Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Virol ; 97(4): e0181422, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36939341

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes severe and potentially fatal hemorrhagic fever in humans. Autophagy is a self-degradative process that can restrict viral replication at multiple infection steps. In this study, we evaluated the effects of RVFV-triggered autophagy on viral replication and immune responses. Our results showed that RVFV infection triggered autophagosome formation and induced complete autophagy. Impairing autophagy flux by depleting autophagy-related gene 5 (ATG5), ATG7, or sequestosome 1 (SQSTM1) or treatment with autophagy inhibitors markedly reduced viral RNA synthesis and progeny virus production. Mechanistically, our findings demonstrated that the RVFV nucleoprotein (NP) C-terminal domain interacts with the autophagy receptor SQSTM1 and promotes the SQSTM1-microtubule-associated protein 1 light chain 3 B (LC3B) interaction and autophagy. Deletion of the NP C-terminal domain impaired the interaction between NP and SQSTM1 and its ability to trigger autophagy. Notably, RVFV-triggered autophagy promoted viral infection in macrophages but not in other tested cell types, including Huh7 hepatocytes and human umbilical vein endothelial cells, suggesting cell type specificity of this mechanism. It was further revealed that RVFV NP-triggered autophagy dampens antiviral innate immune responses in infected macrophages to promote viral replication. These results provide novel insights into the mechanisms of RVFV-triggered autophagy and indicate the potential of targeting the autophagy pathway to develop antivirals against RVFV. IMPORTANCE We showed that RVFV infection induced the complete autophagy process. Depletion of the core autophagy genes ATG5, ATG7, or SQSTM1 or pharmacologic inhibition of autophagy in macrophages strongly suppressed RVFV replication. We further revealed that the RVFV NP C-terminal domain interacted with SQSTM1 and enhanced the SQSTM1/LC3B interaction to promote autophagy. RVFV NP-triggered autophagy strongly inhibited virus-induced expression of interferon-stimulated genes in infected macrophages but not in other tested cell types. Our study provides novel insights into the mechanisms of RVFV-triggered autophagy and highlights the potential of targeting autophagy flux to develop antivirals against this virus.


Assuntos
Autofagia , Imunidade Inata , Nucleoproteínas , Vírus da Febre do Vale do Rift , Imunidade Inata/imunologia , Vírus da Febre do Vale do Rift/imunologia , Nucleoproteínas/imunologia , Nucleoproteínas/metabolismo , Autofagia/imunologia , Replicação Viral , Linhagem Celular , Febre do Vale de Rift/imunologia , Humanos , Animais , Macrófagos/virologia
2.
J Virol ; 95(23): e0150621, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495703

RESUMO

Rift Valley fever virus (RVFV) is an arbovirus found throughout Africa. It causes disease that is typically mild and self-limiting; however, some infected individuals experience severe manifestations, including hepatitis, encephalitis, or even death. Reports of RVFV encephalitis are notable among immunosuppressed individuals, suggesting a role for adaptive immunity in preventing this severe complication. This phenomenon has been modeled in C57BL/6 mice depleted of CD4 T cells prior to infection with DelNSs RVFV (RVFV containing a deletion of nonstructural protein NSs), resulting in late-onset encephalitis accompanied by high levels of viral RNA in the brain in 30% of animals. In this study, we sought to define the specific type(s) of CD4 T cells that mediate protection from RVFV encephalitis. The viral epitopes targeted by CD4 and CD8 T cells were defined in C57BL/6 mice, and tetramers for both CD4 and CD8 T cells were generated. RVFV-specific CD8 T cells were expanded and of a cytotoxic and proliferating phenotype in the liver following infection. RVFV-specific CD4 T cells were identified in the liver and spleen following infection and phenotyped as largely Th1 or Tfh subtypes. Knockout mice lacking various aspects of pathways important in Th1 and Tfh development and function were used to demonstrate that T-bet, CD40, CD40L, and major histocompatibility complex class II (MHC-II) mediated protection from RVFV encephalitis, while gamma interferon (IFN-γ) and interleukin-12 (IL-12) were dispensable. Virus-specific antibody responses correlated with protection from encephalitis in all mouse strains, suggesting that Tfh/B cell interactions modulate clinical outcome in this model. IMPORTANCE The prevention of RVFV encephalitis requires intact adaptive immunity. In this study, we developed reagents to detect RVFV-specific T cells and provide evidence for Tfh cells and CD40/CD40L interactions as critical mediators of this protection.


Assuntos
Antígenos CD40 , Ligante de CD40 , Encefalite Viral/prevenção & controle , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/fisiologia , Linfócitos T/imunologia , África , Animais , Formação de Anticorpos , Linfócitos B/imunologia , Encéfalo/virologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Encefalite Viral/imunologia , Encefalite Viral/virologia , Epitopos , Feminino , Fígado/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Sci Rep ; 11(1): 9822, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972596

RESUMO

Rift Valley fever phlebovirus (RVFV, Phenuiviridae) is an emerging arbovirus that can cause potentially fatal disease in many host species including ruminants and humans. Thus, tools to detect this pathogen within tissue samples from routine diagnostic investigations or for research purposes are of major interest. This study compares the immunohistological usefulness of several mono- and polyclonal antibodies against RVFV epitopes in tissue samples derived from natural hosts of epidemiologic importance (sheep), potentially virus transmitting insect species (Culex quinquefasciatus, Aedes aegypti) as well as scientific infection models (mouse, Drosophila melanogaster, C6/36 cell pellet). While the nucleoprotein was the epitope most prominently detected in mammal and mosquito tissue samples, fruit fly tissues showed expression of glycoproteins only. Antibodies against non-structural proteins exhibited single cell reactions in salivary glands of mosquitoes and the C6/36 cell pellet. However, as single antibodies exhibited a cross reactivity of varying degree in non-infected specimens, a careful interpretation of positive reactions and consideration of adequate controls remains of critical importance. The results suggest that primary antibodies directed against viral nucleoproteins and glycoproteins can facilitate RVFV detection in mammals and insects, respectively, and therefore will allow RVFV detection for diagnostic and research purposes.


Assuntos
Anticorpos Antivirais/isolamento & purificação , Imuno-Histoquímica/métodos , Febre do Vale de Rift/diagnóstico , Vírus da Febre do Vale do Rift/isolamento & purificação , Aedes/virologia , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Reações Cruzadas , Culex/virologia , Modelos Animais de Doenças , Drosophila melanogaster/virologia , Epitopos/imunologia , Estudos de Viabilidade , Feminino , Humanos , Camundongos , Mosquitos Vetores/virologia , Proteínas do Nucleocapsídeo , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/imunologia , Células Vero , Proteínas do Envelope Viral/imunologia
4.
Monoclon Antib Immunodiagn Immunother ; 40(2): 60-64, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33900823

RESUMO

The DNA fragment encoding predicted main antigenic region, aa 14-245 on N protein of Rift Valley virus (RVFV) was cloned into the vector pET-28a (+) and p3xFLAG-CMV-10. The recombinant pET-28a-N1 protein was expressed in Escherichia coli BL21 (DE3) with 1 mM isopropyl-b-thio-galactopyranoside at 37°C for 5 hours, and purified by protein purifier. Three monoclonal antibodies (mAbs) named 3A5, 3A6, and 3A7 against N protein were obtained by fusing mouse myeloma cell line SP2/0 with spleen lymphocytes from pET-28a-N1 protein-immunized mice. Finally, the mAbs were characterized by enzyme-linked immunosorbent assays, indirect immunofluorescent assays, and Western blot. The results show that all the mAbs possess high specificity and react with both prokaryotic and eukaryotic N protein, which could provide important materials for the research on the function of N protein and the diagnostic methods of RVFV.


Assuntos
Anticorpos Monoclonais/imunologia , Proteínas do Nucleocapsídeo/antagonistas & inibidores , Febre do Vale de Rift/terapia , Vírus da Febre do Vale do Rift/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Proteínas do Nucleocapsídeo/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/efeitos dos fármacos , Vírus da Febre do Vale do Rift/patogenicidade
5.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782133

RESUMO

Rift Valley fever virus (RVFV), an emerging arboviral and zoonotic bunyavirus, causes severe disease in livestock and humans. Here, we report the isolation of a panel of monoclonal antibodies (mAbs) from the B cells of immune individuals following natural infection in Kenya or immunization with MP-12 vaccine. The B cell responses of individuals who were vaccinated or naturally infected recognized similar epitopes on both Gc and Gn proteins. The Gn-specific mAbs and two mAbs that do not recognize either monomeric Gc or Gn alone but recognized the hetero-oligomer glycoprotein complex (Gc+Gn) when Gc and Gn were coexpressed exhibited potent neutralizing activities in vitro, while Gc-specific mAbs exhibited relatively lower neutralizing capacity. The two Gc+Gn-specific mAbs and the Gn domain A-specific mAbs inhibited RVFV fusion to cells, suggesting that mAbs can inhibit the exposure of the fusion loop in Gc, a class II fusion protein, and thus prevent fusion by an indirect mechanism without direct fusion loop contact. Competition-binding analysis with coexpressed Gc/Gn and mutagenesis library screening indicated that these mAbs recognize four major antigenic sites, with two sites of vulnerability for neutralization on Gn. In experimental models of infection in mice, representative mAbs recognizing three of the antigenic sites reduced morbidity and mortality when used at a low dose in both prophylactic and therapeutic settings. This study identifies multiple candidate mAbs that may be suitable for use in humans against RVFV infection and highlights fusion inhibition against bunyaviruses as a potential contributor to potent antibody-mediated neutralization.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Febre do Vale do Rift/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Epitopos/química , Epitopos/imunologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Vero , Proteínas Virais de Fusão/química
6.
Viruses ; 12(3)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120864

RESUMO

The Rift Valley fever virus (RVFV) is an arthropod-borne virus that can not only cause severe disease in domestic animals but also in humans. However, the licensed vaccines or available therapeutics for humans do not exist. Here, we report two Gn-specific neutralizing antibodies (NAbs), isolated from a rhesus monkey immunized with recombinant human adenoviruses type 4 expressing Rift Valley fever virus Gn and Gc protein (rHAdV4-GnGcopt). The two NAbs were both able to protect host cells from RVFV infection. The interactions between NAbs and Gn were then characterized to demonstrate that these two NAbs might preclude RVFV glycoprotein rearrangement, hindering the exposure of fusion loops in Gc to endosomal membranes after the virus invades the host cell. The target region for the two NAbs is located in the Gn domain III, implying that Gn is a desired target for developing vaccines and neutralizing antibodies against RVFV.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/química , Anticorpos Antivirais/sangue , Anticorpos Antivirais/química , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Epitopos , Humanos , Imunização , Macaca mulatta , Modelos Moleculares , Conformação Molecular , Testes de Neutralização , Ligação Proteica , Febre do Vale de Rift/virologia , Relação Estrutura-Atividade , Proteínas do Envelope Viral/química
7.
PLoS Pathog ; 15(6): e1007833, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31220182

RESUMO

Rift Valley fever virus (RVFV) causes severe disease in livestock concurrent with zoonotic transmission to humans. A subset of people infected with RVFV develop encephalitis, and significant gaps remain in our knowledge of how RVFV causes pathology in the brain. We previously found that, in Lewis rats, subcutaneous inoculation with RVFV resulted in subclinical disease while inhalation of RVFV in a small particle aerosol caused fatal encephalitis. Here, we compared the disease course of RVFV in Lewis rats after each different route of inoculation in order to understand more about pathogenic mechanisms of fatal RVFV encephalitis. In aerosol-infected rats with lethal encephalitis, neutrophils and macrophages were the major cell types infiltrating the CNS, and this was concomitant with microglia activation and extensive cytokine inflammation. Despite this, prevention of neutrophil infiltration into the brain did not ameliorate disease. Unexpectedly, in subcutaneously-inoculated rats with subclinical disease, detectable viral RNA was found in the brain along with T-cell infiltration. This study sheds new light on the pathogenic mechanisms of RVFV encephalitis.


Assuntos
Encéfalo/imunologia , Encefalite Viral/imunologia , Macrófagos/imunologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/imunologia , Aerossóis , Animais , Encéfalo/patologia , Encéfalo/virologia , Linhagem Celular , Citocinas/imunologia , Encefalite Viral/patologia , Feminino , Humanos , Macrófagos/patologia , Neutrófilos/patologia , Ratos , Ratos Endogâmicos Lew , Febre do Vale de Rift/patologia
8.
Hum Vaccin Immunother ; 15(10): 2286-2294, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31170027

RESUMO

Rift Valley fever virus (RVFV), a recognized category A priority pathogen, causes large outbreaks of Rift Valley fever with some fatalities in humans in humans and huge economic losses in livestock. As wild-type RVFV must be handled in BSL-3 or BSL-4 laboratories, we constructed a high-titer vesicular stomatitis virus (VSV) pseudotype bearing RVFV envelope glycoproteins to detect neutralizing antibodies in vitro under BSL-2 conditions. The neutralizing properties of 39 amino acid mutant sites that have occurred naturally over time in the RVFV envelope glycoproteins were analyzed with their corresponding pseudoviral mutants separately. Compared with the results in the primary strain, the variants showed no statistically significant differences. We next established a Balb/c mouse pseudovirus infection model for detecting neutralizing antibodies against pseudovirus. Five immunizations with pseudoviral DNA protected the mice from infection with the pseudovirus. Bioluminescence imaging, which we used to evaluate viral dissemination and distribution in the mice, showed a good relationship between the neutralizing antibodies titers in vitro. These pseudovirus methods will allow for the safe determination of neutralizing antibodies in vivo and in vitro, and will assist with studies on vaccines and drugs against RVFV with the long term objective of Rift Valley fever prevention.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Febre do Vale de Rift/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Substituição de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Feminino , Glicoproteínas/genética , Glicoproteínas/imunologia , Cobaias , Células HEK293 , Humanos , Medições Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Mutação , Vírus da Febre do Vale do Rift/imunologia , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/genética , Imagem Corporal Total
9.
Front Immunol ; 10: 860, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105695

RESUMO

The Rift Valley fever virus (RVFV) is responsible for a serious mosquito-borne viral disease in humans and ruminants. The development of a new and safer vaccine is urgently needed due to the risk of introduction of this arbovirus into RVFV-free continents. We recently showed that a DNA vaccine encoding eGn, the ectodomain of the RVFV Gn glycoprotein, conferred a substantial protection in the sheep natural host and that the anti-eGn IgG levels correlated to protection. Addressing eGn to DEC205 reduced the protective efficacy while decreasing the antibody and increasing the IFNγ T cell responses in sheep. In order to get further insight into the involved mechanisms, we evaluated our eGn-encoding DNA vaccine strategy in the reference mouse species. A DNA vaccine encoding eGn induced full clinical protection in mice and the passive transfer of immune serum was protective. This further supports that antibodies, although non-neutralizing in vitro, are instrumental in the protection against RVFV. Addressing eGn to DEC205 was also detrimental to protection in mice, and in this species, both the antibody and the IFNγ T cell responses were strongly decreased. Conversely when using a plasmid encoding a different antigen, i.e., mCherry, DEC205 targeting promoted the antibody response. Altogether our results show that the outcome of targeting antigens to DEC205 depends on the species and on the fused antigen and is not favorable in the case of eGn. In addition, we bring evidences that eGn in itself is a pertinent antigen to be included in a DNA vaccine and that next developments should aim at promoting the anti-eGn antibody response.


Assuntos
Glicoproteínas/imunologia , Imunidade Humoral/imunologia , Vírus da Febre do Vale do Rift/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Células CHO , Linhagem Celular , Cricetulus , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Envelope Viral/imunologia
10.
Nat Microbiol ; 4(7): 1231-1241, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30936489

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne pathogen that causes substantial morbidity and mortality in livestock and humans. To date, there are no licensed human vaccines or therapeutics available. Here, we report the isolation of monoclonal antibodies from a convalescent patient, targeting the RVFV envelope proteins Gn and Gc. The Gn-specific monoclonal antibodies exhibited much higher neutralizing activities in vitro and protection efficacies in mice against RVFV infection, compared to the Gc-specific monoclonal antibodies. The Gn monoclonal antibodies were found to interfere with soluble Gn binding to cells and prevent infection by blocking the attachment of virions to host cells. Structural analysis of Gn complexed with four Gn-specific monoclonal antibodies resulted in the definition of three antigenic patches (A, B and C) on Gn domain I. Both patches A and B are major neutralizing epitopes. Our results highlight the potential of antibody-based therapeutics and provide a structure-based rationale for designing vaccines against RVFV.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Antivirais/administração & dosagem , Chlorocebus aethiops , Cristalografia por Raios X , Epitopos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Domínios Proteicos , Febre do Vale de Rift/imunologia , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Ligação Viral
11.
Biotechnol J ; 14(4): e1800238, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30488669

RESUMO

Rift Valley fever virus (RVFV) is an emerging mosquito-borne virus and hemorrhagic fever agent, which causes abortion storms in farmed small ruminants and potentially causes miscarriages in humans. Although live-attenuated vaccines are available for animals, they can only be used in endemic areas and there are currently no commercially available vaccines for humans. Here the authors describe the production of chimaeric RVFV virus-like particles transiently expressed in Nicotiana benthamiana by Agrobacterium tumefaciens-mediated gene transfer. The glycoprotein (Gn) gene is modified by removing its ectodomain (Gne) and fusing it to the transmembrane domain and cytosolic tail-encoding region of avian influenza H5N1 hemagglutinin. This is expressed transiently in N. benthamiana with purified protein yields calculated to be ≈57 mg kg-1 fresh weight. Transmission electron microscopy shows putative chimaeric RVFV Gne-HA particles of 49-60 nm which are immunogenic, eliciting Gn-specific antibody responses in vaccinated mice without the use of adjuvant. To our knowledge, this is the first demonstration of the synthesis of Gne-HA chimaeric RVFV VLPs and the first demonstration of a detectable yield of RVFV Gn in plants.


Assuntos
Formação de Anticorpos/imunologia , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Culicidae/virologia , Feminino , Glicoproteínas/química , Glicoproteínas/imunologia , Humanos , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/patogenicidade , Nicotiana/química , Nicotiana/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/química , Vacinas Virais/genética , Vacinas Virais/imunologia
12.
Cell Rep ; 25(13): 3750-3758.e4, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30590046

RESUMO

The Gn subcomponent of the Gn-Gc assembly that envelopes the human and animal pathogen, Rift Valley fever virus (RVFV), is a primary target of the neutralizing antibody response. To better understand the molecular basis for immune recognition, we raised a class of neutralizing monoclonal antibodies (nAbs) against RVFV Gn, which exhibited protective efficacy in a mouse infection model. Structural characterization revealed that these nAbs were directed to the membrane-distal domain of RVFV Gn and likely prevented virus entry into a host cell by blocking fusogenic rearrangements of the Gn-Gc lattice. Genome sequence analysis confirmed that this region of the RVFV Gn-Gc assembly was under selective pressure and constituted a site of vulnerability on the virion surface. These data provide a blueprint for the rational design of immunotherapeutics and vaccines capable of preventing RVFV infection and a model for understanding Ab-mediated neutralization of bunyaviruses more generally.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais/farmacologia , Vírus da Febre do Vale do Rift/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/farmacologia , Chlorocebus aethiops , Feminino , Glicoproteínas/química , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Imunização , Imunoglobulina G/metabolismo , Camundongos Endogâmicos BALB C , Modelos Biológicos , Testes de Neutralização , Domínios Proteicos , Coelhos , Proteínas Recombinantes/farmacologia , Vírus da Febre do Vale do Rift/efeitos dos fármacos , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
13.
Virol J ; 14(1): 154, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28807043

RESUMO

Rift Valley fever virus (RVFV) is an arthropod-borne bunyavirus that can cause serious and fatal disease in humans and animals. RVFV is a negative-sense RNA virus of the Phlebovirus genus in the Bunyaviridae family. The main envelope RVFV glycoproteins, Gn and Gc, are encoded on the M segment of RVFV and known inducers of protective immunity. In an attempt to develop a safe and efficacious RVF vaccine, we constructed and tested a vectored equine herpesvirus type 1 (EHV-1) vaccine that expresses RVFV Gn and Gc. The Gn and Gc genes were custom-synthesized after codon optimization and inserted into EHV-1 strain RacH genome. The rH_Gn-Gc recombinant virus grew in cultured cells with kinetics that were comparable to those of the parental virus and stably expressed Gn and Gc. Upon immunization of sheep, the natural host, neutralizing antibodies against RVFV were elicited by rH_Gn-Gc and protective titers reached to 1:320 at day 49 post immunization but not by parental EHV-1, indicating that EHV-1 is a promising vector alternative in the development of a safe marker RVFV vaccine.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vetores Genéticos , Herpesvirus Equídeo 1/genética , Vírus da Febre do Vale do Rift/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/genética , Ovinos , Doenças dos Ovinos/prevenção & controle , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
14.
Vaccine ; 35(35 Pt A): 4461-4464, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28576573

RESUMO

Despite the fact that there had been multiple small outbreaks of Ebola Virus Disease, when a large outbreak occurred in 2014 there were no vaccines or drugs available for use. Clinical development of multiple candidate vaccines was then initiated in parallel with attempts to contain the outbreak but only one vaccine was eventually tested in a phase III trial. In order to be better prepared for future outbreaks of known human pathogens, platform technologies to accelerate vaccine development should be employed, allowing vaccine developers to take advantage of detailed knowledge of the vaccine platform and facilitating rapid progress to clinical trials and eventually to vaccine stockpiles. This review gives an example of one such vaccine platform, replication-deficient simian adenoviruses, and describes progress in human and livestock vaccine development for three outbreak pathogens, Ebola virus, Rift Valley Fever Virus and Middle East Respiratory Syndrome Coronavirus.


Assuntos
Adenovirus dos Símios/fisiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/virologia , Surtos de Doenças/prevenção & controle , Vetores Genéticos/fisiologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Adenovirus dos Símios/genética , África , Animais , Ensaios Clínicos como Assunto , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Ebolavirus/imunologia , Vetores Genéticos/genética , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Replicação Viral
15.
Vector Borne Zoonotic Dis ; 16(8): 550-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27380552

RESUMO

A multiplex fluorescence microsphere immunoassay (FMIA) was used to detect bovine and ovine IgM and IgG antibodies to several Rift Valley fever virus (RVFV) proteins, including the major surface glycoprotein, Gn; the nonstructural proteins, NSs and NSm; and the nucleoprotein, N. Target antigens were assembled into a multiplex and tested in serum samples from infected wild-type RVFV or MP12, a modified live virus vaccine. As expected, the N protein was immunodominant and the best target for early detection of infection. Antibody activity against the other targets was also detected. The experimental results demonstrate the capabilities of FMIA for the detection of antibodies to RVFV structural and nonstructural proteins, which can be applied to future development and validation of diagnostic tests that can be used to differentiate vaccinated from infected animals.


Assuntos
Doenças dos Bovinos/virologia , Imunoensaio/veterinária , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Vírus da Febre do Vale do Rift/imunologia , Doenças dos Ovinos/virologia , Animais , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/sangue , Glicoproteínas/imunologia , Imunoensaio/métodos , Nucleoproteínas/imunologia , Proteínas Recombinantes , Febre do Vale de Rift/sangue , Febre do Vale de Rift/diagnóstico , Febre do Vale de Rift/virologia , Ovinos , Doenças dos Ovinos/sangue , Proteínas não Estruturais Virais/imunologia , Proteínas Estruturais Virais/imunologia
16.
Sci Rep ; 6: 20617, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26847478

RESUMO

Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A 'One Health' vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replication-deficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs.


Assuntos
Vacinas contra Adenovirus/administração & dosagem , Anticorpos Neutralizantes/metabolismo , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/metabolismo , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas contra Adenovirus/farmacologia , Animais , Camelus , Bovinos , Cabras , Humanos , Pan troglodytes/imunologia , Pan troglodytes/virologia , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/imunologia , Arábia Saudita/epidemiologia , Ovinos , Reino Unido/epidemiologia , Vacinação , Vacinas Sintéticas/administração & dosagem , Proteínas do Envelope Viral/imunologia
17.
Am J Trop Med Hyg ; 93(6): 1364-1370, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26458775

RESUMO

In this cross-sectional seroepidemiological study we sought to examine the evidence for circulation of Rift Valley fever virus (RVFV) among herders in Madagascar and Kenya. From July 2010 to June 2012, we enrolled 459 herders and 98 controls (without ruminant exposures) and studied their sera (immunoglobulin G [IgG] and IgM through enzyme-linked immunosorbent assay [ELISA] and plaque reduction neutralization test [PRNT] assays) for evidence of previous RVFV infection. Overall, 59 (12.9%) of 459 herders and 7 (7.1%) of the 98 controls were positive by the IgG ELISA assay. Of the 59 ELISA-positive herders, 23 (38.9%) were confirmed by the PRNT assay (21 from eastern Kenya). Two of the 21 PRNT-positive study subjects also had elevated IgM antibodies against RVFV suggesting recent infection. Multivariate modeling in this study revealed that being seminomadic (odds ratio [OR] = 6.4, 95% confidence interval [CI] = 2.1-15.4) was most strongly associated with antibodies against RVFV. Although we cannot know when these infections occurred, it seems likely that some interepidemic RVFV infections are occurring among herders. As there are disincentives regarding reporting RVFV outbreaks in livestock or wildlife, it may be prudent to conduct periodic, limited, active seroepidemiological surveillance for RVFV infections in herders, especially in eastern Kenya.


Assuntos
Febre do Vale de Rift/epidemiologia , Ruminantes/virologia , Adolescente , Adulto , Animais , Anticorpos Antivirais/imunologia , Ensaio de Imunoadsorção Enzimática , Epidemias/estatística & dados numéricos , Feminino , Humanos , Imunoglobulina M/imunologia , Quênia/epidemiologia , Madagáscar/epidemiologia , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Febre do Vale de Rift/diagnóstico , Febre do Vale de Rift/etiologia , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/fisiologia , Fatores de Risco , Adulto Jovem , Zoonoses/epidemiologia , Zoonoses/virologia
18.
J Virol ; 89(17): 9124-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26085169

RESUMO

Replicon particles of Rift Valley fever virus, referred to as nonspreading Rift Valley fever virus (NSR), are intrinsically safe and highly immunogenic. Here, we demonstrate that NSR-infected human dendritic cells can activate CD8(+) T cells in vitro and that prophylactic and therapeutic vaccinations of mice with NSR encoding a tumor-associated CD8 peptide can control the outgrowth of lymphoma cells in vivo. These results suggest that the NSR system holds promise for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Imunoterapia/métodos , Linfoma/imunologia , Vírus da Febre do Vale do Rift/imunologia , Animais , Vacinas Anticâncer/imunologia , Células Dendríticas/virologia , Epitopos/genética , Epitopos/imunologia , Humanos , Ativação Linfocitária/imunologia , Linfoma/prevenção & controle , Linfoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Vírus da Febre do Vale do Rift/genética , Vacinação , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia
19.
J Gen Virol ; 96(Pt 7): 1651-1663, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25759029

RESUMO

Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection.


Assuntos
Citocinas/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Vírus da Febre do Vale do Rift/imunologia , Animais , Linhagem Celular , Chlorocebus aethiops , Regulação para Baixo , Feminino , Evasão da Resposta Imune , Camundongos Endogâmicos C57BL , Vírus da Febre do Vale do Rift/crescimento & desenvolvimento , Virulência
20.
Arch Virol ; 159(3): 535-46, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24100475

RESUMO

Rift Valley fever virus (RVFV) is a vector-borne virus that causes high neonatal mortality in livestock and deadly haemorrhagic fever in humans. In this paper, we describe the generation of monoclonal antibodies (mabs) against all three structural proteins of RVFV (glycoproteins Gn and Gc and nucleocapsid protein NP). After immunization of BALB/c mice with individual recombinant proteins, a total of 45 clones secreting ELISA-reactive monoclonal antibodies against NP, Gn and Gc epitopes were obtained. Twelve clones were directed to NP, 28 to Gn, and 5 to Gc. Western blot analysis revealed that most of the mabs were reactive to linearized epitopes on recombinant as well as native virus proteins. Six mabs against NP, 21 against Gn and all mabs against Gc also detected conformational epitopes, as shown by indirect immunofluorescence on RVFV-infected cells. All of the mabs were evaluated for their use in a competition enzyme-linked immunosorbent assay (ELISA) for the detection of a RVFV infection. Several mabs were identified that competed with polyclonal rabbit serum, and one of them - mab Gn123, raised against Gn protein - was selected for a proof-of-principle study with field sera from a recent Rift Valley fever outbreak. The novel Gn-based competition ELISA demonstrated high performance, offering a promising alternative and addition to serological assays based on nucleocapsid protein.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais/sangue , Febre do Vale de Rift/diagnóstico , Vírus da Febre do Vale do Rift/imunologia , Proteínas Estruturais Virais/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Antígenos Virais/genética , Antígenos Virais/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vírus da Febre do Vale do Rift/genética , Testes Sorológicos/métodos , Proteínas Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA