was found and rescued with poor body condition, dehydration, incoordination, ataxia, excessive vocalization, and "blue eyes" phenomenon. Despite the efforts, euthanasia was elected due to worsening clinical signs and poor prognosis. Pathologic examination revealed a mild, acute, random, necrotizing hepatitis, acute bronchopneumonia, hydrocephalus, corneal edema with epithelium degeneration, and acidophilic intracytoplasmatic inclusion bodies in different epithelial cells types with rare syncytial. Through immunohistochemistry, CDV antigen was observed in the tongue, trachea, lungs, liver, spleen, stomach, intestine and urinary bladder. Adenovirus antigen was identified in the nucleus of scattered hepatocytes. Polymerase chain reaction and sequencing demonstrated high similarity with CAdV-1 and wild-type strain of CDV close related to Brazilian viral lineages isolated from domestic dogs. Disease surveillance in wildlife animals is essential to assess possible conservation threats and consider the implementation of mitigation or control measures.


Assuntos
Adenovirus Caninos , Coinfecção , Vírus da Cinomose Canina , Cinomose , Animais , Cães , Raposas , Brasil , Cinomose/patologia
13.
mBio ; 14(1): e0311422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36645301

RESUMO

Wild-type canine distemper virus (CDV) is an important pathogen of dogs as well as wildlife that can infect immune and epithelial cells through two known receptors: the signaling lymphocytic activation molecule (SLAM) and nectin-4, respectively. Conversely, the ferret and egg-adapted CDV-Onderstepoort strain (CDV-OP) is employed as an effective vaccine for dogs. CDV-OP also exhibits promising oncolytic properties, such as its abilities to infect and kill multiple cancer cells in vitro. Interestingly, several cancer cells do not express SLAM or nectin-4, suggesting the presence of a yet unknown entry factor for CDV-OP. By conducting a genome-wide CRISPR/Cas9 knockout (KO) screen in CDV-OP-susceptible canine mammary carcinoma P114 cells, which neither express SLAM nor nectin-4, we identified low-density lipoprotein receptor-related protein 6 (LRP6) as a host factor that promotes CDV-OP infectivity. Whereas the genetic ablation of LRP6 rendered cells resistant to infection, ectopic expression in resistant LRP6KO cells restored susceptibility. Furthermore, multiple functional studies revealed that (i) the overexpression of LRP6 leads to increased cell-cell fusion, (ii) a soluble construct of the viral receptor-binding protein (solHOP) interacts with a soluble form of LRP6 (solLRP6), (iii) an H-OP point mutant that prevents interaction with solLRP6 abrogates cell entry in multiple cell lines once transferred into recombinant viral particles, and (iv) vesicular stomatitis virus (VSV) pseudotyped with CDV-OP envelope glycoproteins loses its infectivity in LRP6KO cells. Collectively, our study identified LRP6 as the long sought-after cell entry receptor of CDV-OP in multiple cell lines, which set the molecular bases to refine our understanding of viral-cell adaptation and to further investigate its oncolytic properties. IMPORTANCE Oncolytic viruses (OV) have gathered increasing interest in recent years as an alternative option to treat cancers. The Onderstepoort strain of canine distemper virus (CDV-OP), an enveloped RNA virus belonging to the genus Morbillivirus, is employed as a safe and efficient vaccine for dogs against distemper disease. Importantly, although CDV-OP can infect and kill multiple cancer cell lines, the basic mechanisms of entry remain to be elucidated, as most of those transformed cells do not express natural receptors (i.e., SLAM and nectin-4). In this study, using a genome-wide CRISPR/Cas9 knockout screen, we describe the discovery of LRP6 as a novel functional entry receptor for CDV-OP in various cancer cell lines and thereby uncover a basic mechanism of cell culture adaptation. Since LRP6 is upregulated in various cancer types, our data provide important insights in order to further investigate the oncolytic properties of CDV-OP.


Assuntos
Vírus da Cinomose Canina , Cinomose , Animais , Cães , Vírus da Cinomose Canina/genética , Nectinas/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Furões , Receptores Virais/genética , Receptores Virais/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Cinomose/prevenção & controle , Cinomose/genética , Cinomose/metabolismo
14.
Arch Virol ; 168(2): 36, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609588

RESUMO

Viral pathogens are the primary cause of canine gastroenteritis. However, few structured comprehensive studies on the viral etiology of canine gastroenteritis have been conducted. In this study, 475 rectal swabs collected over three years (2018-2021) from clinical canine gastroenteritis cases were screened for the presence of six major enteric viruses - canine parvovirus 2 (CPV-2), canine distemper virus (CDV), canine adenovirus 2 (CAdV-2), canine coronavirus (CCoV), canine astrovirus (CaAstV), and canine rotavirus (CRV) - by real-time PCR. The most frequently detected virus was CPV-2, which was present in 64.8% of the samples (subtype 2a, 21.1%; 2b, 77.4%; 2c, 1.5%), followed by CDV (8%), CaAstV (7.2%), CCoV (5.9%), and CAdV-2 (4.6%). Two to four of these viruses in different combinations were found in 16.8% of the samples, and CRV was not detected. The complete genome sequences of Indian isolates of CDV, CCoV, and CaAstV were determined for the first time, and phylogenetic analysis was performed. This study highlights the need for routine prophylactic vaccination with the appropriate vaccines. Notably, 70.3% of animals vaccinated with DHPPiL were found to be positive for at least one virus. Hence, regular molecular analysis of the prevalent viruses is crucial for addressing vaccination failures.


Assuntos
Coronavirus Canino , Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Gastroenterite , Mamastrovirus , Infecções por Parvoviridae , Parvovirus Canino , Rotavirus , Animais , Cães , Filogenia , Doenças do Cão/epidemiologia , Gastroenterite/veterinária , Reação em Cadeia da Polimerase em Tempo Real , Rotavirus/genética , Coronavirus Canino/genética , Mamastrovirus/genética , Vírus da Cinomose Canina/genética
15.
Proc Natl Acad Sci U S A ; 120(6): e2208866120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716368

RESUMO

Canine distemper virus (CDV) is an enveloped RNA morbillivirus that triggers respiratory, enteric, and high incidence of severe neurological disorders. CDV induces devastating outbreaks in wild and endangered animals as well as in domestic dogs in countries associated with suboptimal vaccination programs. The receptor-binding tetrameric attachment (H)-protein is part of the morbilliviral cell entry machinery. Here, we present the cryo-electron microscopy (cryo-EM) structure and supramolecular organization of the tetrameric CDV H-protein ectodomain. The structure reveals that the morbilliviral H-protein is composed of three main domains: stalk, neck, and heads. The most unexpected feature was the inherent asymmetric architecture of the CDV H-tetramer being shaped by the neck, which folds into an almost 90° bent conformation with respect to the stalk. Consequently, two non-contacting receptor-binding H-head dimers, which are also tilted toward each other, are located on one side of an intertwined four helical bundle stalk domain. Positioning of the four protomer polypeptide chains within the neck domain is guided by a glycine residue (G158), which forms a hinge point exclusively in two protomer polypeptide chains. Molecular dynamics simulations validated the stability of the asymmetric structure under near physiological conditions and molecular docking showed that two receptor-binding sites are fully accessible. Thus, this spatial organization of the CDV H-tetramer would allow for concomitant protein interactions with the stalk and head domains without steric clashes. In summary, the structure of the CDV H-protein ectodomain provides new insights into the morbilliviral cell entry system and offers a blueprint for next-generation structure-based antiviral drug discovery.


Assuntos
Vírus da Cinomose Canina , Cinomose , Animais , Cães , Vírus da Cinomose Canina/genética , Simulação de Acoplamento Molecular , Microscopia Crioeletrônica , Subunidades Proteicas , Glicoproteínas
16.
J Vet Med Sci ; 85(1): 76-82, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36418074

RESUMO

Canine distemper virus (CDV) is the etiological agent of severe disease in domestic and wild carnivores. Clinical diagnosis of CDV is challenging because of its similarity to other canine respiratory and intestinal diseases. We aimed to determine certain cytokine (interleukin [IL]-1ß, IL-2, IL-4, IL-6, IL-10, and tumor necrosis factor-α [TNF-α]), interferon (IFN)-γ, canine serum amyloid A (SAA), and canine citrulline (CIT) levels for the first time in CDV-positive dogs. For this purpose, 10 CDV-positive dogs with compatible clinical findings (i.e., neurological symptoms such as tremors and myoclonus, ocular and nasal discharge, and wheezing) and 10 healthy dogs based on the clinical examinations and rapid test results were enrolled. It was observed that the CIT, INF-γ, IL-1ß, IL-2, IL-6, and TNF-α levels were significantly decreased in the CDV-positive dogs than that of the healthy ones (P<0.05). As a result, it was observed that CDV causes immunosuppression and accordingly, the inflammatory response might cause decreased cytokine and acute-phase protein synthesis. Therefore, it was concluded that further investigation of inflammatory pathways and CIT interactions may provide crucial clinical information at different stages of CDV, and aforementioned parameters may serve as important biomarkers for CDV in terms of demonstrating the presence of immunosuppression.


Assuntos
Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Cães , Animais , Citocinas/metabolismo , Citrulina , Fator de Necrose Tumoral alfa , Interleucina-6 , Interleucina-2 , Proteínas de Fase Aguda
17.
J Am Vet Med Assoc ; 260(15): 1928-1933, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36198054

RESUMO

OBJECTIVE: To determine diagnostic accuracy of a point-of-care antibody-screening test by determining sensitivity, specificity, and overall accuracy when compared to reference standard tests for antibody against core vaccine viruses canine adenovirus (CAV), canine parvovirus (CPV), and canine distemper virus (CDV). A further aim was to provide the practitioner with information to guide selection of vaccinal antibody testing methods. SAMPLES: Canine sera from across North America were submitted to a fee-for-service titer-testing laboratory. Samples came from healthy pet dogs with known core vaccination history (n = 431) as well as unvaccinated dogs held in isolation (132). This study examined a total of 563 samples for CDV/CPV and 183 for CAV. PROCEDURES: Serum virus neutralization assays determined antibody titers for CDV and CAV. Hemagglutination inhibition assay determined antibody titers against CPV. All sera were also tested by point-of-care dot blot ELISA (index test). RESULTS: For all 3 viral antigens, the index test provided sensitivity ranging from 96.03% to 96.75% and specificity ranging from 87.50% to 94.33%. Overall accuracy ranged from 93.43% to 95.91%. CLINICAL RELEVANCE: The index test correlates well with reference standard tests and is a reliable, rapid screening test for detection of protective vaccinal antibody against CAV, CDV, and CPV in healthy dogs over 20 weeks of age. An accurate assessment of immunity allows clinicians to administer core vaccines appropriately as needed, avoiding unnecessary risk of adverse vaccine events.


Assuntos
Adenovirus Caninos , Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Infecções por Parvoviridae , Parvovirus Canino , Vacinas Virais , Cães , Animais , Cinomose/diagnóstico , Cinomose/prevenção & controle , Sistemas Automatizados de Assistência Junto ao Leito , Infecções por Parvoviridae/diagnóstico , Infecções por Parvoviridae/veterinária , Doenças do Cão/diagnóstico , Ensaio de Imunoadsorção Enzimática/veterinária , Anticorpos Antivirais
18.
Rev. bras. ciênc. vet ; 29(4): 199-203, out./dez. 2022. il.
Artigo em Português | LILACS, VETINDEX | ID: biblio-1427150

RESUMO

A cinomose é uma enfermidade causada pelo vírus Canine Distemper Virus (CDV). Essa doença afeta principalmente cães, mas também acomete outras espécies domésticas e selvagens. A imunidade do animal está relacionada ao grau que a esse patógeno vai atingir o organismo do indivíduo. Ela afeta a respiração do animal, pode causar vômito, diarreia, convulsões, podendo levar o animal à óbito. O objetivo do presente trabalho foi padronizar um teste ELISA indireto com antígeno de superfície para o diagnostico cinomose utilizando amostras de soro canino. Para padronização da técnica, fez-se necessário o estudo da diluição do antígeno para identificar a melhor concentração para sensibilização da placa. O teste foi aplicado primeiramente com diferentes diluições do antígeno para detecção do melhor desempenho do antígeno. Feito isso, foi testado em um banco de soro de 45 animais comprovadamente positivos no teste ELISA comercial e em soro de 45 animais comprovadamente negativos no teste ELISA comercial, posteriormente foi calculado o ponto de corte, especificidade e sensibilidade do teste. O teste ELISA indireto se mostrou com excelência como um teste de diagnóstico para a cinomose canina, obtendo-se ponto de corte de densidade óptica de 0,229, sensibilidade de 95,5% e especificidade de 84,4%.


Distemper is a disease or the disease by the CDV virus, Distemper Virus. This disease mainly affects dogs, but also affects other domestic and wild species. The animal's immunity is related to the degree to which it will reach the individual's organism. It affects the animal's breathing, can cause vomiting, diarrhea, convulsions, and can lead to death. The aim of the present work test was to standardize an indirect ELISA for distemper diagnosis in experiments using a surface antigen. For the study of technical identification, it was necessary to specify the antigen for the best concentration of plaque sensitization. The test was initially applied with different dilutions of the antigen to detect the best performance of the antigen. This was tested in a serum bank of 45 animals proven positive in the commercial ELISA test and in the serum of 45 animals proven negative in the commercial ELISA test, later it was tested on the cut-off point, specificity and sensitivity of the test. The indirect ELISA test proved to be excellent as a diagnostic test for canine distemper, with an optical density cut-off of 0.229, sensitivity of 95.5% and specificity of 84.4% being obtained.


Assuntos
Animais , Cães , Testes Imunológicos/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Técnicas e Procedimentos Diagnósticos/veterinária , Cinomose/diagnóstico , Vírus da Cinomose Canina , Cães/imunologia , Antígenos Virais/análise
19.
Vet Res Commun ; 46(4): 1363-1368, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36155869

RESUMO

Canine coronavirus (CCoV), canine parvovirus (CPV), and canine distemper virus (CDV) are highly contagious canine pathogens; dogs with these diseases are difficult to treat. In a previous study, we developed a recombinant adenovirus expressing canine interferon lambda 3 (Ad-caIFNλ3) in canine epithelial cells. In this study, we aimed to investigate the antiviral activity of Ad-caIFNλ3 against CCoV, CPV, and CDV in two canine cell lines, A72 and MDCK. Ad-caIFNλ3 transduction suppressed replication of these viruses without cytotoxicity. Our results suggest that Ad-caIFNλ3 may be a therapeutic candidate for canine viral diseases.


Assuntos
Infecções por Adenoviridae , Coronavirus Canino , Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Infecções por Parvoviridae , Parvovirus Canino , Cães , Animais , Parvovirus Canino/genética , Vírus da Cinomose Canina/genética , Coronavirus Canino/genética , Adenoviridae , Antivirais , Infecções por Parvoviridae/veterinária , Anticorpos Antivirais , Infecções por Adenoviridae/veterinária
20.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077417

RESUMO

Canine distemper virus (CDV), a morbillivirus within the family Paramyxoviridae, is a highly contagious infectious agent causing a multisystemic, devastating disease in a broad range of host species, characterized by severe immunosuppression, encephalitis and pneumonia. The present study aimed at investigating pulmonary immune responses of CDV-infected dogs in situ using immunohistochemistry and whole transcriptome analyses by bulk RNA sequencing. Spatiotemporal analysis of phenotypic changes revealed pulmonary immune responses primarily driven by MHC-II+, Iba-1+ and CD204+ innate immune cells during acute and subacute infection phases, which paralleled pathologic lesion development and coincided with high viral loads in CDV-infected lungs. CD20+ B cell numbers initially declined, followed by lymphoid repopulation in the advanced disease phase. Transcriptome analysis demonstrated an increased expression of transcripts related to innate immunity, antiviral defense mechanisms, type I interferon responses and regulation of cell death in the lung of CDV-infected dogs. Molecular analyses also revealed disturbed cytokine responses with a pro-inflammatory M1 macrophage polarization and impaired mucociliary defense in CDV-infected lungs. The exploratory study provides detailed data on CDV-related pulmonary immune responses, expanding the list of immunologic parameters potentially leading to viral elimination and virus-induced pulmonary immunopathology in canine distemper.


Assuntos
Vírus da Cinomose Canina , Cinomose , Animais , Citocinas/genética , Citocinas/metabolismo , Vírus da Cinomose Canina/genética , Cães , Imunidade , Pulmão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA