RESUMO
BACKGROUND: High-pathogenicity avian influenza (HPAI) has become a conservation threat to wild birds. Therefore, suitable vaccine technology and practical application methods require investigation. METHODS: Twenty-four African penguins (Spheniscus demersus) were vaccinated with either a conventional inactivated clade 2.3.4.4b H5N8 HPAI whole virus or a tobacco leaf-produced H5 haemagglutinin-based virus-like particle (VLP). Six birds received a second dose of the inactivated vaccine. Antibody responses were assessed and compared by employing haemagglutination inhibition tests. RESULTS: A second dose of inactivated vaccine was required to induce antibody titres above the level required to suppress virus shedding, while a single dose of VLP vaccine produced these levels by day 14, and one bird still had antibodies on day 430. LIMITATIONS: Bacterial contamination of the VLP vaccine limited the monitoring period and sample size in that treatment group, and it was not possible to perform a challenge study with field virus. CONCLUSION: VLP vaccines offer a more practical option than inactivated whole viruses, especially in logistically challenging situations involving wild birds.
Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Vacinas contra Influenza , Influenza Aviária , Spheniscidae , Animais , Influenza Aviária/prevenção & controle , Virulência , Galinhas , Vacinação/veterinária , Vacinas de Produtos InativadosRESUMO
Nowadays, there is a global concern about outbreaks caused by the highly pathogenic avian influenza virus H5N8 clade 2.3.4.4 which caused devastating losses in the poultry industry sector. This clade was subdivided into two waves: clade 2.3.4.4A from 2014 to 2015 and clade 2.3.4.4b from 2016 until now. In this literature we aimed to evaluate the efficacy of recently used inactivated commercial avian influenza vaccines against two new Egyptian highly pathogenic avian influenza virus H5N8 isolates of clade 2.3.4.4b, A/chicken/Egypt/1526v/2020/H5N8 (H5N8-CH) and A/Duck/Egypt/Qalubia321/2021 (H5N8-D). Three-week-old specific pathogen free chickens were vaccinated with eight types of the most recently used inactivated avian influenza vaccines containing homologous and heterologous virus to the circulating H5N8 isolates. All specific pathogen free chicken groups were bled weekly post vaccination for antibody analysis using two H5N8 isolates of chicken and duck origin as antigen in hemagglutination inhibition test. Also, all vaccinated chicken groups were challenged 4 weeks post vaccination against the H5N8 duck isolate with a dose of 109 EID50/0.1 mL per chicken to measure the protection percentage of the commercial vaccines used. The results showed that vaccines with homologous and heterologous virus showed variable degrees of accepted protection percentage ranged from 90percent to 100percent, thus it was concluded that not only the genetic and antigenic match of the vaccine strains with the circulating highly pathogenic avian influenza viruses influences vaccine efficiency; other factors, such as manufacturing procedures, adjuvant, antigen content, vaccine dose and administration factors could affect vaccine efficacy, therefore, further vaccine development studies are needed to improve the percentage of protection and prevention of viral shedding against local highly pathogenic avian influenza H5 viruses in Egypt(AU)
En la actualidad, existe una preocupación mundial por los brotes causados por el virus de la gripe aviar altamente patógena H5N8 clado 2.3.4.4 que causó pérdidas devastadoras en el sector de la industria avícola. Este clado se subdividió en dos oleadas: clado 2.3.4.4A de 2014 a 2015 y clado 2.3.4.4b de 2016 hasta ahora. En el presente trabajo, dos aislamientos egipcios de la gripe aviar altamente patógena H5N8 del clado 2.3.4.4b, A/chicken/Egypt/1526v/2020/H5N8 (H5N8_CH) y A/Duck/Egypt/Qalubia321/2021 (H5N8_D), se utilizaron para evaluar la eficacia de vacunas comerciales inactivadas contra la gripe aviar de reciente utilización. Pollos libres de patógenos específicos de tres semanas de edad fueron vacunados con ocho vacunas inactivadas contra la influenza aviar, de uso reciente, que contenían virus homólogos y heterólogos a los aislamientos circulantes de H5N8. Todos los grupos de pollos libres de patógenos específicos fueron sangrados semanalmente tras la vacunación para el análisis de anticuerpos; dos virus H5N8 aislados de pollo y pato se utilizaron como antígeno en la prueba de inhibición de la hemaglutinación. Además, todos los grupos de pollos vacunados fueron retados 4 semanas después de la vacunación con el virus H5N8 aislado de pato, con una dosis de 109 EID50/0,1 mL por pollo, para medir el porcentaje de protección de las vacunas comerciales utilizadas. Los resultados mostraron que las vacunas con virus homólogos y heterólogos presentaron grados variables de aceptada protección, la que osciló entre el 90 por ciento y el 100 por ciento, por lo que se concluyó que no sólo la coincidencia genética y antigénica de las cepas vacunales con los virus circulantes de la influenza aviar altamente patógena influye en la eficacia de la vacuna; otros factores, como los procedimientos de fabricación, el adyuvante, el contenido en antígenos, la dosis de la vacuna y los factores de administración podrían afectar a la eficacia de la vacuna, por lo que es necesario seguir estudiando el desarrollo de vacunas para mejorar la protección y la prevención de la excreción viral contra los virus H5 de la influenza aviar altamente patógena locales en Egipto(AU)
Assuntos
Animais , Vacinas contra Influenza , Galinhas , Patos , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária/transmissão , EgitoRESUMO
Highly pathogenic avian influenza viruses of the H5N8 subtype have been circulating in Europe and Asia since 2016, causing huge economic losses to the poultry industry. A new wave of H5Nx infections has begun in 2020. The viruses mainly infect wild birds and waterfowl; from there they spread to poultry and cause diseases. Previous studies have shown that the H5N8 viruses have seldom spread to mammals; however, reports in early 2021 indicate that humans may be infected, and some incident reports indicate that H5Nx clade 2.3.4.4B virus may be transmitted to wild mammals, such as red foxes and seals. In order to get more information on how the H5N8 virus affects seals and other marine animals, here, we used primary cultures to analyze the cell tropism of the H5N8 virus, which was isolated from an infected grey seal (H5N8/Seal-2016). Primary tracheal epithelial cells were readily infected by H5N8/Seal -2016 virus; in contrast, the commonly used primary seal kidney cells required the presence of exogenous trypsin to initiate virus infection. When applied to an ex vivo precision-cut lung slice model, compared with recombinant human H3N2 virus or H9N2 LPAI virus, the H5N8/Seal-2016 virus replicated to a high titre and caused a strong detrimental effect; with these characteristics, the virus was superior to a human H3N2 virus and to an H9N2 LPAI virus. By using well-differentiated air-liquid interface (ALI) cultures, we have observed that ALI cultures of canines, ferrets, and harbour seals are more sensitive to H5N8/Seal-2016 virus than are human or porcine ALI cultures, which cannot be fully explained by sialic acid distribution. Our results indicate that the airway epithelium of carnivores may be the main target of H5N8 viruses. Consideration should be given to an increased monitoring of the distribution of highly pathogenic avian influenza viruses in wild animals.
Assuntos
Doenças do Cão , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Phoca , Doenças das Aves Domésticas , Doenças dos Suínos , Animais , Animais Selvagens , Cães , Células Epiteliais , Furões , Humanos , Vírus da Influenza A Subtipo H3N2 , Ácido N-Acetilneuramínico , Filogenia , Aves Domésticas , Suínos , TripsinaRESUMO
Highly pathogenic avian influenza viruses (HPAIV) emerge from low-pathogenic avian influenza viruses (LPAIV) through the introduction of basic amino acids at the hemagglutinin (HA) cleavage site. Following viral evolution, the newly formed HPAIV likely represents a minority variant within the index host, predominantly infected with the LPAIV precursor. Using reverse genetics-engineered H5N8 viruses differing solely at the HA cleavage, we tested the hypothesis that the interaction between the minority HPAIV and the majority LPAIV could modulate the risk of HPAIV emergence and that the nature of the interaction could depend on the host species. In chickens, we observed that the H5N8LP increased H5N8HP replication and pathogenesis. In contrast, the H5N8LP antagonized H5N8HP replication and pathogenesis in ducks. Ducks mounted a more potent antiviral innate immune response than chickens against the H5N8LP, which correlated with H5N8HP inhibition. These data provide experimental evidence that HPAIV may be more likely to emerge in chickens than in ducks and underscore the importance of within-host viral variant interactions in viral evolution. IMPORTANCE Highly pathogenic avian influenza viruses represent a threat to poultry production systems and to human health because of their impact on food security and because of their zoonotic potential. It is therefore crucial to better understand how these viruses emerge. Using a within-host competition model between high- and low-pathogenic avian influenza viruses, we provide evidence that highly pathogenic avian influenza viruses could be more likely to emerge in chickens than in ducks. These results have important implications for highly pathogenic avian influenza virus emergence prevention, and they underscore the importance of within-host viral variant interactions in virus evolution.
Assuntos
Galinhas , Suscetibilidade a Doenças , Patos , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H5N8/fisiologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Biomarcadores , Biópsia , Células Cultivadas , Coinfecção , Genótipo , Imuno-Histoquímica , Influenza Aviária/metabolismo , Influenza Aviária/patologia , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/patologia , RNA Viral , Especificidade da Espécie , Carga Viral , Virulência , Replicação ViralRESUMO
Highly Pathogenic Avian Influenza viruses (HPAIVs) display a tissue pantropism, which implies a possible spread in feathers. HPAIV detection from feathers had been evaluated for H5N1 or H7N1 HPAIVs. It was suggested that viral RNA loads could be equivalent or higher in samples of immature feather compared to tracheal (TS) or cloacal swabs (CS). We investigated the suitability of feathers for the detection of clade 2.3.4.4b H5N8 HPAIV in ducks and geese field samples. In the six H5N8 positive flocks that were included in this study, TS, CS and immature wing feathers were taken from at least 10 birds. Molecular loads were then estimated using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) targetting H5 and M genes. In all flocks, viral loads were at least equivalent between feather and swab samples and in most cases up to 103 higher in feathers. Bayesian modelling confirmed that, in infected poultry, RT-qPCR was much more likely to be positive when applied on a feather sample only (estimated sensitivity between 0.89 and 0.96 depending on the positivity threshold) than on a combination of a tracheal and a cloacal swab (estimated sensitivity between 0.45 and 0.68 depending on the positivity threshold). Viral tropism and lesions in feathers were evaluated by histopathology and immunohistochemistry. Epithelial necrosis of immature feathers and follicles was observed concurrently with positive viral antigen detection and leukocytic infiltration of pulp. Accurate detection of clade 2.3.4.4b HPAIVs in feather samples were finally confirmed with experimental H5N8 infection on 10-week-old mule ducks, as viral loads at 3, 5 and 7 days post-infection were higher in feathers than in tracheal or cloacal swabs. However, feather samples were associated with lower viral loads than tracheal swabs at day 1, suggesting better detectability of the virus in feathers in the later course of infection. These results, based on both field cases and experimental infections, suggest that feather samples should be included in the toolbox of samples for detection of clade 2.3.4.4b HPAI viruses, at least in ducks and geese.