Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 489
Filtrar
1.
J Virol ; 98(3): e0175123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38319105

RESUMO

Viruses exploit the host cell's energy metabolism system to support their replication. Mitochondria, known as the powerhouse of the cell, play a critical role in regulating cell survival and virus replication. Our prior research indicated that the classical swine fever virus (CSFV) alters mitochondrial dynamics and triggers glycolytic metabolic reprogramming. However, the role and mechanism of PKM2, a key regulatory enzyme of glycolytic metabolism, in CSFV replication remain unclear. In this study, we discovered that CSFV enhances PKM2 expression and utilizes PKM2 to inhibit pyruvate production. Using an affinity purification coupled mass spectrometry system, we successfully identified PKM as a novel interaction partner of the CSFV non-structural protein NS4A. Furthermore, we validated the interaction between PKM2 and both CSFV NS4A and NS5A through co-immunoprecipitation and confocal analysis. PKM2 was found to promote the expression of both NS4A and NS5A. Moreover, we observed that PKM2 induces mitophagy by activating the AMPK-mTOR signaling pathway, thereby facilitating CSFV proliferation. In summary, our data reveal a novel mechanism whereby PKM2, a metabolic enzyme, promotes CSFV proliferation by inducing mitophagy. These findings offer a new avenue for developing antiviral strategies. IMPORTANCE: Viruses rely on the host cell's material-energy metabolic system for replication, inducing host metabolic disorders and subsequent immunosuppression-a major contributor to persistent viral infections. Classical swine fever virus (CSFV) is no exception. Classical swine fever is a severe acute infectious disease caused by CSFV, resulting in significant economic losses to the global pig industry. While the role of the metabolic enzyme PKM2 (pyruvate dehydrogenase) in the glycolytic pathway of tumor cells has been extensively studied, its involvement in viral infection remains relatively unknown. Our data unveil a new mechanism by which the metabolic enzyme PKM2 mediates CSFV infection, offering novel avenues for the development of antiviral strategies.


Assuntos
Proteínas Quinases Ativadas por AMP , Vírus da Febre Suína Clássica , Mitofagia , Piruvato Quinase , Serina-Treonina Quinases TOR , Proteínas não Estruturais Virais , Replicação Viral , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Antivirais , Peste Suína Clássica/metabolismo , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/crescimento & desenvolvimento , Vírus da Febre Suína Clássica/fisiologia , Desenho de Fármacos , Glicólise , Piruvato Quinase/química , Piruvato Quinase/metabolismo , Piruvatos/metabolismo , Transdução de Sinais , Suínos/metabolismo , Suínos/virologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
2.
Viruses ; 16(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275957

RESUMO

Classical swine fever (CSF) has been eradicated from Western and Central Europe but remains endemic in parts of Central and South America, Asia, and the Caribbean. CSF virus (CSFV) has been endemic in Cuba since 1993, most likely following an escape of the highly virulent Margarita/1958 strain. In recent years, chronic and persistent infections with low-virulent CSFV have been observed. Amino acid substitutions located in immunodominant epitopes of the envelope glycoprotein E2 of the attenuated isolates were attributed to positive selection due to suboptimal vaccination and control. To obtain a complete picture of the mutations involved in attenuation, we applied forward and reverse genetics using the evolutionary-related low-virulent CSFV/Pinar del Rio (CSF1058)/2010 (PdR) and highly virulent Margarita/1958 isolates. Sequence comparison of the two viruses recovered from experimental infections in pigs revealed 40 amino acid differences. Interestingly, the amino acid substitutions clustered in E2 and the NS5A and NS5B proteins. A long poly-uridine sequence was identified previously in the 3' untranslated region (UTR) of PdR. We constructed functional cDNA clones of the PdR and Margarita strains and generated eight recombinant viruses by introducing single or multiple gene fragments from Margarita into the PdR backbone. All chimeric viruses had comparable replication characteristics in porcine monocyte-derived macrophages. Recombinant PdR viruses carrying either E2 or NS5A/NS5B of Margarita, with 36 or 5 uridines in the 3'UTR, remained low virulent in 3-month-old pigs. The combination of these elements recovered the high-virulent Margarita phenotype. These results show that CSFV evolution towards attenuated variants in the field involved mutations in both structural and non-structural proteins and the UTRs, which act synergistically to determine virulence.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Animais , Suínos , Virulência/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/química , Mutação
3.
Vet Res ; 54(1): 115, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041163

RESUMO

Classical swine fever virus (CSFV) is an ancient pathogen that continues to pose a threat to animal agriculture worldwide. The virus belongs to the genus Pestivirus and the family Flaviviridae. It causes a multisystemic disease that affects only pigs and is responsible for significant economic losses. CSFV infection is probably a multistep process that involves the proteins in the virus envelope and more than one receptor in the membrane of permissive cells. To date, the cellular receptors essential for CSFV entry and their detailed functions during this process remains unknown. All the viral envelope proteins Erns, E1 and E2 are involved in the entry process to some extent and the experimental approaches conducted until now have helped to unveil their contributions. This review aims to provide an overview of current knowledge on cellular molecules described to be involved in CSFV entry, including complement regulatory protein 46 (CD46), heparan sulphate (HS), Laminin receptor, Integrin ß3, Annexin II, MERKT and ADAM17. This knowledge would not only help to understand the molecular mechanisms involved in pestivirus infection, but also provide a rational basis for the development of nonvaccinal alternatives for CSFV control.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Doenças dos Suínos , Animais , Suínos , Vírus da Febre Suína Clássica/fisiologia , Linhagem Celular , Proteínas do Envelope Viral , Receptores de Superfície Celular/metabolismo
4.
Viruses ; 15(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38005821

RESUMO

Classical swine fever (CSF) remains one of the most economically significant viral diseases affecting domestic pigs and wild boars worldwide. To develop a safe and effective vaccine against CSF, we have constructed a triple gene-deleted pseudorabies virus (PRVtmv)-vectored bivalent subunit vaccine against porcine circovirus type 2b (PCV2b) and CSFV (PRVtmv+). In this study, we determined the protective efficacy of the PRVtmv+ against virulent CSFV challenge in pigs. The results revealed that the sham-vaccinated control group pigs developed severe CSFV-specific clinical signs characterized by pyrexia and diarrhea, and became moribund on or before the seventh day post challenge (dpc). However, the PRVtmv+-vaccinated pigs survived until the day of euthanasia at 21 dpc. A few vaccinated pigs showed transient diarrhea but recovered within a day or two. One pig had a low-grade fever for a day but recovered. The sham-vaccinated control group pigs had a high level of viremia, severe lymphocytopenia, and thrombocytopenia. In contrast, the vaccinated pigs had a low-moderate degree of lymphocytopenia and thrombocytopenia on four dpc, but recovered by seven dpc. Based on the gross pathology, none of the vaccinated pigs had any CSFV-specific lesions. Therefore, our results demonstrated that the PRVtmv+ vaccinated pigs are protected against virulent CSFV challenge.


Assuntos
Circovirus , Vírus da Febre Suína Clássica , Peste Suína Clássica , Herpesvirus Suídeo 1 , Linfopenia , Trombocitopenia , Vacinas Virais , Suínos , Animais , Herpesvirus Suídeo 1/genética , Vacinas Virais/genética , Proteínas do Envelope Viral , Anticorpos Antivirais , Sus scrofa , Diarreia
5.
Vet Res ; 54(1): 90, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845739

RESUMO

Vaccination with E2 subunit vaccines is currently the main measure to control classical swine fever virus (CSFV), which is an endemic disease, and detection of antibodies against CSFV E2 is the most effective way to evaluate herd immunity. In the present study, the E2 protein was expressed by a baculovirus expression system, and two monoclonal antibodies (mAbs), namely, 3A9 and 4F7, were successfully produced using techniques for the isolation of single B cells from splenocytes from mice immunized with the E2 protein. Moreover, two linear B-cell epitopes, 25GLTTTWKEYSHDLQL39 and 259GNTTVKVHASDERGP273, reactive to 3A9 and 4F7, respectively, were identified using epitope mapping of the E2 protein. In addition, the diagnostic performance of the two mAbs was evaluated using blocking enzyme-linked immunosorbent assay (bELISA), and the results showed that the two mAbs had high diagnostic specificity (96.08%, 94.38%) and diagnostic sensitivity (97.49%, 95.97%). Together, these findings identify two ideal candidate peptides and matching mAbs for a new method of CSFV diagnosis, which will contribute to the control and eradication of classical swine fever.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Camundongos , Anticorpos Antivirais , Peste Suína Clássica/prevenção & controle , Linfócitos B , Anticorpos Monoclonais , Proteínas do Envelope Viral
6.
J Virol ; 97(10): e0111523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796122

RESUMO

IMPORTANCE: Of the flaviviruses, only CSFV and bovine viral diarrhea virus express Npro as the non-structural protein which is not essential for viral replication but functions to dampen host innate immunity. We have deciphered a novel mechanism with which CSFV uses to evade the host antiviral immunity by the N-terminal domain of its Npro to facilitate proteasomal degradation of Sp1 with subsequent reduction of HDAC1 and ISG15 expression. This is distinct from earlier findings involving Npro-mediated IRF3 degradation via the C-terminal domain. This study provides insights for further studies on how HDAC1 plays its role in antiviral immunity, and if and how other viral proteins, such as the core protein of CSFV, the nucleocapsid protein of porcine epidemic diarrhea virus, or even other coronaviruses, exert antiviral immune responses via the Sp1-HDAC1 axis. Such research may lead to a deeper understanding of viral immune evasion strategies as part of their pathogenetic mechanisms.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Endopeptidases , Histona Desacetilase 1 , Imunidade Inata , Complexo de Endopeptidases do Proteassoma , Fator de Transcrição Sp1 , Proteínas Virais , Animais , Peste Suína Clássica/imunologia , Peste Suína Clássica/metabolismo , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/enzimologia , Vírus da Febre Suína Clássica/imunologia , Vírus da Febre Suína Clássica/metabolismo , Vírus da Febre Suína Clássica/patogenicidade , Endopeptidases/química , Endopeptidases/metabolismo , Histona Desacetilase 1/biossíntese , Histona Desacetilase 1/metabolismo , Fator Regulador 3 de Interferon , Proteínas do Nucleocapsídeo/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fator de Transcrição Sp1/metabolismo , Suínos/virologia , Proteínas do Core Viral/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Ubiquitinas/metabolismo , Citocinas/metabolismo , Vírus da Diarreia Epidêmica Suína/imunologia , Vírus da Diarreia Epidêmica Suína/metabolismo , Domínios Proteicos
7.
Viruses ; 15(9)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766367

RESUMO

SERINC5 is a restriction factor that becomes incorporated into nascent retroviral particles, impairing their ability to infect target cells. In turn, retroviruses have evolved countermeasures against SERINC5. For instance, the primate lentiviruses (HIV and SIV) use Nef, Moloney Murine Leukemia Virus (MLV) uses GlycoGag, and Equine Infectious Anemia Virus (EIAV) uses S2 to remove SERINC5 from the plasma membrane, preventing its incorporation into progeny virions. Recent studies have shown that SERINC5 also restricts other viruses, such as Hepatitis B Virus (HBV) and Classical Swine Fever Virus (CSFV), although through a different mechanism, suggesting that SERINC5 can interfere with multiple stages of the virus life cycle. To investigate whether SERINC5 can also impact other steps of the replication cycle of HIV, the effects of SERINC5 on viral transcripts, proteins, and virus progeny size were studied. Here, we report that SERINC5 causes significant defects in HIV gene expression, which impacts virion production. While the underlying mechanism is still unknown, we found that the restriction occurs at the transcriptional level and similarly affects plasmid and non-integrated proviral DNA (ectopic or non-self-DNA). However, SERINC5 causes no defects in the expression of viral RNA, host genes, or proviral DNA that is integrated in the cellular genome. Hence, our findings reveal that SERINC5's actions in host defense extend beyond blocking virus entry.


Assuntos
Vírus da Febre Suína Clássica , Infecções por HIV , Animais , Suínos , Cavalos , Camundongos , Antivirais , DNA , Membrana Celular , Provírus , Retroviridae
8.
Plant Biotechnol J ; 21(12): 2546-2559, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37572354

RESUMO

Pestiviruses, including classical swine fever virus, remain a concern for global animal health and are responsible for major economic losses of livestock worldwide. Despite high levels of vaccination, currently available commercial vaccines are limited by safety concerns, moderate efficacy, and required high doses. The development of new vaccines is therefore essential. Vaccine efforts should focus on optimizing antigen presentation to enhance immune responses. Here, we describe a simple herringbone-dimer strategy for efficient vaccine design, using the classical swine fever virus E2 expressed in a rice endosperm as an example. The expression of rE2 protein was identified, with the rE2 antigen accumulating to 480 mg/kg. Immunological assays in mice, rabbits, and pigs showed high antigenicity of rE2. Two immunizations with 284 ng of the rE2 vaccine or one shot with 5.12 µg provided effective protection in pigs without interference from pre-existing antibodies. Crystal structure and small-angle X-ray scattering results confirmed the stable herringbone dimeric conformation, which had two fully exposed duplex receptor binding domains. Our results demonstrated that rice endosperm is a promising platform for precise vaccine design, and this strategy can be universally applied to other Flaviviridae virus vaccines.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Oryza , Vacinas Virais , Animais , Suínos , Coelhos , Camundongos , Peste Suína Clássica/prevenção & controle , Anticorpos Antivirais , Proteínas do Envelope Viral , Imunidade
9.
Vet Microbiol ; 284: 109814, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37356277

RESUMO

C-strain, also known as the HCLV strain, is a well-known live attenuated vaccine against classical swine fever (CSF), a devastating disease caused by classical swine fever virus (CSFV). Vaccination with C-strain induces a rapid onset of protection, which is associated with virus-specific gamma interferon (IFN-γ)-secreting CD8+ T cell responses. The E2 protein of CSFV is a major protective antigen. However, the T cell epitopes on the E2 protein remain largely unknown. In this study, eight overlapping nonapeptides of the E2 protein were predicted and synthesized to screen for potential T cell epitopes on the CSFV C-strain E2 protein. Molecular docking was performed on the candidate epitopes with the swine leukocyte antigen-1*0401. The analysis obtained two highly conserved T cell epitopes, 90STEEMGDDF98 and 331ATDRHSDYF339, which were further identified by enzyme-linked immunospot assay. Interestingly, the mutants deleting or substituting the epitopes are nonviable. Further analysis demonstrated that 90STEEMGDDF98 is crucial for the E2 homodimerization, while CSFV infection is significantly inhibited by the 331ATDRHSDYF339 peptide treatment. The two novel T cell epitopes can be used to design new vaccines that are able to provide rapid-onset protection.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Vírus da Febre Suína Clássica/genética , Epitopos de Linfócito T , Simulação de Acoplamento Molecular , Peste Suína Clássica/prevenção & controle , Proteínas do Envelope Viral/genética , Linfócitos T CD8-Positivos , Interferon gama , Anticorpos Antivirais
10.
J Virol ; 97(5): e0036423, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37255314

RESUMO

Classical swine fever virus (CSFV) is a highly pathogenic RNA virus belonging to the Flaviviridae family that can cause deadly classical swine fever (CSF) in pigs. However, the molecular details of virus replication in the host are still unclear. Our previous studies have reported that several Rab proteins mediate CSFV entry into host cells, but it is unknown whether CSFV hijacks other Rab proteins for effective viral infection. Here, we systematically studied the role of Rab14 protein in regulating lipid metabolism for promoting viral assembly. First, Rab14 knockdown and overexpression significantly affected CSFV replication, indicating the essential role of Rab14 in CSFV infection. Interestingly, Rab14 could significantly affect virus replication in the late stage of infection. Mechanistically, CSFV NS5A recruited Rab14 to the ER, followed by ceramide transportation to the Golgi apparatus, where sphingomyelin was synthesized. The experimental data of small molecule inhibitors, RNA interference, and replenishment assay showed that the phosphatidylinositol-3-kinase (PI3K)/AKT/AS160 signaling pathway regulated the function of Rab14 to affect the transport of ceramide. More importantly, sphingomyelin on the Golgi apparatus contributed to the assembly of viral particles. Blockage of the Rab14 regulatory pathway induced the reduction of the content of sphingomyelin on the Golgi apparatus, impairing the assembly of virus particles. Our study clarifies that Rab14 regulates lipid metabolism and promotes CSFV replication, which provides insight into a novel function of Rab14 in regulating vesicles to transport lipids to the viral assembly factory. IMPORTANCE The Rab protein family members participate in the viral replication of multiple viruses and play important roles in the virus infection cycle. Our previous research focused on Rab5/7/11, which regulated the trafficking of vesicles in the early stage of CSFV infection, especially in viral endocytosis. However, the role of other Rab proteins in CSFV replication is unclear and needs further clarification. Strikingly, we screened some Rabs and found the important role of Rab14 in CSFV infection. Virus infection mobilized Rab14 to regulate the vesicle to transport ceramide from the ER to the Golgi apparatus, further promoting the synthesis of sphingomyelin and facilitating virus assembly. The treatment of inhibitors showed that the lipid transport mediated by Rab14 was regulated by the PI3K/AKT/AS160 signaling pathway. Knockdown of Rab14 or the treatment with PI3K/AKT/AS160 inhibitors reduced the ceramide content in infected cells and hindered virus assembly. Our study is the first to explain that vesicular lipid transport regulated by Rab promotes CSFV assembly, which is conducive to the development of antiviral drugs.


Assuntos
Ceramidas , Vírus da Febre Suína Clássica , Proteínas Monoméricas de Ligação ao GTP , Montagem de Vírus , Animais , Ceramidas/metabolismo , Peste Suína Clássica , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/fisiologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esfingomielinas/metabolismo , Suínos , Replicação Viral
11.
Viruses ; 15(5)2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37243123

RESUMO

The E2 glycoprotein is one of the four structural proteins of the classical swine fever virus (CSFV) particle. E2 has been shown to be involved in many virus functions, including adsorption to host cells, virus virulence and interaction with several host proteins. Using a yeast two-hybrid screen, we have previously shown that the CSFV E2 specifically interacts with swine host protein medium-chain-specific acyl-Coenzyme A dehydrogenase (ACADM), an enzyme that catalyzes the initial step of the mitochondrial fatty acid beta-oxidation pathway. Here, we show that interaction between ACADM and E2 also happens in swine cells infected with CSFV using two different procedures: coimmunoprecipitation and a proximity ligation assay (PLA). In addition, the amino acid residues in E2 critically mediating the interaction with ACADM, M49 and P130 were identified via a reverse yeast two-hybrid screen using an expression library composed of randomly mutated versions of E2. A recombinant CSFV, E2ΔACADMv, harboring substitutions at residues M49I and P130Q in E2, was developed via reverse genomics from the highly virulent Brescia isolate. E2ΔACADMv was shown to have the same kinetics growth in swine primary macrophages and SK6 cell cultures as the parental Brescia strain. Similarly, E2ΔACADMv demonstrated a similar level of virulence when inoculated to domestic pigs as the parental Brescia. Animals intranasally inoculated with 105 TCID50 developed a lethal form of clinical disease with virological and hematological kinetics changes undistinguishable from those produced by the parental strain. Therefore, interaction between CSFV E2 and host ACADM is not critically involved in the processes of virus replication and disease production.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Suínos , Animais , Vírus da Febre Suína Clássica/fisiologia , Saccharomyces cerevisiae/metabolismo , Linhagem Celular , Proteínas do Envelope Viral/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular
12.
Virus Res ; 331: 199111, 2023 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-37062496

RESUMO

Pseudorabies (PR) and classical swine fever (CSF) are economically important infectious diseases in pigs. Most pig farms in China are vaccinated against these two diseases. Gene-deleted pseudorabies virus (PRV) can be used to develop promising and economical multivalent live attenuated viral vector vaccines. It has been reported that recombinant PRV can express a truncated E2 protein (1-338 aa), but it has not been reported that recombinant PRV can express a full-length E2 protein. We constructed nine groups of E2 proteins with different expression forms and found that the E2 protein could be expressed in vitro only when the transmembrane region of E2 was removed and the signal peptide was added. Analysis of the transmembrane region of E2 revealed that the high hydrophobicity of the E2 transmembrane region was the main reason for its inability to express. By mutating an amino acid to reduce the hydrophobicity of the transmembrane region, it was found that the full-length mutant of E2 (E2FL-muta3 or E2FL-muta4) could be expressed. The expressed full-length mutant E2 could also localize to the cell membrane. Mice immunized with a PRV vector vaccine expressing E2FL-muta3 or E2FL-muta4 developed specific cellular immunity to the E2 protein and stimulated higher levels of E2 antibody than mice immunized with a PRV vector expressing truncated E2. After immunizing the rabbits, the lethal challenge by PRV-ZJ2013 and the febrile response elicited by CSFV were simultaneously prevented. These results suggest that rPRV-dTK/gE-E2FL-muta4 is a promising bivalent vaccine against CSFV and PRV infections.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Vacinas Virais , Animais , Suínos , Camundongos , Coelhos , Herpesvirus Suídeo 1/genética , Vírus da Febre Suína Clássica/genética , Aminoácidos/genética , Vacinas Virais/genética , Anticorpos Antivirais , Imunização , Pseudorraiva/prevenção & controle , Mutação , Proteínas do Envelope Viral/genética
13.
Viruses ; 15(4)2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37112845

RESUMO

Neutralizing antibodies (nAbs) can be used before or after infection to prevent or treat viral diseases. However, there are few efficacious nAbs against classical swine fever virus (CSFV) that have been produced, especially the porcine-originated nAbs. In this study, we generated three porcine monoclonal antibodies (mAbs) with in vitro neutralizing activity against CSFV, aiming to facilitate the development of passive antibody vaccines or antiviral drugs against CSFV that offer the advantages of stability and low immunogenicity. Pigs were immunized with the C-strain E2 (CE2) subunit vaccine, KNB-E2. At 42 days post vaccination (DPV), CE2-specific single B cells were isolated via fluorescent-activated cell sorting (FACS) baited by Alexa Fluor™ 647-labeled CE2 (positive), goat anti-porcine IgG (H + L)-FITC antibody (positive), PE mouse anti-pig CD3ε (negative) and PE mouse anti-pig CD8a (negative). The full coding region of IgG heavy (H) chains and light (L) chains was amplified by reverse transcription-polymerase chain reaction (RT-PCR). Overall, we obtained 3 IgG H chains, 9 kappa L chains and 36 lambda L chains, which include three paired chains (two H + κ and one H + λ). CE2-specific mAbs were successfully expressed in 293T cells with the three paired chains. The mAbs exhibit potent neutralizing activity against CSFVs. They can protect ST cells from infections in vitro with potent IC50 values from 14.43 µg/mL to 25.98 µg/mL for the CSFV C-strain, and 27.66 µg/mL to 42.61 µg/mL for the CSFV Alfort strain. This study is the first report to describe the amplification of whole-porcine IgG genes from single B cells of KNB-E2-vaccinated pig. The method is versatile, sensitive, and reliable. The generated natural porcine nAbs can be used to develop long-acting and low-immunogenicity passive antibody vaccine or anti-CSFV agents for CSF control and prevention.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Vacinas Virais , Suínos , Animais , Camundongos , Vírus da Febre Suína Clássica/genética , Anticorpos Monoclonais , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunoglobulina G , Proteínas do Envelope Viral/genética
14.
Vaccine ; 41(12): 2003-2012, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36803898

RESUMO

To develop the new classical swine fever (CSF) vaccine candidate with differentiating infected vaccinated animals (DIVA) characteristics, a chimeric CSF virus (CSFV) was constructed based on an infectious cDNA clone of the CSF vaccine C-strain. The 5'- and 3'-untranslated regions (UTRs) and partial E2 region (residues 690-860) of the C-strain were substituted with the corresponding regions of bovine viral diarrhoea virus (BVDV) to construct the chimeric cDNA clone pC/bUTRs-tE2. The chimeric virus rC/bUTRs-tE2 was generated by several passages of pC/bUTRs-tE2-transfected PK15 cells. Stable growth and genetic properties of rC/bUTRs-tE2 were obtained after 30 serial passages. Compared to parental rC/bUTRs-tE2 (1st passage), two residue mutations (M834K and M979K) located in E2 in rC/bUTRs-tE2 P30 were observed. Compared to the C-strain, rC/bUTRs-tE2 exhibited unchanged cell tropism and decreased plaque-forming ability. Substituting the C-strain UTRs with the BVDV UTRs resulted in significantly increased viral replication in PK15 cells. Compared to CSFV Erns-positive and BVDV tE2-negative antibody responses induced by the CSF vaccine C-strain, immunization of rabbits and piglets with rC/bUTRs-tE2 resulted in serological profiles of CSFV Erns- and BVDV tE2-positive antibodies, which are used to serologically discriminate pigs that are clinically infected and vaccinated. Vaccination of piglets with rC/bUTRs-tE2 conferred complete protection against lethal CSFV challenge. Our results suggest that rC/bUTRs-tE2 is a promising new CSF marker vaccine candidate.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Vírus da Diarreia Viral Bovina , Vacinas Virais , Animais , Suínos , Coelhos , Peste Suína Clássica/prevenção & controle , DNA Complementar , Vacinas Virais/genética , Vírus da Febre Suína Clássica/genética , Vacinação , Anticorpos Antivirais , Proteínas do Envelope Viral/genética
15.
Vaccine ; 41(9): 1573-1583, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36725430

RESUMO

Large quantities of antigens are required since protective antigens, such as classical swine fever virus (CSFV) E2 protein, are widely used in diagnostic reagents and subunit vaccines. Compared to clonal cell lines and transient gene expression, stable cell pools provide a potential alternative platform to rapidly produce large amounts of antigens. In this work, firstly, Human embryonic kidney 293 T (HEK293T) cell pools expressing E2 protein were developed by transduction of lentiviral vectors. On the one hand, the SP7 was selected from 7 well-performing signal peptides to remarkably increase the production of E2 protein. On the other hand, it was found that high MOI could improve the expression of E2 protein by increasing gene copy numbers. Moreover, the HEK293T cell pools were evaluated for stability by passages and batch cultures, demonstrating that the cell pools were stable for at least 90 days. And then, the performance of the cell pools in batch, fed-batch, and semi-perfusion was studied. Among them, the titer of E2 protein was up to 2 g/L in semi-perfusion, which is currently the highest to the authors' knowledge. Finally, the aggregations and immunogenicity of the E2 protein were analyzed by SDS-PAGE and immunization of mice, respectively. There was no significant difference in aggregations and antibody titers of E2 protein in three culture methods. These results suggest that stable HEK293T cell pools are a promising and robust platform for rapid and efficient production of recombinant proteins.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Vacinas Virais , Suínos , Humanos , Animais , Camundongos , Células HEK293 , Proteínas do Envelope Viral , Proteínas Recombinantes , Imunização , Rim , Peste Suína Clássica/prevenção & controle , Anticorpos Antivirais
16.
BMC Vet Res ; 19(1): 14, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658569

RESUMO

BACKGROUND: Classical swine fever and porcine reproductive and respiratory syndrome have seriously affected the development of the swine breeding industry in China. Vaccine immunization remains the main way to prevent these infections. The aim of this study was to establish an optimized protocol for vaccine immunization against classical swine fever virus (CSFV) and porcine reproductive and respiratory syndrome virus (PRRSV). METHODS: Blood samples were collected from the anterior vena cava of pigs after immunization, and blood indices, secreted levels of specific antibodies and neutralizing antibodies associated with humoral immunity, the proliferation capacity of T lymphocytes as a measure of cellular immunity, and secreted levels of IFN-γ and TNF-α were determined. RESULTS: The results showed that simultaneous immunization against CSFV and PRRSV infections induced strong and specific humoral and T-cellular immune responses, high levels of cytokine IFN-γ secretion and delayed secretion of cytokine TNF-α. Moreover, significantly higher lymphocyte percentages and red blood cell and leukocyte counts were found in the group simultaneously immunized against CSFV and PRRSV. However, no statistically significant differences were observed in hemoglobin values, neutrophil counts, and median cell percentages among the S + PRRS, PRRS-S, and S-PRRS groups. CONCLUSION: This study demonstrated that simultaneous immunization against CSFV and PRRSV had the advantages of inducing a rapid, enhanced, and long-lasting immune response. These findings provide a theoretical basis for the establishment of a reasonable and optimized vaccine immunization protocol against CSFV and PRRSV in combination with a variety of other vaccine inoculations.


Assuntos
Peste Suína Clássica , Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Peste Suína Clássica/prevenção & controle , Vírus da Febre Suína Clássica , Citocinas , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Doenças dos Suínos/prevenção & controle , Fator de Necrose Tumoral alfa , Vacinação/métodos , Vacinação/veterinária
17.
J Virol ; 97(1): e0192922, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602362

RESUMO

Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is an important and highly infectious pig disease worldwide. Kinesin-1, a molecular motor responsible for transporting cargo along the microtubule, has been demonstrated to be involved in the infections of diverse viruses. However, the role of kinesin-1 in the CSFV life cycle remains unknown. Here, we first found that Kif5B played a positive role in CSFV entry by knockdown or overexpression of Kif5B. Subsequently, we showed that Kif5B was associated with the endosomal and lysosomal trafficking of CSFV in the early stage of CSFV infection, which was reflected by the colocalization of Kif5B and Rab7, Rab11, or Lamp1. Interestingly, trichostatin A (TSA) treatment promoted CSFV proliferation, suggesting that microtubule acetylation facilitated CSFV endocytosis. The results of chemical inhibitors and RNA interference showed that Rac1 and Cdc42 induced microtubule acetylation after CSFV infection. Furthermore, confocal microscopy revealed that cooperation between Kif5B and dynein help CSFV particles move in both directions along microtubules. Collectively, our study shed light on the role of kinesin motor Kif5B in CSFV endocytic trafficking, indicating the dynein/kinesin-mediated bidirectional CSFV movement. The elucidation of this study provides the foundation for developing CSFV antiviral drugs. IMPORTANCE The minus end-directed cytoplasmic dynein and the plus end-directed kinesin-1 are the molecular motors that transport cargo on microtubules in intracellular trafficking, which plays a notable role in the life cycles of diverse viruses. Our previous studies have reported that the CSFV entry host cell is dependent on the microtubule-based motor dynein. However, little is known about the involvement of kinesin-1 in CSFV infection. Here, we revealed the critical role of kinesin-1 that regulated the viral endocytosis along acetylated microtubules induced by Cdc42 and Rac1 after CSFV entry. Mechanistically, once CSFV transported by dynein met an obstacle, it recruited kinesin-1 to move in reverse to the anchor position. This study extends the theoretical basis of intracellular transport of CSFV and provides a potential target for the control and treatment of CSFV infection.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Cinesinas , Animais , Vírus da Febre Suína Clássica/fisiologia , Dineínas/metabolismo , Endocitose , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Microtúbulos/virologia , Suínos , Internalização do Vírus , Replicação Viral/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico
18.
Antiviral Res ; 211: 105548, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702445

RESUMO

Pseudorabies (PR) and classical swine fever (CSF) are economically important infectious diseases of pigs. Most pig farms in China are immunized against these two diseases. Here, we describe a stabilized E2 protein as an immunogen inserted into the PRV genome as a bivalent live virus-vectored vaccine. The E2 protein has 48 variant sites, there are 2-5 candidate amino acids per variant site, and the relative energy contribution of each amino acid to E2 energy was calculated. Combined substitutions of amino acids at the neighbor variant site (neighbor substitution) were performed to obtain the E2 protein sequence with the lowest energy (stabilized E2). Multiple amino acid substitutions at 48 variant sites were performed, and the results were consistent with neighbor substitutions. The stabilized E2 sequence was obtained, and its energy decreased by 22 Rosetta Energy Units (REUs) compared with the original sequence. After the recombinant PRV expressing stabilized E2 of CSFV was constructed, the secretion efficiency of stabilized E2 was increased by 2.97 times, and the thermal stability was increased by 10.5 times. Immunization of mice resulted in a 2-fold increase in antibody production, and a balanced antibody level against subtype 1.1 and subtype 2.1d E2 was achieved. In rabbits immunized, the lethal challenge of PRV-ZJ and the fever response induced by CSFV could be prevented simultaneously. These findings suggest that rPRV-muta/287aaE2 is a promising bivalent vaccine against CSFV and PRV infections.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Herpesvirus Suídeo 1 , Pseudorraiva , Vacinas Virais , Coelhos , Animais , Suínos , Camundongos , Vírus da Febre Suína Clássica/genética , Herpesvirus Suídeo 1/genética , Pseudorraiva/prevenção & controle , Aminoácidos , Proteínas do Envelope Viral/genética , Anticorpos Antivirais
19.
Viruses ; 16(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38257738

RESUMO

African swine fever (ASF) is a highly contagious disease caused by African swine fever virus (ASFV), affecting domestic and wild boars. The polyprotein pp220 of ASFV is responsible for producing the major structural proteins p150, p37, p14, p34, and p5 via proteolytic processing. The p34 protein is the main component of the ASFV core shell. However, the immunologic properties of the p34 protein in vitro and in vivo remain unclear. The results showed that the recombinant p34 protein expressed in prokaryotes and eukaryotes could react with convalescent swine sera to ASFV, suggesting that p34 is an immunogenic protein. Significantly, anti-p34 antibodies were found to inhibit the replication of ASFV in target cells. Furthermore, rabbits immunized with the recombinant C-strain of classical swine fever virus containing p34 produced both anti-p34 humoral and cellular immune responses. In addition, the p34 protein could induce a cell-mediated immune response, and a T-cell epitope on the p34 protein was identified using immunoinformatics and enzyme-linked immunospot (ELIspot) assay. Our study demonstrates that the p34 protein is a novel antigen of ASFV with protective potential.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vírus da Febre Suína Clássica , Animais , Coelhos , Suínos , Antígenos Virais , Febre Suína Africana/prevenção & controle , Poliproteínas
20.
Virulence ; 13(1): 1720-1740, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36205528

RESUMO

The host restriction factor serine incorporator 5 (SERINC5) plays a key role in inhibiting viral activity and has been shown to inhibit classical swine fever virus (CSFV) infection. However, the action of SERINC5 in the interaction between host cells and CSFV remains poorly understood. This study found that SERINC5 represses CSFV-induced autophagy through MAPK1/3-mTOR and AKT-mTOR signalling pathways. Further research showed that SERINC5 promotes apoptosis by repressing autophagy. Likewise, it was demonstrated that SERINC5 interacting proteins IFITM1/2/3 inhibit CSFV replication and regulate autophagy in a lysosomal-associated membrane protein LAMP1-dependent manner. In addition, IFITM1/2/3 interference promotes the NF-κB signalling pathway for potential immunoregulation by inhibiting autophagy. Finally, the functional silencing of IFITM1/2/3 genes was demonstrated to enhance the inhibitory effect of SERINC5 on autophagy. Taken together, These data uncover a novel mechanism through SERINC5 and its interacting proteins IFITM1/2/3, which mediates CSFV replication, and provides new avenues for controlling CSFV.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Animais , Apoptose , Autofagia , Linhagem Celular , Vírus da Febre Suína Clássica/fisiologia , Proteínas de Membrana Lisossomal/farmacologia , NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Serina , Suínos , Serina-Treonina Quinases TOR , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA