Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Sci Rep ; 13(1): 6063, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055489

RESUMO

Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, causes high mortality rates in humans and it is the most clinically important and common cause of viral encephalitis in Asia. To date, there is no specific treatment for JEV infection. Melatonin, a neurotropic hormone, is reported to be effective in combating various bacterial and viral infections. However, the effects of melatonin on JEV infection have not yet been studied. The investigation tested the antiviral effects of melatonin against JEV infection and elucidated the possible molecular mechanisms of inhibition. Melatonin inhibited the viral production in JEV-infected SH-SY5Y cells in a time- and dose-dependent manner. Time-of-addition assays demonstrated a potent inhibitory effect of melatonin at the post-entry stage of viral replication. Molecular docking analysis revealed that melatonin negatively affected viral replication by interfering with physiological function and/or enzymatic activity of both JEV nonstructural 3 (NS3) and NS5 protein, suggesting a possible underlying mechanism of JEV replication inhibition. Moreover, treatment with melatonin reduced neuronal apoptosis and inhibited neuroinflammation induced by JEV infection. The present findings reveal a new property of melatonin as a potential molecule for the further development of anti-JEV agents and treatment of JEV infection.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Japonesa (Subgrupo) , Encefalite Japonesa , Melatonina , Neuroblastoma , Animais , Humanos , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Melatonina/farmacologia , Melatonina/uso terapêutico , Simulação de Acoplamento Molecular , Doenças Neuroinflamatórias , Encefalite Japonesa/tratamento farmacológico , Apoptose , Replicação Viral
2.
Viruses ; 15(1)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36680278

RESUMO

Genotype IV Japanese encephalitis (JE) virus (GIV JEV) is the least common and most neglected genotype in JEV. We evaluated the growth and pathogenic potential of the GIV strain 19CxBa-83-Cv, which was isolated from a mosquito pool in Bali, Indonesia, in 2019, and serological analyses were also conducted. The growth ability of 19CxBa-83-Cv in Vero cells was intermediate between that of the genotype I (GI) strain Mie/41/2002 and the genotype V (GV) strain Muar, whereas 19CxBa-83-Cv and Mie/41/2002 grew faster than Muar in mouse neuroblastoma cells. The neuroinvasiveness of 19CxBa-83-Cv in mice was higher than that of Mie/41/2002 but lower than that of Muar; however, there were no significant differences in neurovirulence in mice among the three strains. The neutralizing titers of sera from 19CxBa-83-Cv- and Mie/41/2002-inoculated mice against 19CxBa-83-Cv and Mie/41/2002 were similar, whereas the titers against Muar were lower than those of the other two viruses. The neutralizing titers of JE vaccine-inoculated mouse pool serum against 19CxBa-83-Cv and Muar were significantly lower than those against Mie/41/2002. The neutralizing titers against the three viruses were similar in three out of the five serum samples from GI-infected JE patients, although the titers against Mie/41/2002 were higher than those against 19CxBa-83-Cv and Muar in the remaining two sera samples. In summary, we identified the basic characteristics of 19CxBa-83-Cv, but further studies are needed to better understand GIV JEV.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Japonesa (Subgrupo) , Encefalite Japonesa , Chlorocebus aethiops , Animais , Camundongos , Anticorpos Neutralizantes , Células Vero , Anticorpos Antivirais , Genótipo
3.
Viruses ; 14(12)2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36560690

RESUMO

The Japanese encephalitis virus (JEV) is the most common cause of neurodegenerative disease in Southeast Asia and the Western Pacific region; approximately 1.15 billion people are at risk, and thousands suffer from permanent neurological disorders across Asian countries, with 10-15 thousand people dying each year. JEV crosses the blood-brain barrier (BBB) and forms a complex with receptors on the surface of neurons. GRP78, Src, TLR7, caveolin-1, and dopamine receptor D2 are involved in JEV binding and entry into the neurons, and these receptors also play a role in carcinogenic activity in cells. JEV binds to GRP78, a member of the HSP70 overexpressed on malignant cells to enter neurons, indicating a higher chance of JEV infection in cancer patients. However, JEV enters human brain microvascular endothelial cells via an endocytic pathway mediated by caveolae and the ezrin protein and also targets dopamine-rich areas for infection of the midbrain via altering dopamine levels. In addition, JEV complexed with CLEC5A receptor of macrophage cells is involved in the breakdown of the BBB and central nervous system (CNS) inflammation. CLEC5A-mediated infection is also responsible for the influx of cytokines into the CNS. In this review, we discuss the neuronal and macrophage surface receptors involved in neuronal death.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Japonesa (Subgrupo) , Encefalite Japonesa , Doenças Neurodegenerativas , Humanos , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Células Endoteliais/metabolismo , Chaperona BiP do Retículo Endoplasmático , Dopamina , Doenças Neurodegenerativas/patologia , Sistema Nervoso Central , Vírus da Encefalite Japonesa (Subgrupo)/metabolismo , Receptores de Superfície Celular , Lectinas Tipo C/metabolismo
4.
Viruses ; 13(2)2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498300

RESUMO

Alfuy (ALFV) is an attenuated flavivirus related to the Murray Valley encephalitis virus (MVEV). We previously identified markers of attenuation in the envelope (E) protein of the prototype strain (ALFV3929), including the hinge region (E273-277) and lack of glycosylation at E154-156. To further determine the mechanisms of attenuation we assessed ALFV3929 binding to glycosaminoglycans (GAG), a known mechanism of flaviviruses attenuation. Indeed, ALFV3929 exhibited reduced binding to GAG-rich cells in the presence of heparin; however, low-passage ALFV isolates were relatively unaffected. Sequence comparisons between ALFV strains and structural modelling incriminated a positively-charged residue (K327) in ALFV3929 as a GAG-binding motif. Substitution of this residue to the corresponding uncharged residue in MVEV (L), using a previously described chimeric virus containing the prM & E genes of ALFV3929 in the backbone of MVEV (MVEV/ALFV-prME), confirmed a role for K327 in enhanced GAG binding. When the wild type residues at E327, E273-277 and E154-156 of ALFV3929 were replaced with the corresponding residues from virulent MVEV, it revealed each motif contributed to attenuation of ALFV3929, with the E327/E273-277 combination most dominant. These data demonstrate that attenuation of ALFV3929 is multifactorial and provide new insights for the rational design of attenuated flavivirus vaccines.


Assuntos
Vírus da Encefalite do Vale de Murray/patogenicidade , Vírus da Encefalite Japonesa (Subgrupo)/patogenicidade , Encefalite por Arbovirus/virologia , Infecções por Flavivirus/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Motivos de Aminoácidos , Animais , Encéfalo/patologia , Encéfalo/virologia , Linhagem Celular , Vírus da Encefalite do Vale de Murray/química , Vírus da Encefalite do Vale de Murray/metabolismo , Vírus da Encefalite Japonesa (Subgrupo)/química , Vírus da Encefalite Japonesa (Subgrupo)/crescimento & desenvolvimento , Vírus da Encefalite Japonesa (Subgrupo)/metabolismo , Encefalite por Arbovirus/patologia , Infecções por Flavivirus/patologia , Glicosaminoglicanos/metabolismo , Glicosilação , Heparina/farmacologia , Camundongos , Mutação , Domínios Proteicos , Inoculações Seriadas , Proteínas do Envelope Viral/genética , Ensaio de Placa Viral , Virulência
5.
PLoS One ; 15(5): e0232585, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374750

RESUMO

Neurotropic flavivirus Japanese encephalitis virus (JEV) and West Nile virus (WNV) are amongst the leading causes of encephalitis. Using label-free quantitative proteomics, we identified proteins differentially expressed upon JEV (gp-3, RP9) or WNV (IS98) infection of human neuroblastoma cells. Data are available via ProteomeXchange with identifier PXD016805. Both viruses were associated with the up-regulation of immune response (IFIT1/3/5, ISG15, OAS, STAT1, IRF9) and the down-regulation of SSBP2 and PAM, involved in gene expression and in neuropeptide amidation respectively. Proteins associated to membranes, involved in extracellular matrix organization and collagen metabolism represented major clusters down-regulated by JEV and WNV. Moreover, transcription regulation and mRNA processing clusters were also heavily regulated by both viruses. The proteome of neuroblastoma cells infected by JEV or WNV was significantly modulated in the presence of mosquito saliva, but distinct patterns were associated to each virus. Mosquito saliva favored modulation of proteins associated with gene regulation in JEV infected neuroblastoma cells while modulation of proteins associated with protein maturation, signal transduction and ion transporters was found in WNV infected neuroblastoma cells.


Assuntos
Culicidae/metabolismo , Encefalite Japonesa/metabolismo , Neurônios/patologia , Proteoma/metabolismo , Febre do Nilo Ocidental/metabolismo , Animais , Linhagem Celular Tumoral , Culicidae/virologia , Vírus da Encefalite Japonesa (Subgrupo)/isolamento & purificação , Encefalite Japonesa/patologia , Encefalite Japonesa/virologia , Feminino , Humanos , Neurônios/metabolismo , Neurônios/virologia , Proteoma/análise , Saliva/metabolismo , Saliva/virologia , Febre do Nilo Ocidental/patologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/isolamento & purificação
6.
Stem Cell Res Ther ; 10(1): 387, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31843025

RESUMO

BACKGROUND: Neural stem cells (NSCs) residing in the central nervous system play an important role in neurogenesis. Several viruses can infect these neural progenitors and cause severe neurological diseases. The innate immune responses against the neurotropic viruses in these tissue-specific stem cells remain unclear. METHODS: Human NSCs were transfected with viral RNA mimics or infected with neurotropic virus for detecting the expression of antiviral interferons (IFNs) and downstream IFN-stimulated antiviral genes. RESULTS: NSCs are able to produce interferon-ß (IFN-ß) (type I) and λ1 (type III) after transfection with poly(I:C) and that downstream IFN-stimulated antiviral genes, such as ISG56 and MxA, and the viral RNA sensors RIG-I, MDA5, and TLR3, can be expressed in NSCs under poly(I:C) or IFN-ß stimulation. In addition, our results show that the pattern recognition receptors RIG-I and MDA5, as well as the endosomal pathogen recognition receptor TLR3, but not TLR7 and TLR8, are involved in the activation of IFN-ß transcription in NSCs. Furthermore, NSCs infected with the neurotropic viruses, Zika and Japanese encephalitis viruses, are able to induce RIG-I-mediated IFN-ß expression. CONCLUSION: Human NSCs have the ability to activate IFN signals against neurotropic viral pathogens.


Assuntos
Interferon Tipo I/imunologia , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/virologia , Infecção por Zika virus/imunologia , Linhagem Celular , Células Cultivadas , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/imunologia , Vírus da Encefalite Japonesa (Subgrupo)/imunologia , Encefalite Japonesa/genética , Encefalite Japonesa/imunologia , Humanos , Imunidade Inata , Interferon Tipo I/biossíntese , Interferon beta/biossíntese , Interferon beta/genética , Interferon beta/imunologia , Interferons/genética , Interferons/imunologia , Células-Tronco Neurais/patologia , Receptores Imunológicos , Transcrição Gênica , Transfecção , Zika virus/imunologia , Infecção por Zika virus/genética , Infecção por Zika virus/patologia , Interferon lambda
7.
Sci Rep ; 8(1): 11209, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30046058

RESUMO

Previously, we reported that Zika virus (ZIKV) causes ocular complications such as chorioretinal atrophy, by infecting cells lining the blood-retinal barrier, including the retinal pigment epithelium (RPE). To understand the molecular basis of ZIKV-induced retinal pathology, we performed a meta-analysis of transcriptome profiles of ZIKV-infected human primary RPE and other cell types infected with either ZIKV or other related flaviviruses (Japanese encephalitis, West Nile, and Dengue). This led to identification of a unique ZIKV infection signature comprising 43 genes (35 upregulated and 8 downregulated). The major biological processes perturbed include SH3/SH2 adaptor activity, lipid and ceramide metabolism, and embryonic organ development. Further, a comparative analysis of some differentially regulated genes (ABCG1, SH2B3, SIX4, and TNFSF13B) revealed that ZIKV induced their expression relatively more than dengue virus did in RPE. Importantly, the pharmacological inhibition of ABCG1, a membrane transporter of cholesterol, resulted in reduced ZIKV infectivity. Interestingly, the ZIKV infection signature revealed the downregulation of ALDH5A1 and CHML, genes implicated in neurological (cognitive impairment, expressive language deficit, and mild ataxia) and ophthalmic (choroideremia) disorders, respectively. Collectively, our study revealed that ZIKV induces differential gene expression in RPE cells, and the identified genes/pathways (e.g., ABCG1) could potentially contribute to ZIKV-associated ocular pathologies.


Assuntos
Epitélio Pigmentado da Retina/metabolismo , Transcriptoma/genética , Infecção por Zika virus/genética , Zika virus/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas Adaptadoras de Transdução de Sinal , Fator Ativador de Células B/genética , Dengue/genética , Dengue/patologia , Dengue/virologia , Vírus da Dengue/patogenicidade , Vírus da Encefalite Japonesa (Subgrupo)/patogenicidade , Infecções por Flavivirus/genética , Infecções por Flavivirus/patologia , Infecções por Flavivirus/virologia , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Cultura Primária de Células , Proteínas/genética , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/virologia , Transativadores/genética , Replicação Viral/genética , Febre do Nilo Ocidental/genética , Febre do Nilo Ocidental/patologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/patogenicidade , Zika virus/patogenicidade , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia
8.
Int J Mol Sci ; 18(5)2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468311

RESUMO

Japanese encephalitis virus (JEV), a neurotropic flavivirus, annually causes over 30,000 Japanese Encephalitis (JE) cases in East and Southeast Asia. Histone deacetylases (HDACs) modulate lysine acetylation of histones and non-histone proteins, regulating many processes including inflammation and antiviral immune response. This study investigated antiviral activity of pan- and selective-HDAC inhibitors as host-targeting agents against JEV. Among HDAC inhibitors, selective HDAC6 inhibitors (tubastatin-A (TBSA) and tubacin) concentration-dependently inhibited JEV-induced cytopathic effect and apoptosis, as well as reduced virus yield in human cerebellar medulloblastoma cells. The 50% inhibitory concentration (IC50) values of virus yield was 0.26 µM for tubacin and 1.75 µM for TBSA, respectively. Tubacin (IC50 of 1.52 µM), but not TBSA, meaningfully blocked the production of intracellular infectious virus particles. In time-of-addition assays, the greatest potency of antiviral activity was observed in the mode of pre-treatment with tubacin (IC50 of 1.89 µM) compared to simultaneous (IC50 of 4.88 µM) and post-treatment (IC50 of 2.05 µM) modes. Interestingly, tubacin induced the hyperacetylation of a HDAC6 substrate Hsp90 and reduced the interaction of Hsp90 with JEV NS5 protein. Novobiocin, an Hsp90 inhibitor, diminished the NS5 protein amount and virus replication in JEV-infected cells. Meantime, tubacin suppressed the NS5 expression and antisense RNA genome synthesis in infected cells. Tubacin-induced Hsp90 hyperacetylation was suggested to influence the NS5 activity in JEV replication. Therefore, tubacin had a high potential of a host-targeting agent against JEV, exhibiting preventive and therapeutic activities against JEV infection.


Assuntos
Anilidas/farmacologia , Antivirais/farmacologia , Vírus da Encefalite Japonesa (Subgrupo)/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Vírus da Encefalite Japonesa (Subgrupo)/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Humanos , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo
9.
Scand J Immunol ; 85(5): 350-364, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28273384

RESUMO

Usutu virus (family Flaviviridae), once confined to Africa, has emerged in Europe a decade ago. The virus has been spreading throughout Europe at a greater pace mostly affecting avian species. While most bird species remain asymptomatic carriers of this virus, few bird species are highly susceptible. Lately, Usutu virus (USUV) infections in humans were reported sporadically with severe neuroinvasive symptoms like meningoencephalitis. As so much is unknown about this virus, which potentially may cause severe diseases in humans, there is a need for more studies of this virus. In this study, we have used computational tools to predict potential B cell and T cell epitopes of USUV envelope (E) protein. We found that amino acids between positions 68 and 84 could be a potential B cell epitope, while amino acids between positions 53 and 69 could be a potential major histocompatibility complex (MHC) class I- and class II-restricted T cell epitope. By homology 3D modeling of USUV E protein, we found that the predicted B cell epitope was predominantly located in the coil region, while T cell epitope was located in the beta-strand region of the E protein. Additionally, the potential MHC class I T cell epitope (LAEVRSYCYL) was predicted to bind to nearly 24 human leucocyte antigens (HLAs) (IC50 ≤5000 nm) covering nearly 86.44% of the Black population and 96.90% of the Caucasoid population. Further in vivo studies are needed to validate the predicted epitopes.


Assuntos
Biologia Computacional/métodos , Vírus da Encefalite Japonesa (Subgrupo)/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Vacinas/imunologia , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Vírus da Encefalite Japonesa (Subgrupo)/classificação , Vírus da Encefalite Japonesa (Subgrupo)/genética , Mapeamento de Epitopos/métodos , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Infecções por Flaviviridae/imunologia , Infecções por Flaviviridae/prevenção & controle , Infecções por Flaviviridae/virologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Vacinas/administração & dosagem , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
10.
Vaccine ; 34(18): 2066-73, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26993334

RESUMO

Usutu virus (USUV) is a mosquito-borne flavivirus whose circulation had been confined to Africa since it was first detected in 1959. However, in the last decade USUV has emerged in Europe causing episodes of avian mortality and sporadic severe neuroinvasive infections in humans. Remarkably, adult laboratory mice exhibit limited susceptibility to USUV infection, which has impaired the analysis of the immune responses, thus complicating the evaluation of virus-host interactions and of vaccine candidates against this pathogen. In this work, we showed that mice deficient in the alpha/beta interferon receptor (IFNAR (-/-) mice) were highly susceptible to USUV infection and provided a lethal challenge model for vaccine testing. To validate this infection model, a plasmid DNA vaccine candidate encoding the precursor of membrane (prM) and envelope (E) proteins of USUV was engineered. Transfection of cultured cells with this plasmid resulted in expression of USUV antigens and the assembly and secretion of small virus-like particles also known as recombinant subviral particles (RSPs). A single intramuscular immunization with this plasmid was sufficient to elicit a significant level of protection against challenge with USUV in IFNAR (-/-) mice. The characterization of the humoral response induced revealed that DNA vaccination primed anti-USUV antibodies, including neutralizing antibodies. Overall, these results probe the suitability of IFNAR (-/-) mice as an amenable small animal model for the study of USUV host virus interactions and vaccine testing, as well as the feasibility of DNA-based vaccine strategies for the control of this pathogen.


Assuntos
Infecções por Flavivirus/prevenção & controle , Vacinas contra Encefalite Japonesa/imunologia , Receptor de Interferon alfa e beta/genética , Vacinas de DNA/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Vírus da Encefalite Japonesa (Subgrupo) , Camundongos , Camundongos Knockout , Proteínas do Envelope Viral/imunologia
11.
Appl Microbiol Biotechnol ; 99(22): 9685-98, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26219500

RESUMO

Severe dengue is more likely found during secondary heterologous dengue virus (DENV) infection or primary infection of infants born to dengue-immune mothers and led to the hypothesis of antibody-dependent enhancement (ADE). It has been reported that pre-membrane (prM)-reactive antibodies do not efficiently neutralize DENV infection but instead potently promote ADE infection. Meanwhile, these enhancing anti-prM antibodies mainly react with the precursor (pr) peptide. To evaluate the effect of pr gene substitution on neutralization and ADE of DENV infection, a novel chimeric dengue virus (JEVpr/DENV2) was rationally constructed by replacing the DENV pr gene with Japanese encephalitis virus (JEV) pr gene, based on the full-length infectious complementary DNA (cDNA) clone of DENV2 ZS01/01. We found that chimeric JEVpr/DENV2 showed reduced virulence and good immunogenicity. In addition, anti-JEVpr/DENV2 sera showed broad cross-reactivity and efficient neutralizing activity with all four DENV serotypes and immature DENV2 (ImDENV2). Most importantly, compared with anti-DENV2 sera, anti-JEVpr/DENV2 sera showed significantly reduced enhancing activity of DENV infection in K562 cells. These results suggest that the ADE activities could be reduced by replacing the DENV pr gene with JEV pr gene. These findings may help us better understand the pathogenesis of DENV infection and provide a reference for the development of a vaccine against DENV.


Assuntos
Anticorpos Antivirais/imunologia , Anticorpos Facilitadores , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Vírus da Encefalite Japonesa (Subgrupo)/genética , Genética Reversa , Proteínas do Envelope Viral/metabolismo , Linhagem Celular , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinação Genética , Virulência
12.
J Virol ; 89(10): 5668-86, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25762738

RESUMO

UNLABELLED: Japanese encephalitis virus (JEV), which causes viral encephalitis in humans, is a serious risk to global public health. The JEV envelope protein mediates the viral entry pathway, including receptor-binding and low-pH-triggered membrane fusion. Utilizing mutagenesis of a JEV infectious cDNA clone, mutations were introduced into the potential receptor-binding motif or into residues critical for membrane fusion in the envelope protein to systematically investigate the JEV entry mechanism. We conducted experiments evaluating infectious particle, recombinant viral particle, and virus-like particle production and found that most mutations impaired virus production. Subcellular fractionation confirmed that five mutations--in I0, ij, BC, and FG and the R9A substitution-impaired virus assembly, and the assembled virus particles of another five mutations--in kl and the E373A, F407A, L221S, and W217A substitutions--were not released into the secretory pathway. Next, we examined the entry activity of six mutations yielding infectious virus. The results showed N154 and the DE loop are not the only or major receptor-binding motifs for JEV entry into BHK-21 cells; four residues, H144, H319, T410, and Q258, participating in the domain I (DI)-DIII interaction or zippering reaction are important to maintain the efficiency of viral membrane fusion. By continuous passaging of mutants, adaptive mutations from negatively charged amino acids to positively charged or neutral amino acids, such as E138K and D389G, were selected and could restore the viral entry activity. IMPORTANCE: Recently, there has been much interest in the entry mechanism of flaviviruses into host cells, including the viral entry pathway and membrane fusion mechanism. Our study provides strong evidence for the critical role of several residues in the envelope protein in the assembly, release, and entry of JEV, which also contributes to our understanding of the flaviviral entry mechanism. Furthermore, we demonstrate that the H144A, H319A, T410A, and Q258A mutants exhibit attenuated fusion competence, which may be used to develop novel vaccine candidates for flaviviruses.


Assuntos
Vírus da Encefalite Japonesa (Subgrupo)/genética , Vírus da Encefalite Japonesa (Subgrupo)/fisiologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Internalização do Vírus , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Cricetinae , Análise Mutacional de DNA , DNA Viral/genética , Vírus da Encefalite Japonesa (Subgrupo)/patogenicidade , Encefalite Japonesa/virologia , Genes Virais , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Homologia de Sequência de Aminoácidos , Replicação Viral
13.
Virus Res ; 189: 87-91, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24874193

RESUMO

Cross-reactions observed in serological assays between Usutu virus (USUV), the USUV outlier subtype strain CAR_1969 and West Nile virus (WNV) suggest that they share antigenic features amongst their structural outer proteins especially envelope (E) proteins. To investigate the molecular background of this observation, we compared the E protein sequences of seven USUV strains, USUV subtype strain CAR_1969 and WNV strain 2471, focusing on the binding site defined by the WNV neutralizing antibody E16. USUV SouthAfrica_1959 differs from WNV 2741 in three of four residues critical for E16 antibody binding and five of the 12 additionally involved residues. In contrast, USUV subtype CAR_1969 differs from WNV 2741 in two critical residues and five additional residues. Furthermore, USUV subtype CAR_1969 differs from other USUV strains in two critical residues. E16 antibody binding has previously been shown to be highly specific for WNV; thus, the observed variation in amino acid residues suggests that the region corresponding to the WNV E16 epitope is probably not responsible for the observed cross-reactions between WNV and USUV. Seroneutralisation assays confirmed these findings for WNV and USUV, however, showed occurring cross-reactivity between WNV and USUV subtype CAR_1969 at high antibody titers. The sequence diversity in this region might also explain some of the observed different antigenic characteristics of USUV strains and USUV subtype CAR_1969. A therapeutic effect of E16 antibody has been described in WNV infected mice; therefore, a USUV specific antibody generated against the region corresponding to the WNV E16 binding site might represent an approach for treating USUV infections.


Assuntos
Antígenos Virais/genética , Antígenos Virais/imunologia , Vírus da Encefalite Japonesa (Subgrupo)/genética , Vírus da Encefalite Japonesa (Subgrupo)/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Reações Cruzadas , Camundongos , Homologia de Sequência
14.
Microbiol Immunol ; 58(2): 126-34, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24372832

RESUMO

Neutralizing antibodies induced by dengue virus (DENV) infection show viral infection-enhancing activities at sub-neutralizing doses. On the other hand, preimmunity against Japanese encephalitis virus (JEV), a congener of DENV, does not increase the severity of DENV infection. Several studies have demonstrated that neutralizing epitopes in the genus Flavivirus are mainly located in domain III (DIII) of the envelope (E) protein. In this study, chimeric premembrane and envelope (prM-E) gene-based expression plasmids of JEV and DENV1 with DIII substitution of each virus were constructed for use as DNA vaccines and their immunogenicity evaluated. Sera from C3H/He and ICR mice immunized with a chimeric gene containing DENV1 DIII on a JEV prM-E gene backbone showed high neutralizing antibody titers with less DENV infection-enhancing activity. Our results confirm the applicability of this approach as a new dengue vaccine development strategy.


Assuntos
Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Vírus da Encefalite Japonesa (Subgrupo)/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Células CHO , Linhagem Celular , Cricetulus , Vacinas contra Dengue/genética , Vírus da Dengue/classificação , Vírus da Dengue/genética , Vírus da Encefalite Japonesa (Subgrupo)/classificação , Vírus da Encefalite Japonesa (Subgrupo)/genética , Expressão Gênica , Humanos , Imunização , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Camundongos , Testes de Neutralização , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Sorotipagem , Vacinas de DNA/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
15.
PLoS One ; 8(5): e64761, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741387

RESUMO

Usutu virus (USUV) is a mosquito-borne flavivirus, belonging to the Japanese encephalitis antigenic complex, that circulates among mosquitoes and birds. We describe and analyze the complete genome sequence of the first USUV strain isolated from an immunocompromised patient with neuroinvasive disease. This USUV isolate showed an overall nucleotide identity of 99% and 96%, respectively, with the genomes of isolates from Europe and Africa. Comparison of the human USUV complete polyprotein sequence with bird-derived strains, showed two unique amino acid substitutions. In particular, one substitution (S595G) was situated in the DIII domain of the viral Envelope protein that is recognized by flavivirus neutralizing antibodies. An additional amino acid substitution (D3425E) was identified in the RNA-dependent RNA polymerase (RdRp) domain of the NS5 protein. This substitution is remarkable since E3425 is highly conserved among the other USUV isolates that were not associated with human infection. However, a similar substitution was observed in Japanese encephalitis and in West Nile viruses isolated from humans. Phylogenetic analysis of the human USUV strain revealed a close relationship with an Italian strain isolated in 2009. Analysis of synonymous nucleotide substitutions (SNSs) among the different USUV genomes showed a specific evolutionary divergence among different countries. In addition, 15 SNSs were identified as unique in the human isolate. We also identified four specific nucleotide substitutions in the 5' and 3' untranslated regions (UTRs) in the human isolate that were not present in the other USUV sequences. Our analyses provide the basis for further experimental studies aimed at defining the effective role of these mutations in the USUV genome, their potential role in the development of viral variants pathogenic for humans and their evolution and dispersal out of Africa.


Assuntos
Vírus da Encefalite Japonesa (Subgrupo)/classificação , Vírus da Encefalite Japonesa (Subgrupo)/genética , Encefalite por Arbovirus/virologia , Infecções por Flavivirus/virologia , Hospedeiro Imunocomprometido , Filogenia , Proteínas não Estruturais Virais/genética , África , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , Aves/virologia , Culex/virologia , Vírus da Encefalite Japonesa (Subgrupo)/isolamento & purificação , Encefalite por Arbovirus/diagnóstico , Encefalite por Arbovirus/imunologia , Europa (Continente) , Infecções por Flavivirus/diagnóstico , Infecções por Flavivirus/imunologia , Humanos , Dados de Sequência Molecular , Filogeografia , Proteínas não Estruturais Virais/classificação
16.
Hybridoma (Larchmt) ; 31(2): 137-41, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22509919

RESUMO

Non-structural proteins NS3 and NS5 of Japanese encephalitis virus (JEV) were expressed in Escherichia coli and purified by dialysis. Two monoclonal antibodies (MAbs) named 1H7 and 2D4 against NS3 protein and three MAbs named 3C4, 3H7, and 3F10 against NS5 protein were generated by fusing mouse myeloma cell line SP2/0 with spleen lymphocytes from NS3 or NS5 protein immunized mice. Then activity of MAbs was characterized by enzyme-linked immunosorbent assay (ELISA), Western blot analysis, and indirect immunofluorescent assays (IFA). Our results demonstrated that all the MAbs showed high specificity and sensitivity in IFA at 1:100 dilution and in Western blot analysis at 1:500 dilution, which indicated that these MAbs against NS3 and NS5 proteins of JEV may be used as valuable tools for analysis of the protein functions and pathogenesis of JEV.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Vírus da Encefalite Japonesa (Subgrupo)/imunologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Anticorpos Monoclonais/genética , Afinidade de Anticorpos , Especificidade de Anticorpos , Linhagem Celular , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , RNA Helicases/genética , RNA Helicases/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia , Proteínas não Estruturais Virais/genética
17.
PLoS One ; 7(2): e32604, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22389712

RESUMO

This study aimed to identify the causative agent of mass mortality in wild and captive birds in southwest Germany and to gather insights into the phylogenetic relationship and spatial distribution of the pathogen. Since June 2011, 223 dead birds were collected and tested for the presence of viral pathogens. Usutu virus (USUV) RNA was detected by real-time RT-PCR in 86 birds representing 6 species. The virus was isolated in cell culture from the heart of 18 Blackbirds (Turdus merula). USUV-specific antigen was demonstrated by immunohistochemistry in brain, heart, liver, and lung of infected Blackbirds. The complete polyprotein coding sequence was obtained by deep sequencing of liver and spleen samples of a dead Blackbird from Mannheim (BH65/11-02-03). Phylogenetic analysis of the German USUV strain BH65/11-02-03 revealed a close relationship with strain Vienna that caused mass mortality among birds in Austria in 2001. Wild birds from lowland river valleys in southwest Germany were mainly affected by USUV, but also birds kept in aviaries. Our data suggest that after the initial detection of USUV in German mosquitoes in 2010, the virus spread in 2011 and caused epizootics among wild and captive birds in southwest Germany. The data also indicate an increased risk of USUV infections in humans in Germany.


Assuntos
Doenças das Aves/virologia , Vírus da Encefalite Japonesa (Subgrupo)/classificação , Vírus da Encefalite Japonesa (Subgrupo)/genética , Animais , Aves , Vírus da Encefalite Japonesa (Subgrupo)/patogenicidade , Alemanha , Imuno-Histoquímica , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Expert Rev Vaccines ; 11(2): 177-87, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22309667

RESUMO

Serological cross-reactivity providing cross-protective immunity between antigenically related viruses is a cornerstone of vaccination. It was the immunological basis for the first human vaccine against smallpox introduced more than 200 years ago, and continues to underpin modern vaccine development as has recently been shown for human papillomavirus vaccines, which confer cross-protection against other oncogenic papillomavirus types not present in the vaccine. Here, we review the feasibility of cross-protective vaccination against an antigenic group of clinically important viruses belonging to the Japanese encephalitis serocomplex in the Flaviviridae family. We will discuss evidence suggesting that 'new generation' flavivirus vaccines may provide effective cross-protective immunity against heterologous Japanese encephalitis serocomplex viruses, and appraise potential risks associated with cross-reactive vaccine immunity. The review will also focus on the structural and mechanistic basis for cross-protective immunity among this group of flaviviruses, which is predominantly mediated by antibodies against a single viral surface protein.


Assuntos
Anticorpos Antivirais/imunologia , Proteção Cruzada/imunologia , Vírus da Encefalite Japonesa (Subgrupo)/classificação , Infecções por Flavivirus/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Cricetinae , Vírus da Encefalite Japonesa (Subgrupo)/imunologia , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/virologia , Humanos , Camundongos , Modelos Moleculares , Vacinação , Proteínas do Envelope Viral/química , Vacinas Virais/administração & dosagem
19.
Virology ; 396(2): 298-304, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19913862

RESUMO

We previously reported that the Japanese encephalitis virus (JEV) strain Mie/41/2002 has weak pathogenicity compared with the laboratory strain Beijing-1. To identify the determinants of its growth nature and pathogenicity, we produced intertypic viruses, rJEV(EB1-M41), rJEV(nEB1-M41) and rJEV(cEB1-M41), which contained the entire, the N-terminal, and the C-terminal half, respectively, of the Beijing-1 E region in the Mie/41/2002 background. The growth of rJEV(EB1-M41) in mouse neuroblastoma N18 cells and virulence in mice were similar to those of Beijing-1. rJEV(nEB1-M41) propagated in N18 cells to the same extent as did Beijing-1. Furthermore, we produced mutant viruses with single amino acid substitutions in the N-terminal half of the Mie/41/2002 E region. A Ser-123-Arg mutation in the Mie/41/2002 E protein exhibited significantly increased growth rate in N18 cells and virulence in mice. These results indicate that the position 123 in the E protein is responsible for determining the growth properties and pathogenicity of JEV.


Assuntos
Vírus da Encefalite Japonesa (Subgrupo)/genética , Glicoproteínas de Membrana/genética , Neuroblastoma/virologia , Proteínas do Envelope Viral/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Culicidae , Vírus da Encefalite Japonesa (Subgrupo)/patogenicidade , Vírus da Encefalite Japonesa (Subgrupo)/fisiologia , Camundongos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto/genética , Suínos , Células Vero , Ensaio de Placa Viral
20.
J Neuroimmune Pharmacol ; 4(3): 328-37, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19434500

RESUMO

Japanese encephalitis (JE) is an arboviral disease common in Southeast Asia encompassing a population of 3 billion people. Periodic outbreak of JE takes hundreds of lives. Children are major victims of JE. About one third of JE patients die, and many of the survivors suffer from permanent neuropsychiatric sequel, owing to the lack of specific therapeutic measure. Curcumin is a naturally occurring phenolic compound extracted from Curcuma longa L. Previous studies have reported that curcumin possesses strong antioxidant, anti-inflammatory, antiviral activity. We used Neuro2a cell line and infected them with JE virus. The infected cells were treated with varying doses of curcumin. Cell viability, reactive oxygen species (ROS) production within the cells, and change in cellular membrane integrity were studied. The changes in expression of some signaling and stress-related proteins were also assessed. We also studied the inhibitory role of curcumin on the production of infective viral particles by dysregulation of the ubiquitin-proteasome system. In this study, we found that curcumin imparts neuroprotection in vitro, probably by decreasing cellular reactive oxygen species level, restoration of cellular membrane integrity, decreasing pro-apoptotic signaling molecules, and modulating cellular levels of stress-related proteins. We have also shown that curcumin, by inhibition of ubiquitin-proteasome system causes reduction in infective viral particle production from previously infected neuroblastoma cells.


Assuntos
Antioxidantes/farmacologia , Curcumina/farmacologia , Vírus da Encefalite Japonesa (Subgrupo) , Encefalite Japonesa/patologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores , Complexo de Endopeptidases do Proteassoma/fisiologia , Ubiquitina/fisiologia , Vírion/crescimento & desenvolvimento , Anisotropia , Morte Celular , Linhagem Celular , Sobrevivência Celular , Efeito Citopatogênico Viral , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Neurônios/patologia , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA