Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2824: 397-408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039426

RESUMO

The NSs protein is a major virulence factor in bunyaviruses, crucial for viral pathogenesis. However, assessing NSs protein function can be challenging due to its inhibition of cellular RNA polymerase II, impacting NSs protein expression from plasmid DNA. The recombinant Rift Valley fever virus (RVFV) MP-12 strain (rMP-12), a highly attenuated vaccine strain, can be safely manipulated under biosafety level 2 conditions. Leveraging a reverse genetics system, we can engineer rMP-12 variants expressing heterologous NSs genes, enabling functional testing in cultured cells. Human macrophages hold a central role in viral pathogenesis, making them an ideal model for assessing NSs protein functions. Consequently, we can comprehensively compare and analyze the functional significance of various NSs proteins in human macrophages using rMP-12 NSs variants. In this chapter, we provide a detailed overview of the preparation process for rMP-12 NSs variants and introduce two distinct human macrophage models: THP-1 cells and primary macrophages. This research framework promises valuable insights into the virulence mechanisms of RVFV and other bunyaviruses and the potential for vaccine development.


Assuntos
Macrófagos , Vírus da Febre do Vale do Rift , Proteínas não Estruturais Virais , Humanos , Macrófagos/virologia , Macrófagos/imunologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/patogenicidade , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Células THP-1
2.
Methods Mol Biol ; 2824: 121-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039410

RESUMO

The Rift Valley fever virus (RVFV), transmitted through mosquito bites, leads to severe illness in humans and livestock throughout Africa and the Arabian Peninsula, causing significant morbidity and mortality. As of now, there are no verified and efficacious drugs or licensed vaccines accessible for the prevention or treatment of RVFV infections in both humans and livestock. The mature RVFV virion has two envelope proteins on its surface: glycoprotein N (GN) and glycoprotein C (GC). These proteins play a significant role in facilitating the virus's entry into the host cell, making them prominent targets for entry mechanism research as well as targets for drugs and vaccine development. The initial stage in obtaining atomic-resolution structural and mechanistic information on viral entry as well as developing biochemical and biophysical research tools involves recombinant protein production. In this chapter, we describe a simplified and scalable protocol facilitating the generation of high-quality, high-titer baculovirus virus for expression and purification of RVFV GC, utilizing the baculovirus-mediated expression system in insect cells.


Assuntos
Baculoviridae , Proteínas Recombinantes , Vírus da Febre do Vale do Rift , Proteínas do Envelope Viral , Baculoviridae/genética , Animais , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/isolamento & purificação , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Vírus da Febre do Vale do Rift/genética , Células Sf9 , Expressão Gênica , Humanos , Vetores Genéticos/genética , Clonagem Molecular/métodos
3.
Viruses ; 15(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38005861

RESUMO

Rift Valley fever virus (RVFV) is considered to be a high biodefense priority based on its threat to livestock and its ability to cause human hemorrhagic fever. RVFV-infected livestock are also a significant risk factor for human infection by direct contact with contaminated blood, tissues, and aborted fetal materials. Therefore, livestock vaccination in the affected regions has the direct dual benefit and one-health approach of protecting the lives of millions of animals and eliminating the risk of severe and sometimes lethal human Rift Valley fever (RVF) disease. Recently, we have developed a bovine herpesvirus type 1 (BoHV-1) quadruple gene mutant virus (BoHV-1qmv) vector that lacks virulence and immunosuppressive properties due to the deletion of envelope proteins UL49.5, glycoprotein G (gG), gE cytoplasmic tail, and US9 coding sequences. In the current study, we engineered the BoHV-1qmv further by incorporating a chimeric gene sequence to express a proteolytically cleavable polyprotein: RVFV envelope proteins Gn ectodomain sequence fused with bovine granulocyte-macrophage colony-stimulating factor (GMCSF) and Gc, resulting in a live BoHV-1qmv-vectored subunit vaccine against RVFV for livestock. In vitro, the resulting recombinant virus, BoHV-1qmv Sub-RVFV, was replicated in cell culture with high titers. The chimeric Gn-GMCSF and Gc proteins expressed by the vaccine virus formed the Gn-Gc complex. In calves, the BoHV-1qmv Sub-RVFV vaccination was safe and induced moderate levels of the RVFV vaccine strain, MP12-specific neutralizing antibody titers. Additionally, the peripheral blood mononuclear cells from the vaccinated calves had six-fold increased levels of interferon-gamma transcription compared with that of the BoHV-1qmv (vector)-vaccinated calves when stimulated with heat-inactivated MP12 antigen in vitro. Based on these findings, we believe that a single dose of BoHV-1qmv Sub-RVFV vaccine generated a protective RVFV-MP12-specific humoral and cellular immune response. Therefore, the BoHV-1qmv sub-RVFV can potentially be a protective subunit vaccine for cattle against RVFV.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vacinas Virais , Animais , Bovinos , Humanos , Vírus da Febre do Vale do Rift/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Leucócitos Mononucleares , Imunidade Celular , Vacinas Atenuadas/genética , Vacinas de Subunidades Antigênicas
4.
Front Immunol ; 13: 907675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439179

RESUMO

Rift Valley fever virus (RVFV) is one of the most important virulent pathogens causing severe disease in animals and humans. However, there is currently no approved vaccine to prevent RVFV infection in humans. The use of human adenovirus serotype 4 (Ad4) as a vector for an RVFV vaccine has not been reported. Here, we report the generation of a replication-competent recombinant Ad4 vector expressing codon-optimized forms of the RVFV glycoproteins Gn and Gc (named Ad4-GnGc). Intramuscular immunization with Ad4-GnGc elicited robust neutralizing antibodies against RVFV and cellular immune responses in mice. A single low-dose vaccination with Ad4-GnGc completely protected interferon-α/ß receptor-deficient A129 mice from lethal RVFV infection. More importantly, Ad4-GnGc efficacy was not affected by pre-existing immunity to adenovirus serotype 5, which currently exists widely in populations. These results suggest that Ad4-GnGc is a promising vaccine candidate against RVFV.


Assuntos
Infecções por Adenoviridae , Vacinas contra Adenovirus , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vacinas Virais , Camundongos , Humanos , Animais , Vírus da Febre do Vale do Rift/genética , Febre do Vale de Rift/prevenção & controle , Adenoviridae/genética
5.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293352

RESUMO

Rift Valley fever (RVF) is a zoonotic and emerging disease, caused by the RVF virus (RVFV). In ruminants, it leads to "abortion storms" and enhanced mortality rates in young animals, whereas in humans it can cause symptoms like severe hemorrhagic fever or encephalitis. The role of the innate and adaptive immune response in disease initiation and progression is still poorly defined. The present study used the attenuated RVFV strain clone 13 to investigate viral spread, tissue tropism, and histopathological lesions after intranasal infection in C57BL/6 wild type (WT) and type I interferon (IFN-I) receptor I knockout (IFNAR-/-) mice. In WT mice, 104 PFU RVFV (high dose) resulted in a fatal encephalitis, but no hepatitis 7-11 days post infection (dpi), whereas 103 PFU RVFV (low dose) did not cause clinical disease or significant histopathological lesions in liver and the central nervous system (CNS). In contrast, IFNAR-/- mice infected with 103 PFU RVFV developed hepatocellular necrosis resulting in death at 2-5 dpi and lacked encephalitis. These results show that IFNAR signaling prevents systemic spread of the attenuated RVFV strain clone 13, but not the dissemination to the CNS and subsequent fatal disease. Consequently, neurotropic viruses may be able to evade antiviral IFN-I signaling pathways by using the transneuronal instead of the hematogenous route.


Assuntos
Carcinoma Hepatocelular , Encefalite , Interferon Tipo I , Neoplasias Hepáticas , Vírus da Febre do Vale do Rift , Humanos , Animais , Camundongos , Vírus da Febre do Vale do Rift/genética , Receptor de Interferon alfa e beta/genética , Camundongos Endogâmicos C57BL , Antivirais , Necrose
6.
Cancer Gene Ther ; 29(10): 1477-1486, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35393569

RESUMO

One of the greatest challenges in the treatment of cancer is tumor heterogeneity which results in differential responses to chemotherapy and drugs that work through a single pathway. A therapeutic agent that targets cancer cells for death through multiple mechanisms could be advantageous as a broad inhibitor for many types of cancers and the heterogeneous alterations they possess. Several viral proteins have been exploited for antiproliferative and apoptotic effect in cancer cells by disrupting critical survival pathways. Here, we report the use of the non-structural protein on the S segment (NSs) gene from the Rift Valley fever virus (RVFV) to induce cancer cell death. NSs has immune evasion functions in the context of RVFV with many of these functions affecting proliferation pathways and DNA damage signaling, which could be leveraged against cancer cells. We find that expression of NSs in multiple cancer cell lines leads to a rapid decline in cell viability and induction of apoptosis. Interestingly, we observed reduced toxicity in normal cells suggesting cancer cells may be more susceptible to NSs-mediated cell death. To enhance specificity of NSs for use in hepatocellular carcinoma, we incorporated four miR-122 binding sites in the 3' untranslated region (UTR) of the NSs mRNA to achieve cell type specific expression. Observations presented here collectively suggest that delivery of the NSs gene may provide a unique therapeutic approach in a broad range of cancers.


Assuntos
MicroRNAs , Neoplasias , Vírus da Febre do Vale do Rift , Regiões 3' não Traduzidas , Animais , Genes Neoplásicos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/terapia , Vírus da Febre do Vale do Rift/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
7.
Viruses ; 14(2)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35215938

RESUMO

Rift Valley fever (RVF) is a zoonotic disease caused by RVF Phlebovirus (RVFV). The RVFV MP-12 vaccine strain is known to exhibit residual virulence in the case of a deficient interferon type 1 response. The hypothesis of this study is that virus replication and severity of lesions induced by the MP-12 strain in immunocompromised mice depend on the specific function of the disturbed pathway. Therefore, 10 strains of mice with deficient innate immunity (B6-IFNARtmAgt, C.129S7(B6)-Ifngtm1Ts/J, B6-TLR3tm1Flv, B6-TLR7tm1Aki, NOD/ShiLtJ), helper T-cell- (CD4tm1Mak), cytotoxic T-cell- (CD8atm1Mak), B-cell- (Igh-Jtm1DhuN?+N2), combined T- and B-cell- (NU/J) and combined T-, B-, natural killer (NK) cell- and macrophage-mediated immunity (NOD.Cg-PrkdcscidIl2rgtm1WjI/SzJ (NSG) mice) were subcutaneously infected with RVFV MP-12. B6-IFNARtmAgt mice were the only strain to develop fatal disease due to RVFV-induced severe hepatocellular necrosis and apoptosis. Notably, no clinical disease and only mild multifocal hepatocellular necrosis and apoptosis were observed in NSG mice, while immunohistochemistry detected the RVFV antigen in the liver and the brain. No or low virus expression and no lesions were observed in the other mouse strains. Conclusively, the interferon type 1 response is essential for early control of RVFV replication and disease, whereas functional NK cells, macrophages and lymphocytes are essential for virus clearance.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/fisiologia , Animais , Apoptose , Feminino , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Fígado/imunologia , Fígado/virologia , Macrófagos/imunologia , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Febre do Vale de Rift/genética , Febre do Vale de Rift/fisiopatologia , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/virologia
8.
Virology ; 567: 65-76, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032865

RESUMO

Rift Valley fever virus (RVFV) is an arbovirus that was first reported in the Rift Valley of Kenya which causes significant disease in humans and livestock. RVFV is a tri-segmented, negative-sense RNA virus consisting of a L, M, and S segments with the M segment encoding the glycoproteins Gn and Gc. Host factors that interact with Gn are largely unknown. To this end, two viruses containing an epitope tag (V5) on the Gn protein in position 105 or 229 (V5Gn105 and V5Gn229) were generated using the RVFV MP-12 vaccine strain as a backbone. The V5-tag insertion minimally impacted Gn functionality as measured by replication kinetics, Gn localization, and antibody neutralization assays. A proteomics-based approach was used to identify novel Gn-binding host proteins, including the E3 ubiquitin-protein ligase, UBR4. Depletion of UBR4 resulted in a significant decrease in RVFV titers and a reduction in viral RNA production.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Interações Hospedeiro-Patógeno/genética , Vírus da Febre do Vale do Rift/genética , Ubiquitina-Proteína Ligases/genética , Proteínas do Envelope Viral/genética , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Culex , Epitopos/química , Epitopos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Hepatócitos/virologia , Humanos , Ligação Proteica , Vírus da Febre do Vale do Rift/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Proteínas do Envelope Viral/metabolismo , Replicação Viral
9.
Biomolecules ; 11(10)2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34680060

RESUMO

Many biological and biotechnological processes are controlled by protein-protein and protein-solvent interactions. In order to understand, predict, and optimize such processes, it is important to understand how solvents affect protein structure during protein-solvent interactions. In this study, all-atom molecular dynamics are used to investigate the structural dynamics and energetic properties of a C-terminal domain of the Rift Valley Fever Virus L protein solvated in glycerol and aqueous glycerol solutions in different concentrations by molecular weight. The Generalized Amber Force Field is modified by including restrained electrostatic potential atomic charges for the glycerol molecules. The peptide is considered in detail by monitoring properties like the root-mean-squared deviation, root-mean-squared fluctuation, radius of gyration, hydrodynamic radius, end-to-end distance, solvent-accessible surface area, intra-potential energy, and solvent-peptide interaction energies for hundreds of nanoseconds. Secondary structure analysis is also performed to examine the extent of conformational drift for the individual helices and sheets. We predict that the peptide helices and sheets are maintained only when the modeling strategy considers the solvent with lower glycerol concentration. We also find that the solvent-peptide becomes more cohesive with decreasing glycerol concentrations. The density and radial distribution function of glycerol solvent calculated when modeled with the modified atomic charges show a very good agreement with experimental results and other simulations at 298.15K.


Assuntos
Glicerol/química , Vírus da Febre do Vale do Rift/ultraestrutura , Proteínas Virais/ultraestrutura , Água/química , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Peptídeos/química , Domínios Proteicos/genética , Estrutura Secundária de Proteína , Vírus da Febre do Vale do Rift/química , Vírus da Febre do Vale do Rift/genética , Solventes/química , Proteínas Virais/química , Proteínas Virais/genética
10.
J Virol ; 95(14): e0042921, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33952635

RESUMO

Rift Valley fever phlebovirus (RVFV) has a single-stranded, negative-sense RNA genome, consisting of L, M, and S segments. The virion carries two envelope glycoproteins, Gn and Gc, along with ribonucleoprotein complexes (RNPs), composed of encapsidated genomes carrying N protein and the viral polymerase, L protein. A quantitative analysis of the profile of viral RNA segments packaged into RVFV particles showed that all three genomic RNA segments had similar packaging abilities, whereas among antigenomic RNA segments, the antigenomic S RNA, which serves as the template for the transcription of mRNA expressing the RVFV virulence factor, NSs, displayed a significantly higher packaging ability. To delineate the factor(s) governing the packaging of RVFV RNA segments, we characterized the interactions between Gn and viral RNPs in RVFV-infected cells. Coimmunoprecipitation analysis demonstrated the interaction of Gn with N protein, L protein, and viral RNAs in RVFV-infected cells. Furthermore, UV-cross-linking and immunoprecipitation analysis revealed, for the first time in bunyaviruses, the presence of a direct interaction between Gn and all the viral RNA segments in RVFV-infected cells. Notably, analysis of the ability of Gn to bind to RVFV RNA segments indicated a positive correlation with their respective packaging abilities and highlighted a binding preference of Gn for antigenomic S RNA, among the antigenomic RNA segments, suggesting the presence of a selection mechanism for antigenomic S RNA incorporation into infectious RVFV particles. Collectively, the results of our study illuminate the importance of a direct interaction between Gn and viral RNA segments in determining their efficiency of incorporation into RVFV particles. IMPORTANCE Rift Valley fever phlebovirus, a bunyavirus, is a mosquito-borne, segmented RNA virus that can cause severe disease in humans and ruminants. An essential step in RVFV life cycle is the packaging of viral RNA segments to produce infectious virus particles for dissemination to new hosts. However, there are key gaps in knowledge regarding the mechanisms that regulate viral RNA packaging efficiency in bunyaviruses. Our studies investigating the mechanism of RNA packaging in RVFV revealed the presence of a direct interaction between the viral envelope glycoprotein, Gn, and the viral RNA segments in infected cells, for the first time in bunyaviruses. Furthermore, our data strongly indicate a critical role for the direct interaction between Gn and viral RNAs in determining the efficiency of incorporation of viral RNA segments into RVFV particles. Clarifying the fundamental mechanisms of RNA packaging in RVFV would be valuable for the development of antivirals and live-attenuated vaccines.


Assuntos
RNA Viral , Vírus da Febre do Vale do Rift/genética , Empacotamento do Genoma Viral , Sequência de Empacotamento Viral , Vírion/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Ribonucleoproteínas/metabolismo , Células Vero , Proteínas do Envelope Viral/genética
11.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374561

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-transmitted virus from the Bunyaviridae family that causes high rates of mortality and morbidity in humans and ruminant animals. Previous studies indicated that DEAD-box helicase 17 (DDX17) restricts RVFV replication by recognizing two primary non-coding RNAs in the S-segment of the genome: the intergenic region (IGR) and 5' non-coding region (NCR). However, we lack molecular insights into the direct binding of DDX17 with RVFV non-coding RNAs and information on the unwinding of both non-coding RNAs by DDX17. Therefore, we performed an extensive biophysical analysis of the DDX17 helicase domain (DDX17135-555) and RVFV non-coding RNAs, IGR and 5' NCR. The homogeneity studies using analytical ultracentrifugation indicated that DDX17135-555, IGR, and 5' NCR are pure. Next, we performed small-angle X-ray scattering (SAXS) experiments, which suggested that DDX17 and both RNAs are homogenous as well. SAXS analysis also demonstrated that DDX17 is globular to an extent, whereas the RNAs adopt an extended conformation in solution. Subsequently, microscale thermophoresis (MST) experiments were performed to investigate the direct binding of DDX17 to the non-coding RNAs. The MST experiments demonstrated that DDX17 binds with the IGR and 5' NCR with a dissociation constant of 5.77 ± 0.15 µM and 9.85 ± 0.11 µM, respectively. As DDX17135-555 is an RNA helicase, we next determined if it could unwind IGR and NCR. We developed a helicase assay using MST and fluorescently-labeled oligos, which suggested DDX17135-555 can unwind both RNAs. Overall, our study provides direct evidence of DDX17135-555 interacting with and unwinding RVFV non-coding regions.


Assuntos
RNA Helicases DEAD-box/metabolismo , Interações Hospedeiro-Patógeno , RNA não Traduzido , RNA Viral , Febre do Vale de Rift/metabolismo , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Trifosfato de Adenosina , Animais , RNA Helicases DEAD-box/química , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Relação Estrutura-Atividade
12.
Biotechnol Lett ; 42(4): 529-536, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31983039

RESUMO

OBJECTIVES: The aim of the current study was to develop biodegradable alginate (ALG)/poly-L-lysine (PLL) microcapsules (MC) with entrapped plasmids expressing Gn and Gc glycoproteins of Rift Valley Fever virus (RVFV) and to evaluate the humoral immune response in mice. RESULTS: Expressing phRVF/Gn and phRVF/Gc plasmids which encode full-sized Gn and Gc glycoproteins and contain signal fusion protein F sequences of human parainfluenza (HPIV-1) were constructed. To protect the plasmids from cleavage by extracellular nucleases, they were entrapped into multilayer ALG/PLL microcapsules by layer-by-layer technique. To study the efficacy of humoral immune response, both native and microencapsulated plasmids were injected intramuscular into BALB/c mice. The humoral response in the mice immunized with free plasmids was characterized by virus-neutralizing antibody induction (with titres 1:4 to 1:8), while the injection of microencapsulated plasmids allowed to increase the titre level (from 1:16 to 1:32). CONCLUSION: The plasmids microencapsulated in biodegradable MC could be promising for development of DNA vaccines against RVFV.


Assuntos
Anticorpos Neutralizantes/metabolismo , Vetores Genéticos/administração & dosagem , Glicoproteínas/imunologia , Vírus da Febre do Vale do Rift/metabolismo , Alginatos/química , Animais , Anticorpos Antivirais/metabolismo , Cápsulas , Feminino , Vetores Genéticos/imunologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Imunidade Humoral , Imunização , Injeções Intramusculares , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/genética , Polilisina/análogos & derivados , Polilisina/química , Vírus da Febre do Vale do Rift/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
13.
Biotechnol J ; 14(4): e1800238, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30488669

RESUMO

Rift Valley fever virus (RVFV) is an emerging mosquito-borne virus and hemorrhagic fever agent, which causes abortion storms in farmed small ruminants and potentially causes miscarriages in humans. Although live-attenuated vaccines are available for animals, they can only be used in endemic areas and there are currently no commercially available vaccines for humans. Here the authors describe the production of chimaeric RVFV virus-like particles transiently expressed in Nicotiana benthamiana by Agrobacterium tumefaciens-mediated gene transfer. The glycoprotein (Gn) gene is modified by removing its ectodomain (Gne) and fusing it to the transmembrane domain and cytosolic tail-encoding region of avian influenza H5N1 hemagglutinin. This is expressed transiently in N. benthamiana with purified protein yields calculated to be ≈57 mg kg-1 fresh weight. Transmission electron microscopy shows putative chimaeric RVFV Gne-HA particles of 49-60 nm which are immunogenic, eliciting Gn-specific antibody responses in vaccinated mice without the use of adjuvant. To our knowledge, this is the first demonstration of the synthesis of Gne-HA chimaeric RVFV VLPs and the first demonstration of a detectable yield of RVFV Gn in plants.


Assuntos
Formação de Anticorpos/imunologia , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Culicidae/virologia , Feminino , Glicoproteínas/química , Glicoproteínas/imunologia , Humanos , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/patogenicidade , Nicotiana/química , Nicotiana/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/química , Vacinas Virais/genética , Vacinas Virais/imunologia
14.
BMC Biotechnol ; 18(1): 77, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30537953

RESUMO

BACKGROUND: Rift Valley fever virus (RVFV), the causative agent of Rift Valley fever, is an enveloped single-stranded negative-sense RNA virus in the genus Phlebovirus, family Bunyaviridae. The virus is spread by infected mosquitoes and affects ruminants and humans, causing abortion storms in pregnant ruminants, high neonatal mortality in animals, and morbidity and occasional fatalities in humans. The disease is endemic in parts of Africa and the Arabian Peninsula, but is described as emerging due to the wide range of mosquitoes that could spread the disease into non-endemic regions. There are different tests for determining whether animals are infected with or have been exposed to RVFV. The most common serological test is antibody ELISA, which detects host immunoglobulins M or G produced specifically in response to infection with RVFV. The presence of antibodies to RVFV nucleocapsid protein (N-protein) is among the best indicators of RVFV exposure in animals. This work describes an investigation of the feasibility of producing a recombinant N-protein in Nicotiana benthamiana and using it in an ELISA. RESULTS: The human-codon optimised RVFV N-protein was successfully expressed in N. benthamiana via Agrobacterium-mediated infiltration of leaves. The recombinant protein was detected as monomers and dimers with maximum protein yields calculated to be 500-558 mg/kg of fresh plant leaves. The identity of the protein was confirmed by liquid chromatography-mass spectrometry (LC-MS) resulting in 87.35% coverage, with 264 unique peptides. Transmission electron microscopy revealed that the protein forms ring structures of ~ 10 nm in diameter. Preliminary data revealed that the protein could successfully differentiate between sera of RVFV-infected sheep and from sera of those not infected with the virus. CONCLUSIONS: To the best of our knowledge this is the first study demonstrating the successful production of RVFV N-protein as a diagnostic reagent by Agrobacterium-mediated transient heterologous expression in N. benthamiana. Preliminary testing of the antigen showed its ability to distinguish RVFV-positive animal sera from RVFV negative animal sera when used in an enzyme linked immunosorbent assay (ELISA). The cost-effective, scalable and simple production method has great potential for use in developing countries where rapid diagnosis of RVFV is necessary.


Assuntos
Antígenos Virais/genética , Nicotiana/genética , Proteínas do Nucleocapsídeo/genética , Febre do Vale de Rift/diagnóstico , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/metabolismo , Doenças dos Ovinos/diagnóstico , Animais , Antígenos Virais/sangue , Antígenos Virais/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Expressão Gênica , Proteínas do Nucleocapsídeo/sangue , Proteínas do Nucleocapsídeo/metabolismo , Febre do Vale de Rift/sangue , Febre do Vale de Rift/virologia , Ovinos , Doenças dos Ovinos/sangue , Doenças dos Ovinos/virologia , Nicotiana/metabolismo
15.
Virus Res ; 249: 31-44, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29530722

RESUMO

The NSs protein encoded by the S segment of Rift Valley fever virus (RVFV) is the major virulence factor, counteracting the host innate antiviral defence. It contains five highly conserved cysteine residues at positions 39, 40, 149, 178 and 194, which are thought to stabilize the tertiary and quaternary structure of the protein. Here, we report significant differences between clinical, virological, histopathological and host gene responses in BALB/c mice infected with wild-type RVFV (wtRVFV) or a genetic mutant having a double cysteine-to-serine substitution at residues 39 and 40 of the NSs protein (RVFV-C39S/C40S). Mice infected with the wtRVFV developed a fatal acute disease; characterized by high levels of viral replication, severe hepatocellular necrosis, and massive up-regulation of transcription of genes encoding type I and -II interferons (IFN) as well as pro-apoptotic and pro-inflammatory cytokines. The RVFV-C39S/C40S mutant did not cause clinical disease and its attenuated virulence was consistent with virological, histopathological and host gene expression findings in BALB/c mice. Clinical signs in mice infected with viruses containing cysteine-to-serine substitutions at positions 178 or 194 were similar to those occurring in mice infected with the wtRVFV, while a mutant containing a substitution at position 149 caused mild, non-fatal disease in mice. As mutant RVFV-C39S/C40S showed an attenuated phenotype in mice, the molecular mechanisms behind this attenuation were further investigated. The results show that two mechanisms are responsible for the attenuation; (1) loss of the IFN antagonistic propriety characteristic of the wtRVFV NSs and (2) the inability of the attenuated mutant to degrade Proteine Kinase R (PKR).


Assuntos
Interações Hospedeiro-Patógeno , Proteínas Mutantes/metabolismo , Vírus da Febre do Vale do Rift/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Fatores de Virulência/metabolismo , Substituição de Aminoácidos , Animais , Cisteína/genética , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Febre do Vale de Rift/patologia , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Proteínas não Estruturais Virais/genética , Virulência , Fatores de Virulência/genética
16.
Sci Rep ; 7(1): 14385, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29085037

RESUMO

Rift Valley fever virus (RVFV) causes major outbreaks among livestock, characterized by "abortion storms" in which spontaneous abortion occurs in almost 100% of pregnant ruminants. Humans can also become infected with mild symptoms that can progress to more severe symptoms, such as hepatitis, encephalitis, and hemorrhagic fever. The goal of this study was to use RNA-sequencing (RNA-seq) to analyze the host transcriptome in response to RVFV infection. G2/M DNA damage checkpoint, ATM signaling, mitochondrial dysfunction, regulation of the antiviral response, and integrin-linked kinase (ILK) signaling were among the top altered canonical pathways with both the attenuated MP12 strain and the fully virulent ZH548 strain. Although several mRNA transcripts were highly upregulated, an increase at the protein level was not observed for the selected genes, which was at least partially due to the NSs dependent block in mRNA export. Inhibition of ILK signaling, which is involved in cell motility and cytoskeletal reorganization, resulted in reduced RVFV replication, indicating that this pathway is important for viral replication. Overall, this is the first global transcriptomic analysis of the human host response following RVFV infection, which could give insight into novel host responses that have not yet been explored.


Assuntos
Febre do Vale de Rift/genética , Técnicas de Cultura de Células , Pontos de Checagem do Ciclo Celular , Células Epiteliais , Humanos , Proteínas Serina-Treonina Quinases , RNA Mensageiro/genética , Febre do Vale de Rift/metabolismo , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/patogenicidade , Análise de Sequência de RNA , Transdução de Sinais , Transcriptoma/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia
17.
Science ; 358(6363): 663-667, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29097548

RESUMO

The Rift Valley fever virus (RVFV) is transmitted by infected mosquitoes, causing severe disease in humans and livestock across Africa. We determined the x-ray structure of the RVFV class II fusion protein Gc in its postfusion form and in complex with a glycerophospholipid (GPL) bound in a conserved cavity next to the fusion loop. Site-directed mutagenesis and molecular dynamics simulations further revealed a built-in motif allowing en bloc insertion of the fusion loop into membranes, making few nonpolar side-chain interactions with the aliphatic moiety and multiple polar interactions with lipid head groups upon membrane restructuring. The GPL head-group recognition pocket is conserved in the fusion proteins of other arthropod-borne viruses, such as Zika and chikungunya viruses, which have recently caused major epidemics worldwide.


Assuntos
Membrana Celular/virologia , Glicerofosfolipídeos/química , Vírus da Febre do Vale do Rift/química , Proteínas Virais de Fusão/química , Sequência de Aminoácidos , Animais , Vírus Chikungunya/química , Vírus Chikungunya/ultraestrutura , Colesterol/química , Sequência Conservada , Cristalografia por Raios X , Humanos , Gado/virologia , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/ultraestrutura , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/ultraestrutura , Zika virus/química , Zika virus/ultraestrutura
18.
Virol J ; 14(1): 154, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28807043

RESUMO

Rift Valley fever virus (RVFV) is an arthropod-borne bunyavirus that can cause serious and fatal disease in humans and animals. RVFV is a negative-sense RNA virus of the Phlebovirus genus in the Bunyaviridae family. The main envelope RVFV glycoproteins, Gn and Gc, are encoded on the M segment of RVFV and known inducers of protective immunity. In an attempt to develop a safe and efficacious RVF vaccine, we constructed and tested a vectored equine herpesvirus type 1 (EHV-1) vaccine that expresses RVFV Gn and Gc. The Gn and Gc genes were custom-synthesized after codon optimization and inserted into EHV-1 strain RacH genome. The rH_Gn-Gc recombinant virus grew in cultured cells with kinetics that were comparable to those of the parental virus and stably expressed Gn and Gc. Upon immunization of sheep, the natural host, neutralizing antibodies against RVFV were elicited by rH_Gn-Gc and protective titers reached to 1:320 at day 49 post immunization but not by parental EHV-1, indicating that EHV-1 is a promising vector alternative in the development of a safe marker RVFV vaccine.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vetores Genéticos , Herpesvirus Equídeo 1/genética , Vírus da Febre do Vale do Rift/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/genética , Ovinos , Doenças dos Ovinos/prevenção & controle , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
19.
Viruses ; 8(5)2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27223297

RESUMO

Rift Valley fever is a mosquito-transmitted, zoonotic disease that infects humans and ruminants. Dendritic cell specific intercellular adhesion molecule 3 (ICAM-3) grabbing non-integrin (DC-SIGN) acts as a receptor for members of the phlebovirus genus. The Rift Valley fever virus (RVFV) glycoproteins (Gn/Gc) encode five putative N-glycan sequons (asparagine (N)-any amino acid (X)-serine (S)/threonine (T)) at positions: N438 (Gn), and N794, N829, N1035, and N1077 (Gc). The N-glycosylation profile and significance in viral infection via DC-SIGN have not been elucidated. Gc N-glycosylation was first evaluated by using Gc asparagine (N) to glutamine (Q) mutants. Subsequently, we generated a series of recombinant RVFV MP-12 strain mutants, which encode N-to-Q mutations, and the infectivity of each mutant in Jurkat cells stably expressing DC-SIGN was evaluated. Results showed that Gc N794, N1035, and N1077 were N-glycosylated but N829 was not. Gc N1077 was heterogeneously N-glycosylated. RVFV Gc made two distinct N-glycoforms: "Gc-large" and "Gc-small", and N1077 was responsible for "Gc-large" band. RVFV showed increased infection of cells expressing DC-SIGN compared to cells lacking DC-SIGN. Infection via DC-SIGN was increased in the presence of either Gn N438 or Gc N1077. Our study showed that N-glycans on the Gc and Gn surface glycoproteins redundantly support RVFV infection via DC-SIGN.


Assuntos
Moléculas de Adesão Celular/metabolismo , Glicoproteínas/metabolismo , Lectinas Tipo C/metabolismo , Polissacarídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Vírus da Febre do Vale do Rift/fisiologia , Proteínas Estruturais Virais/metabolismo , Ligação Viral , Substituição de Aminoácidos , Glicoproteínas/genética , Humanos , Células Jurkat , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Vírus da Febre do Vale do Rift/genética , Proteínas Estruturais Virais/genética
20.
Sci Rep ; 6: 20617, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26847478

RESUMO

Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A 'One Health' vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replication-deficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs.


Assuntos
Vacinas contra Adenovirus/administração & dosagem , Anticorpos Neutralizantes/metabolismo , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/metabolismo , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas contra Adenovirus/farmacologia , Animais , Camelus , Bovinos , Cabras , Humanos , Pan troglodytes/imunologia , Pan troglodytes/virologia , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/imunologia , Arábia Saudita/epidemiologia , Ovinos , Reino Unido/epidemiologia , Vacinação , Vacinas Sintéticas/administração & dosagem , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA