RESUMO
The Semliki Forest virus capsid protein (C) is an RNA binding protein which exhibits both specific and unspecific affinities to single-strand nucleic acids. The putative use of the self-amplifying RNAs (saRNAs) of alphaviruses for biotechnological purpose is one of the main studied strategies concerning RNA-based therapies or immunization. In this work, a recombinant C protein from SFV was expressed and purified from bacteria and used to associate in vitro with a saRNA derived from SFV. Results showed that the purified form of C protein can associate with the saRNA even after high temperature treatment. The C protein was associated with a modified saRNA coding for the green fluorescent protein (GFP) and delivered to murine macrophage cells which expressed the GFP, showing that the saRNA was functional after being associated with the recombinant purified C protein.
Assuntos
Proteínas do Capsídeo , Macrófagos , RNA Viral , Proteínas Recombinantes , Vírus da Floresta de Semliki , Vírus da Floresta de Semliki/genética , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Camundongos , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas Recombinantes/genética , RNA Viral/genética , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismoRESUMO
Semliki Forest virus (SFV) viral replicon particles (VRPs) have been frequently used in various animal models and clinical trials. Chimeric replicon particles offer different advantages because of their unique biological properties. We here constructed a novel three-plasmid packaging system for chimeric SFV/SIN VRPs. The capsid and envelope of SIN structural proteins were generated using two-helper plasmids separately, and the SFV replicon contained the SFV replicase gene, packaging signal of SIN, subgenomic promoter followed by the exogenous gene, and 3' UTR of SIN. The chimeric VRPs carried luciferase or eGFP as reporter genes. The fluorescence and electron microscopy results revealed that chimeric VRPs were successfully packaged. The yield of the purified chimeric VRPs was approximately 2.5 times that of the SFV VRPs (1.38 × 107 TU/ml vs. 5.41 × 106 TU/ml) (p < 0.01). Furthermore, chimeric VRPs could be stored stably at 4°C for at least 60 days. Animal experiments revealed that mice immunized with chimeric VRPs (luciferase) had stronger luciferase expression than those immunized with equivalent amount of SFV VRPs (luciferase) (p < 0.01), and successfully expressed luciferase for approximately 12 days. Additionally, the chimeric VRPs expressed the RBD of SARS-CoV-2 efficiently and induced robust RBD-specific antibody responses in mice. In conclusion, the chimeric VRPs constructed here met the requirements of a gene delivery tool for vaccine development and cancer therapy.
Assuntos
Vírus da Floresta de Semliki , Sindbis virus , Camundongos , Animais , Vírus da Floresta de Semliki/genética , Sindbis virus/genética , Plasmídeos/genética , Replicon , Luciferases/genética , Vetores GenéticosRESUMO
Despite the success of immune checkpoint blockade for cancer therapy, many patients do not respond adequately. We aimed to improve this therapy by optimizing both the antibodies and their delivery route, using small monodomain antibodies (nanobodies) delivered locally with a self-amplifying RNA (saRNA) vector based on Semliki Forest virus (SFV). We generated nanobodies against PD-1 and PD-L1 able to inhibit both human and mouse interactions. Incorporation of a dimerization domain reduced PD-1/PD-L1 IC50 by 8- and 40-fold for anti-PD-L1 and anti-PD-1 nanobodies, respectively. SFV viral particles expressing dimeric nanobodies showed a potent antitumor response in the MC38 model, resulting in >50% complete regressions, and showed better therapeutic efficacy compared to vectors expressing conventional antibodies. These effects were also observed in the B16 melanoma model. Although a short-term expression of nanobodies was observed due to the cytopathic nature of the saRNA vector, it was enough to generate a strong proinflammatory response in tumors, increasing infiltration of NK and CD8+ T cells. Delivery of the SFV vector expressing dimeric nanobodies by local plasmid electroporation, which could be more easily translated to the clinic, also showed a potent antitumor effect.
Assuntos
Neoplasias , Anticorpos de Domínio Único , Animais , Humanos , Camundongos , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos , Vírus da Floresta de Semliki/genética , Anticorpos de Domínio Único/genética , Receptor de Morte Celular Programada 1/metabolismoRESUMO
Alphaviruses (family Togaviridae) include both human pathogens such as chikungunya virus (CHIKV) and Sindbis virus (SINV) and model viruses such as Semliki Forest virus (SFV). The alphavirus positive-strand RNA genome is translated into nonstructural (ns) polyprotein(s) that are precursors for four nonstructural proteins (nsPs). The three-dimensional structures of nsP2 and the N-terminal 2/3 of nsP3 reveal that these proteins consist of several domains. Cleavage of the ns-polyprotein is performed by the strictly regulated protease activity of the nsP2 region. Processing results in the formation of a replicase complex that can be considered a network of functional modules. These modules work cooperatively and should perform the same task for each alphavirus. To investigate functional interactions between replicase components, we generated chimeras using the SFV genome as a backbone. The functional modules corresponding to different parts of nsP2 and nsP3 were swapped with their counterparts from CHIKV and SINV. Although some chimeras were nonfunctional, viruses harboring the CHIKV N-terminal domain of nsP2 or any domain of nsP3 were viable. Viruses harboring the protease part of nsP2, the full-length nsP2 of CHIKV, or the nsP3 macrodomain of SINV required adaptive mutations for functionality. Seven mutations that considerably improved the infectivity of the corresponding chimeric genomes affected functionally important hot spots recurrently highlighted in previous alphavirus studies. These data indicate that alphaviruses utilize a rather limited set of strategies to survive and adapt. Furthermore, functional analysis revealed that the disturbance of processing was the main defect resulting from chimeric alterations within the ns-polyprotein. IMPORTANCE Alphaviruses cause debilitating symptoms and have caused massive outbreaks. There are currently no approved antivirals or vaccines for treating these infections. Understanding the functions of alphavirus replicase proteins (nsPs) provides valuable information for both antiviral drug and vaccine development. The nsPs of all alphaviruses consist of similar functional modules; however, to what extent these are independent in functionality and thus interchangeable among homologous viruses is largely unknown. Homologous domain swapping was used to study the functioning of modules from nsP2 and nsP3 of other alphaviruses in the context of Semliki Forest virus. Most of the introduced substitutions resulted in defects in the processing of replicase precursors that were typically compensated by adaptive mutations that mapped to determinants of polyprotein processing. Understanding the principles of virus survival strategies and identifying hot spot mutations that permit virus adaptation highlight a route to the rapid development of attenuated viruses as potential live vaccine candidates.
Assuntos
Adaptação Biológica/genética , Alphavirus/genética , Vírus da Floresta de Semliki/genética , Linhagem Celular , Vírus Chikungunya/genética , Quimera/genética , Quimera/metabolismo , Vírus de DNA/genética , Humanos , Mutação/genética , Poliproteínas/metabolismo , RNA Viral/metabolismo , Sindbis virus/genética , Proteínas não Estruturais Virais/genética , Compartimentos de Replicação Viral/metabolismo , Replicação Viral/genéticaRESUMO
A first-in-human phase I trial of Vvax001, an alphavirus-based therapeutic cancer vaccine against human papillomavirus (HPV)-induced cancers was performed assessing immunological activity, safety, and tolerability. Vvax001 consists of replication-incompetent Semliki Forest virus replicon particles encoding HPV16-derived antigens E6 and E7. Twelve participants with a history of cervical intraepithelial neoplasia were included. Four cohorts of three participants were treated per dose level, ranging from 5 × 105 to 2.5 × 108 infectious particles per immunization. The participants received three immunizations with a 3-week interval. For immune monitoring, blood was drawn before immunization and 1 week after the second and third immunization. Immunization with Vvax001 was safe and well tolerated, with only mild injection site reactions, and resulted in both CD4+ and CD8+ T cell responses against E6 and E7 antigens. Even the lowest dose of 5 × 105 infectious particles elicited E6/E7-specific interferon (IFN)-γ responses in all three participants in this cohort. Overall, immunization resulted in positive vaccine-induced immune responses in 12 of 12 participants in one or more assays performed. In conclusion, Vvax001 was safe and induced immune responses in all participants. These data strongly support further clinical evaluation of Vvax001 as a therapeutic vaccine in patients with HPV-related malignancies.
Assuntos
Vacinas Anticâncer/imunologia , Vetores Genéticos/genética , Neoplasias/etiologia , Neoplasias/terapia , Infecções por Papillomavirus/complicações , Vacinas contra Papillomavirus/imunologia , Vírus da Floresta de Semliki/genética , Alphapapillomavirus/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Vetores Genéticos/administração & dosagem , Humanos , Imunização , Neoplasias/prevenção & controle , Proteínas Oncogênicas Virais/imunologia , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/genética , Proteínas Repressoras/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Resultado do Tratamento , VacinaçãoRESUMO
Introduction: Immunotherapy has been introduced as a modern alternative for the treatment of various cancers, including the stimulation of the immune system by introduction of immunostimulatory molecules. Application of viral and non-viral vectors have provided a substantial contribution to improved delivery and expression of these immunostimulators.Areas covered: Alphavirus vectors, based on Semliki Forest virus, have allowed immunization with self-replicating RNA, recombinant virus particles, and layered DNA/RNA vectors. The attractive features of alphaviruses comprise their broad host range and extreme RNA replication in infected cells resulting in very high recombinant protein expression levels providing enhanced immune responses and an excellent basis for immunotherapy.Expert opinion: Immunization studies in animal tumor models have elicited strong humoral and cellular immune response, have provided prophylactic protection against tumor challenges, and have generated therapeutic efficacy in tumor-bearing animals. Clinical trials have indicated safe use of alphavirus vectors, making them attractive for cancer immunotherapy.
Assuntos
Imunoterapia/métodos , Neoplasias/terapia , Vírus da Floresta de Semliki/genética , Imunidade Adaptativa , Animais , Ensaios Clínicos como Assunto , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Vetores Genéticos/uso terapêutico , Humanos , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-12/metabolismo , Neoplasias/imunologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologiaRESUMO
Immune checkpoint blockade has shown anti-cancer efficacy, but requires systemic administration of monoclonal antibodies (mAbs), often leading to adverse effects. To avoid toxicity, mAbs could be expressed locally in tumors. We developed adeno-associated virus (AAV) and Semliki Forest virus (SFV) vectors expressing anti-programmed death ligand 1 (aPDL1) mAb. When injected intratumorally in MC38 tumors, both viral vectors led to similar local mAb expression at 24 h, diminishing quickly in SFV-aPDL1-treated tumors. However, SFV-aPDL1 induced >40% complete regressions and was superior to AAV-aPDL1, as well as to aPDL1 mAb given systemically or locally. SFV-aPDL1 induced abscopal effects and was also efficacious against B16-ovalbumin (OVA). The higher SFV-aPDL1 antitumor activity could be related to local upregulation of interferon-stimulated genes because of SFV RNA replication. This was confirmed by combining local SFV-LacZ administration and systemic aPDL1 mAb, which provided higher antitumor effects than each separated agent. SFV-aPDL1 promoted tumor-specific CD8 T cells infiltration in both tumor models. In MC38, SFV-aPDL1 upregulated co-stimulatory markers (CD137/OX40) in tumor CD8 T cells, and its combination with anti-CD137 mAb showed more pronounced antitumor effects than each single agent. These results indicate that local transient expression of immunomodulatory mAbs using non-propagative RNA vectors inducing type I interferon (IFN-I) responses represents a potent and safe approach for cancer treatment.
Assuntos
Anticorpos Monoclonais/genética , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Expressão Gênica , Vetores Genéticos/genética , Neoplasias/genética , Neoplasias/imunologia , Vírus de RNA/genética , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos , Imunomodulação/efeitos dos fármacos , Imunofenotipagem , Injeções Intralesionais , Camundongos , Neoplasias/patologia , Neoplasias/terapia , Proteínas Recombinantes de Fusão/genética , Vírus da Floresta de Semliki/genética , Taxa de Sobrevida , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Carga TumoralRESUMO
: Multiple lines of evidence indicate a critical role of antigen cross-presentation by conventional BATF3-dependent type 1 classical dendritic cells (cDC1) in CD8-mediated antitumor immunity. Flt3L and XCL1, respectively, constitute a key growth/differentiation factor and a potent and specific chemoattractant for cDC1. To exploit their antitumor functions in local immunotherapy, we prepared Semliki Forest Virus (SFV)-based vectors encoding XCL1 and soluble Flt3L (sFlt3L). These vectors readily conferred transgene expression to the tumor cells in culture and when engrafted as subcutaneous mouse tumor models. In syngeneic mice, intratumoral injection of SFV-XCL1-sFlt3L (SFV-XF) delayed progression of MC38- and B16-derived tumors. Therapeutic activity was observed and exerted additive effects in combination with anti-PD-1, anti-CD137, or CTLA-4 immunostimulatory mAbs. Therapeutic effects were abolished by CD8ß T-cell depletion and were enhanced by CD4 T-cell depletion, but not by T regulatory cell predepletion with anti-CD25 mAb. Antitumor effects were also abolished in BATF3- and IFNAR-deficient mice. In B16-OVA tumors, SFV-XF increased the number of infiltrating CD8 T cells, including those recognizing OVA. Consistently, following the intratumoral SFV-XF treatment courses, we observed increased BATF3-dependent cDC1 among B16-OVA tumor-infiltrating leukocytes. Such an intratumoral increase was not seen in MC38-derived tumors, but both resident and migratory cDC1 were boosted in SFV-XF-treated MC38 tumor-draining lymph nodes. In conclusion, viral gene transfer of sFlt3L and XCL1 is feasible, safe, and biologically active in mice, exerting antitumor effects that can be potentiated by CD4 T-cell depletion. SIGNIFICANCE: These findings demonstrate that transgenic expression of sFLT3L and XCL1 in tumor cells mediates cross-priming of, and elicits potent antitumor activity from, CD8 T lymphocytes, particularly in combination with CD4 T-cell depletion.
Assuntos
Quimiocinas C/genética , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Vetores Genéticos/genética , Proteínas de Membrana/genética , Vírus da Floresta de Semliki/genética , Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Imunoterapia , Camundongos , Linfócitos T/metabolismo , Microambiente Tumoral/imunologiaRESUMO
BACKGROUD: Duck Tembusu virus (DTMUV), a pathogenic flavivirus, emerged in China since 2010 and causing huge economic loss in the Chinese poultry industry. Although several vaccines have been reported to control DTMUV disease, few effective vaccines are available and new outbreaks were continuously reported. Thus, it is urgently to develop a new effective vaccine for prevention of this disease. METHODS: In this study, a suicidal DNA vaccine based on a Semliki Forest virus (SFV) replicon and DTMUV E glycoprotein gene was constructed and the efficacy of this new vaccine was assessed according to humoral and cell-mediated immune responses as well as protection against the DTMUV challenge in ducklings. RESULTS: Our results showed that the recombinant SFV replicon highly expressed E glycoprotein in DEF cells. After intramuscular injection of this new DNA vaccine in ducklings, robust humoral and cellular immune responses were observed in all immunized ducklings. Moreover, all ducklings were protected against challenge with the virulent DTMUV AH-F10 strain. CONCLUSIONS: In conclusion, we demonstrate that this suicidal DNA vaccine is a promising candidate facilitating the prevention of DTMUV infection.
Assuntos
Infecções por Flavivirus/veterinária , Flavivirus/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , China , Patos , Flavivirus/genética , Infecções por Flavivirus/prevenção & controle , Vetores Genéticos , Glicoproteínas/genética , Glicoproteínas/imunologia , Imunidade Celular , Imunidade Humoral , Injeções Intramusculares , Vírus da Floresta de Semliki/genética , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genéticaRESUMO
Alphaviruses are members of a group of small enveloped RNA viruses that includes important human pathogens such as Chikungunya virus and the equine encephalitis viruses. The virus membrane is covered by a lattice composed of 80 spikes, each a trimer of heterodimers of the E2 and E1 transmembrane proteins. During virus endocytic entry, the E1 glycoprotein mediates the low-pH-dependent fusion of the virus membrane with the endosome membrane, thus initiating virus infection. While much is known about E1 structural rearrangements during membrane fusion, it is unclear how the E1/E2 dimer dissociates, a step required for the fusion reaction. A recent Alphavirus cryo-electron microscopy reconstruction revealed a previously unidentified D subdomain in the E2 ectodomain, close to the virus membrane. A loop within this region, here referred to as the D-loop, contains two highly conserved histidines, H348 and H352, which were hypothesized to play a role in dimer dissociation. We generated Semliki Forest virus mutants containing the single and double alanine substitutions H348A, H352A, and H348/352A. The three D-loop mutations caused a reduction in virus growth ranging from 1.6 to 2 log but did not significantly affect structural protein biosynthesis or transport, dimer stability, virus fusion, or specific infectivity. Instead, growth reduction was due to inhibition of a late stage of virus assembly at the plasma membrane. The virus particles that are produced show reduced thermostability compared to the wild type. We propose the E2 D-loop as a key region in establishing the E1-E2 contacts that drive glycoprotein lattice formation and promote Alphavirus budding from the plasma membrane.IMPORTANCEAlphavirus infection causes severe and debilitating human diseases for which there are no effective antiviral therapies or vaccines. In order to develop targeted therapeutics, detailed molecular understanding of the viral entry and exit mechanisms is required. In this report, we define the role of the E2 protein juxtamembrane D-loop, which contains highly conserved histidine residues at positions 348 and 352. These histidines do not play an important role in virus fusion and infection. However, mutation of the D-loop histidines causes significant decreases in the assembly and thermostability of Alphavirus particles. Our results suggest that the E2 D-loop interacts with the E1 protein to promote Alphavirus budding.
Assuntos
Glicoproteínas de Membrana/química , Vírus da Floresta de Semliki/fisiologia , Proteínas do Envelope Viral/química , Liberação de Vírus , Animais , Linhagem Celular , Cricetinae , Histidina/química , Fusão de Membrana , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Mutação , Nucleocapsídeo/metabolismo , Nucleocapsídeo/ultraestrutura , Conformação Proteica , Multimerização Proteica , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/metabolismo , Vírus da Floresta de Semliki/ultraestrutura , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus , Internalização do VírusRESUMO
Semliki Forest virus (SFV) is an arthropod-borne alphavirus that induces membrane invaginations (spherules) in host cells. These harbor the viral replication complexes (RC) that synthesize viral RNA. Alphaviruses have four replicase or nonstructural proteins (nsPs), nsP1-4, expressed as polyprotein P1234. An early RC, which synthesizes minus-strand RNA, is formed by the polyprotein P123 and the polymerase nsP4. Further proteolytic cleavage results in a late RC consisting of nsP1-4 and synthesizing plus strands. Here, we show that only the late RCs are highly active in RNA synthesis in vitro. Furthermore, we demonstrate that active RCs can be isolated from both virus-infected cells and cells transfected with the wild-type replicase in combination with a plasmid expressing a template RNA. When an uncleavable polyprotein P123 and polymerase nsP4 were expressed together with a template, high levels of minus-strand RNA were produced in cells, but RCs isolated from these cells were hardly active in vitro. Furthermore, we observed that the uncleavable polyprotein P123 and polymerase nsP4, which have previously been shown to form spherules even in the absence of the template, did not replicate an exogenous template. Consequently, we hypothesize that the replicase proteins were sequestered in spherules and were no longer able to recruit a template.
Assuntos
Poliproteínas/metabolismo , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Vírus da Floresta de Semliki/enzimologia , Vírus da Floresta de Semliki/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Artrópodes/virologia , Regulação Viral da Expressão Gênica , Processamento de Proteína Pós-Traducional , RNA Viral/metabolismo , Vírus da Floresta de Semliki/genética , Replicação ViralRESUMO
Semliki Forest virus (SFV) is a potential cancer gene therapy vector capable of providing high and transient expression of heterologous proteins in mammalian cells. However, SFV has shown suboptimal transduction levels in several cancer cell types as well as wide biodistribution of SFV has been observed after in vivo applications. Magnetic nanoparticles (MNPs) have been shown to increase cell transduction with several viral vectors in vitro under an external magnetic field and enhance magnetically guided viral vector delivery. Here, we examined a panel of MNPs for enhanced cancer cell transduction with SFV vector. Magneto-transduction using positively charged MNPs increased Semliki Forest virus transduction in TS/A mouse mammary carcinoma cells in vitro in the presence of fetal bovine serum. Positively charged MNPs efficiently captured SFV particles independently of capturing medium, and MNPs-SFV complexes were successfully separated from suspension by magnetic precipitation. These results reveal the potential application of MNPs for enhanced gene delivery by SFV vector as well as proposes magnetic precipitation for efficient concentration of SFV particles from different media.
Assuntos
Nanopartículas de Magnetita , Vírus da Floresta de Semliki/genética , Transdução Genética/métodos , Animais , Bovinos , Linhagem Celular Tumoral , Feminino , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Neoplasias Mamárias Experimentais/virologia , CamundongosRESUMO
Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain.IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah, chikungunya, and influenza viruses and nonstructural genes from Semliki Forest virus. Two of the four, VSVΔG-CHIKV and VLV, show substantially attenuated neurotropism and were safe in the healthy adult mouse brain. VSVΔG-H5N1 was safe in the adult brain but lethal in the younger brain. VSVΔG Nipah F+G was even more neurotropic than wild-type VSV, evoking a rapid lethal response in the adult brain. These results suggest that while chimeric VSVs show promise, each must be tested with both intranasal and intracranial administration to ensure the absence of lethal neurotropism.
Assuntos
Encéfalo/patologia , Vesiculovirus/patogenicidade , Vacinas Virais/efeitos adversos , Animais , Vírus Chikungunya/genética , Vírus Chikungunya/imunologia , Interferon Tipo I/metabolismo , Camundongos , Vírus Nipah/genética , Vírus Nipah/imunologia , Orthomyxoviridae/genética , Orthomyxoviridae/imunologia , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/imunologia , Análise de Sobrevida , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vesiculovirus/genética , Vesiculovirus/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologiaRESUMO
Due to its impact on animal health and pig industry, classical swine fever (CSF) is still one of the most important viral diseases of pigs. To control the disease, safe and highly efficacious live attenuated vaccines exist for decades. These vaccines have usually outstanding efficacy and safety but lack differentiability of infected from vaccinated animals (DIVA or marker strategy). In contrast, the first generation of E2 subunit marker vaccines shows constraints in efficacy, application, and production. To overcome these limitations, new generations of marker vaccines are developed. A wide range of approaches have been tried including recombinant vaccines, recombinant inactivated vaccines or subunit vaccines, vector vaccines, and DNA/RNA vaccines. During the last years, especially attenuated deletion vaccines or chimeric constructs have shown potential. At present, especially two new constructs have been intensively tested, the adenovirus-delivered, Semliki Forest virus replicon-vectored marker vaccine candidate "rAdV-SFV-E2" and the pestivirus chimera "CP7_E2alf". The later was recently licensed by the European Medicines Agency. Under field conditions, all marker vaccines have to be accompanied by a potent test system. Particularly this point shows still weaknesses and it is important to embed vaccination in a well-established vaccination strategy and a suitable diagnostic workflow. In summary, conventional vaccines are a standard in terms of efficacy. However, only vaccines with DIVA will allow improved eradication strategies e.g. also under emergency vaccination conditions in free regions. To answer this demand, new generations of marker vaccines have been developed and add now to the tool box of CSF control.
Assuntos
Vírus da Febre Suína Clássica/imunologia , Peste Suína Clássica/prevenção & controle , Vacinação/veterinária , Vacinas Virais/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Peste Suína Clássica/virologia , Vetores Genéticos , Replicon , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/imunologia , Suínos , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas Marcadoras/imunologiaRESUMO
Semliki Forest virus (SFV), a neurotropic virus, has been used to deliver heterologous genes into cells in vitro and in vivo. In this study, we constructed a reporter SFV4-FL-EGFP and found that it can deliver EGFP into neurons located at the injection site without disseminating throughout the brain. Lacking of the capsid gene of SFV4-FL-EGFP does not block its life cycle, while forming replication-competent virus-like particles (VLPs). These VLPs hold subviral genome by using the packaging sequence (PS) located within the nsP2 gene, and can transfer their genome into cells. In addition, we found that the G protein of vesicular stomatitis virus (VSVG) can package SFV subviral genome, which is consistent with the previous reports. The G protein of rabies virus (RVG) could also package SFV subviral genome. These pseudo-typed SFV can deliver EGFP gene into neurons. Taken together, these findings may be used to construct various SFV-based delivery systems for virological studies, gene therapy, and neural circuit labeling.
Assuntos
Engenharia Genética , Terapia Genética/métodos , Vetores Genéticos/metabolismo , Hipotálamo/virologia , Neurônios/virologia , Vírus da Floresta de Semliki/genética , Animais , Linhagem Celular , Cricetulus , Células Epiteliais/ultraestrutura , Células Epiteliais/virologia , Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipotálamo/ultraestrutura , Injeções Intraventriculares , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/ultraestrutura , Cultura Primária de Células , Vírus da Raiva/genética , Vírus da Raiva/metabolismo , Vírus da Floresta de Semliki/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/genéticaRESUMO
As new pathogenic viruses continue to emerge, it is paramount to have intervention strategies that target a common denominator in these pathogens. The fusion of viral and cellular membranes during viral entry is one such process that is used by many pathogenic viruses, including chikungunya virus, West Nile virus, and influenza virus. Obatoclax, a small-molecule antagonist of the Bcl-2 family of proteins, was previously determined to have activity against influenza A virus and also Sindbis virus. Here, we report it to be active against alphaviruses, like chikungunya virus (50% effective concentration [EC50] = 0.03 µM) and Semliki Forest virus (SFV; EC50 = 0.11 µM). Obatoclax inhibited viral entry processes in an SFV temperature-sensitive mutant entry assay. A neutral red retention assay revealed that obatoclax induces the rapid neutralization of the acidic environment of endolysosomal vesicles and thereby most likely inhibits viral fusion. Characterization of escape mutants revealed that the L369I mutation in the SFV E1 fusion protein was sufficient to confer partial resistance against obatoclax. Other inhibitors that target the Bcl-2 family of antiapoptotic proteins inhibited neither viral entry nor endolysosomal acidification, suggesting that the antiviral mechanism of obatoclax does not depend on its anticancer targets. Obatoclax inhibited the growth of flaviviruses, like Zika virus, West Nile virus, and yellow fever virus, which require low pH for fusion, but not that of pH-independent picornaviruses, like coxsackievirus A9, echovirus 6, and echovirus 7. In conclusion, obatoclax is a novel inhibitor of endosomal acidification that prevents viral fusion and that could be pursued as a potential broad-spectrum antiviral candidate.
Assuntos
Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Fusão de Membrana/efeitos dos fármacos , Pirróis/farmacologia , Vírus da Floresta de Semliki/efeitos dos fármacos , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/virologia , Vírus Chikungunya/genética , Vírus Chikungunya/crescimento & desenvolvimento , Cricetinae , Farmacorresistência Viral/genética , Endossomos/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Indóis , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutação , Vermelho Neutro/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/crescimento & desenvolvimento , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Vírus do Nilo Ocidental/efeitos dos fármacos , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/crescimento & desenvolvimento , Vírus da Febre Amarela/efeitos dos fármacos , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/crescimento & desenvolvimento , Zika virus/efeitos dos fármacos , Zika virus/genética , Zika virus/crescimento & desenvolvimentoRESUMO
Background: Glioblastoma multiforme and high-risk neuroblastoma are cancers with poor outcome. Immunotherapy in the form of neurotropic oncolytic viruses is a promising therapeutic approach for these malignancies. Here we evaluate the oncolytic capacity of the neurovirulent and partly IFNß-resistant Semliki Forest virus (SFV)-4 in glioblastoma multiformes and neuroblastomas. To reduce neurovirulence we constructed SFV4miRT, which is attenuated in normal central nervous system (CNS) cells through insertion of microRNA target sequences for miR124, miR125, miR134.Methods: Oncolytic activity of SFV4miRT was examined in mouse neuroblastoma and glioblastoma multiforme cell lines and in patient-derived human glioblastoma cell cultures (HGCC). In vivo neurovirulence and therapeutic efficacy was evaluated in two syngeneic orthotopic glioma models (CT-2A, GL261) and a syngeneic subcutaneous neuroblastoma model (NXS2). The role of IFNß in inhibiting therapeutic efficacy was investigated.Results: The introduction of miRNA target sequences reduced neurovirulence of SFV4 in terms of attenuated replication in mouse CNS cells and ability to cause encephalitis when administered intravenously. A single intravenous injection of SFV4miRT prolonged survival and cured four of eight mice (50%) with NXS2 and three of 11 mice (27%) with CT-2A, but not for GL261 tumor-bearing mice. In vivo therapeutic efficacy in different tumor models inversely correlated to secretion of IFNß by respective cells upon SFV4 infection in vitro Similarly, killing efficacy of HGCC lines inversely correlated to IFNß response and interferon-α/ß receptor-1 expression.Conclusions: SFV4miRT has reduced neurovirulence, while retaining its oncolytic capacity. SFV4miRT is an excellent candidate for treatment of glioblastoma multiforme and neuroblastoma with low IFN-ß secretion. Clin Cancer Res; 23(6); 1519-30. ©2016 AACR.
Assuntos
Glioblastoma/terapia , Neoplasias Experimentais/terapia , Neuroblastoma/terapia , Vírus Oncolíticos/genética , Animais , Sistema Nervoso Central/virologia , Modelos Animais de Doenças , Glioblastoma/genética , Glioblastoma/virologia , Humanos , Interferon beta/genética , Camundongos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Neoplasias Experimentais/genética , Neoplasias Experimentais/virologia , Neuroblastoma/virologia , Terapia Viral Oncolítica/efeitos adversos , Vírus da Floresta de Semliki/genéticaRESUMO
Various proteins synthesized by ribosomes are imported into specific organelles. To elucidate the behavior of protein domains during import, we developed a folding probe, in which the capsid protease (CP) domain of the Semliki Forest virus was connected to enhanced green fluorescent protein (EGFP). The probe was fused to appropriate N-terminal organelle-targeting signal sequences and expressed in cultured cells. When the entire CP-domain was present in the cytosol, it became folded and cleaved off the following EGFP-domain. Once cleaved, EGFP stability was not affected by upstream sequences. Based on EGFP localization, we estimated the extent of CP-domain folding in the cytosolic space. When fused to mitochondrial hydrophobic multispanning membrane protein ABCB10, more than half of the EGFP remained in the cytoplasm, whereas most of the CP-portion was in the mitochondrial fraction. When fused to the endoplasmic reticulum (ER) signal, the cleaved EGFP was observed only in the ER fraction, confirming that the CP-domain cannot fold on the cytoplasmic side during cotranslational ER translocation. Thus, import of the ABCB10 molecule was not as tightly coupled with chain elongation as ER translocation. Use of this probe to quantitatively examine stop-translocation at the ER translocon in living cells revealed that positively charged residues on the translocating nascent chain stall at the ER translocon.
Assuntos
Proteínas do Capsídeo/metabolismo , Retículo Endoplasmático/metabolismo , Peptídeo Hidrolases/metabolismo , Dobramento de Proteína , Vírus da Floresta de Semliki/enzimologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Células COS , Proteínas do Capsídeo/genética , Chlorocebus aethiops , Retículo Endoplasmático/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Peptídeo Hidrolases/genética , Domínios Proteicos , Transporte Proteico/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vírus da Floresta de Semliki/genéticaRESUMO
UNLABELLED: Alphaviruses represent a diverse set of arboviruses, many of which are important pathogens. Chikungunya virus (CHIKV), an arthritis-inducing alphavirus, is the cause of a massive ongoing outbreak in the Caribbean and South America. In contrast to CHIKV, other related alphaviruses, such as Venezuelan equine encephalitis virus (VEEV) and Semliki Forest virus (SFV), can cause encephalitic disease. E2, the receptor binding protein, has been implicated as a determinant in cell tropism, host range, pathogenicity, and immunogenicity. Previous reports also have demonstrated that E2 contains residues important for host range expansions and monoclonal antibody binding; however, little is known about what role each protein domain (e.g., A, B, and C) of E2 plays on these factors. Therefore, we constructed chimeric cDNA clones between CHIKV and VEEV or SFV to probe the effect of each domain on pathogenicity in vitro and in vivo. CHIKV chimeras containing each of the domains of the E2 (ΔDomA, ΔDomB, and ΔDomC) from SFV, but not VEEV, were successfully rescued. Interestingly, while all chimeric viruses were attenuated compared to CHIKV in mice, ΔDomB virus showed similar rates of infection and dissemination in Aedes aegypti mosquitoes, suggesting differing roles for the E2 protein in different hosts. In contrast to CHIKV; ΔDomB, and to a lesser extent ΔDomA, caused neuron degeneration and demyelination in mice infected intracranially, suggesting a shift toward a phenotype similar to SFV. Thus, chimeric CHIKV/SFV provide insights on the role the alphavirus E2 protein plays on pathogenesis. IMPORTANCE: Chikungunya virus (CHIKV) has caused large outbreaks of acute and chronic arthritis throughout Africa and Southeast Asia and has now become a massive public health threat in the Americas, causing an estimated 1.2 million human cases in just over a year. No approved vaccines or antivirals exist for human use against CHIKV or any other alphavirus. Despite the threat, little is known about the role the receptor binding protein (E2) plays on disease outcome in an infected host. To study this, our laboratory generated chimeric CHIKV containing corresponding regions of the Semliki Forest virus (SFV) E2 (domains A, B, and C) substituted into the CHIKV genome. Our results demonstrate that each domain of E2 likely plays a critical, but dissimilar role in the viral life cycle. Our experiments show that manipulation of E2 domains can be useful for studies on viral pathogenesis and potentially the production of vaccines and/or antivirals.
Assuntos
Infecções por Alphavirus/patologia , Vírus Chikungunya/patogenicidade , Vírus da Encefalite Equina Venezuelana/patogenicidade , Vírus da Floresta de Semliki/patogenicidade , Proteínas do Envelope Viral/metabolismo , Aedes/virologia , Infecções por Alphavirus/virologia , Animais , Encéfalo/patologia , Vírus Chikungunya/genética , Modelos Animais de Doenças , Vírus da Encefalite Equina Venezuelana/genética , Feminino , Masculino , Camundongos Endogâmicos C57BL , Estrutura Terciária de Proteína , Vírus da Floresta de Semliki/genética , Proteínas do Envelope Viral/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismoRESUMO
BACKGROUND: Chikungunya virus (CHIKV) and other alphaviruses are the etiologic agents of numerous diseases in both humans and animals. Despite this, the viral mediators of protective immunity against alphaviruses are poorly understood, highlighted by the lack of a licensed human vaccine for any member of this virus genus. The alphavirus E2, the receptor-binding envelope protein, is considered to be the predominant target of the protective host immune response. Although envelope protein domains have been studied for vaccine and neutralization in flaviviruses, their role in alphaviruses is less characterized. Here, we describe the role of the alphavirus E2 domains in neutralization and protection through the use of chimeric viruses. METHODOLOGY/PRINCIPAL FINDINGS: Four chimeric viruses were constructed in which individual E2 domains of CHIKV were replaced with the corresponding domain from Semliki Forest virus (SFV) (ΔDomA/ΔDomB/ΔDomC/ ΔDomA+B). Vaccination studies in mice (both live and inactivated virus) revealed that domain B was the primary determinant of neutralization. Neutralization studies with CHIKV immune serum from humans were consistent with mouse studies, as ΔDomB was poorly neutralized. CONCLUSIONS/SIGNIFICANCE: Using chimeric viruses, it was determined that the alphavirus E2 domain B was the critical target of neutralizing antibodies in both mice and humans. Therefore, chimeric viruses may have more relevance for vaccine discovery than peptide-based approaches, which only detect linear epitopes. This study provides new insight into the role of alphavirus E2 domains on neutralization determinants and may be useful for the design of novel therapeutic technologies.