Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 12(10)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050000

RESUMO

Janus kinase (JAK) inhibitors have been developed as novel immunomodulatory drugs and primarily used for treating rheumatoid arthritis and other inflammatory diseases. Recent studies have suggested that this category of anti-inflammatory drugs could be potentially useful for the control of inflammation "storms" in respiratory virus infections. In addition to their role in regulating immune cell functions, JAK1 and JAK2 have been recently identified as crucial cellular factors involved in influenza A virus (IAV) replication and could be potentially targeted for antiviral therapy. Gingerenone A (Gin A) is a compound derived from ginger roots and a dual inhibitor of JAK2 and p70 S6 kinase (S6K1). Our present study aimed to determine the antiviral activity of Gin A on influenza A virus (IAV) and to understand its mechanisms of action. Here, we reported that Gin A suppressed the replication of three IAV subtypes (H1N1, H5N1, H9N2) in four cell lines. IAV replication was also inhibited by Ruxolitinib (Rux), a JAK inhibitor, but not by PF-4708671, an S6K1 inhibitor. JAK2 overexpression enhanced H5N1 virus replication and attenuated Gin A-mediated antiviral activity. In vivo experiments revealed that Gin A treatment suppressed IAV replication in the lungs of H5N1 virus-infected mice, alleviated their body weight loss, and prolonged their survival. Our study suggests that Gin A restricts IAV replication by inhibiting JAK2 activity; Gin A could be potentially useful for the control of influenza virus infections.


Assuntos
Antivirais/farmacologia , Diarileptanoides/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Janus Quinase 2/antagonistas & inibidores , Células A549 , Animais , Linhagem Celular , Cães , Feminino , Células HEK293 , Humanos , Imidazóis/farmacologia , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Virus da Influenza A Subtipo H5N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Nitrilas , Piperazinas/farmacologia , Pirazóis/farmacologia , Pirimidinas , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos
2.
J Ethnopharmacol ; 259: 112945, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32389854

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. (Umbelliferae family) is an herbaceous, perennial plant native to northern and eastern Asia. The root of A. dahurica has traditionally been used under the name "Bai Zhi" as a medicinal plant for colds, dizziness, ulcers, and rheumatism. Moreover, it is also an important ingredient of various prescriptions, such as Gumiganghwal-Tang, for the common cold and influenza. AIM OF THE STUDY: Even though various biological activities of the root of A. dahurica have been reported along with its chemical components, the detailed mechanism of how it exerts anti-influenza activity at the compound level has not been studied. Therefore, we investigated the anti-influenza properties of furanocoumarins purified by bioactivity-guided isolation. MATERIALS AND METHODS: Bioactivity-guided isolation from a 70% EtOH extract of the root of A. dahurica was performed to produce four active furanocoumarins. The inhibition of cytopathic effects (CPEs) was evaluated to ascertain the antiviral activity of these compounds against influenza A (H1N1 and H9N2) viruses. The most potent compound was subjected to detailed mechanistic studies such as the inhibition of viral protein synthesis, CPE inhibition in different phases of the viral replication cycle, neuraminidase (NA) inhibition, antiapoptotic activity using flow cytometry, and immunofluorescence. RESULTS: The bioactivity-guided isolation produced four active furanocoumarins, isoimperatorin (1), oxypeucedanin (2), oxypeucedanin hydrate (3) and imperatorin (4) from the n-BuOH fraction. Among them, compound 2 (followed by compounds 1, 4 and 3) showed a significant CPE inhibition effect, which was stronger than that of the positive control ribavirin, against both H1N1 and H9N2 with an EC50 (µM) of 5.98 ± 0.71 and 4.52 ± 0.39, respectively. Compound 2 inhibited the synthesis of NA and nucleoprotein (NP) in a dose-dependent manner. In the time course assays, the cytopathic effects of influenza A-infected MDCK cells were reduced by 80-90% when treated with compound 2 for 1 and 2 h after infection and declined drastically 3 h after infection. The level of viral NA and NP production was markedly reduced to less than 20% for both proteins in compound 2 (20 µM)-treated cells compared to untreated cells at 2 h after infection. In the molecular docking analysis, compound 2 showed a stronger binding affinity for the C-terminus of polymerase acidic protein (PAC; -36.28 kcal/mol) than the other two polymerase subunits. Compound 2 also exerted an antiapoptotic effect on virus infected cells and significantly inhibited the mRNA expression of caspase-3 and Bax. CONCLUSION: Our results suggest that compound 2 might exert anti-influenza A activity via the inhibition of the early phase of the viral replication cycle, not direct neutralization of surface proteins, such as hemagglutinin and NA, and abnormal apoptosis induced by virus infection. Taken together, these findings suggest that furanocoumarins predominant in A. dahurica play a pivotal role in its antiviral activity. These findings can also explain the reasons for the ethnopharmacological uses of this plant as an important ingredient in many antiviral prescriptions in traditional Chinese medicine (TCM).


Assuntos
Angelica , Antivirais/farmacologia , Células Epiteliais/efeitos dos fármacos , Furocumarinas/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Extratos Vegetais/farmacologia , Angelica/química , Animais , Antivirais/isolamento & purificação , Apoptose/efeitos dos fármacos , Efeito Citopatogênico Viral/efeitos dos fármacos , Cães , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Furocumarinas/isolamento & purificação , Interações entre Hospedeiro e Microrganismos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H9N2/metabolismo , Células Madin Darby de Rim Canino , Simulação de Acoplamento Molecular , Neuraminidase/antagonistas & inibidores , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Extratos Vegetais/isolamento & purificação , Raízes de Plantas , Replicação Viral/efeitos dos fármacos
3.
J Virol ; 91(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28148793

RESUMO

The natural reservoir for influenza viruses is waterfowl, and from there they succeeded in crossing the barrier to different mammalian species. We analyzed the adaptation of avian influenza viruses to a mammalian host by passaging an H9N2 strain three times in differentiated swine airway epithelial cells. Using precision-cut slices from the porcine lung to passage the parental virus, isolates from each of the three passages (P1 to P3) were characterized by assessing growth curves and ciliostatic effects. The only difference noted was an increased growth kinetics of the P3 virus. Sequence analysis revealed four mutations: one each in the PB2 and NS1 proteins and two in the HA protein. The HA mutations, A190V and T212I, were characterized by generating recombinant viruses containing either one or both amino acid exchanges. Whereas the parental virus recognized α2,3-linked sialic acids preferentially, the HA190 mutant bound to a broad spectrum of glycans with α2,6/8/9-linked sialic acids. The HA212 mutant alone differed only slightly from the parental virus; however, the combination of both mutations (HA190+HA212) increased the binding affinity to those glycans recognized by the HA190 mutant. Remarkably, only the HA double mutant showed a significantly increased pathogenicity in mice. In contrast, none of those mutations affected the ciliary activity of the epithelial cells which is characteristic for virulent swine influenza viruses. Taken together, our results indicate that shifts in the HA receptor affinity are just an early adaptation step of avian H9N2 strains; further mutational changes may be required to become virulent for pigs.IMPORTANCE Swine play an important role in the interspecies transmission of influenza viruses. Avian influenza A viruses (IAV) of the H9N2 subtype have successfully infected hosts from different species but have not established a stable lineage. We have analyzed the adaptation of IAV-H9N2 virus to target cells of a new host by passaging the virus three times in differentiated porcine respiratory epithelial cells. Among the four mutations detected, the two HA mutations were analyzed by generating recombinant viruses. Depending on the infection system used, the mutations differed in their phenotypic expression, e.g., sialic acid binding activity, replication kinetics, plaque size, and pathogenicity in inbred mice. However, none of the mutations affected the ciliary activity which serves as a virulence marker. Thus, early adaptive mutation enhances the replication kinetics, but more mutations are required for IAV of the H9N2 subtype to become virulent.


Assuntos
Adaptação Biológica , Células Epiteliais/virologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/patogenicidade , Ácido N-Acetilneuramínico/metabolismo , Mucosa Respiratória/virologia , Ligação Viral , Animais , Análise Mutacional de DNA , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Camundongos , Mutação de Sentido Incorreto , RNA Polimerase Dependente de RNA/genética , Genética Reversa , Inoculações Seriadas , Suínos , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética , Virulência
4.
Virol J ; 14(1): 10, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28114957

RESUMO

BACKGROUND: H9N2 influenza viruses circulate globally and are considered to have pandemic potential. The hyper-inflammatory response elicited by these viruses is thought to contribute to disease severity. Calcitriol plays an important role in modulating the immune response to viral infections. However, its unknown whether calcitriol can attenuate the inflammatory response elicited by H9N2 influenza virus infection. METHODS: Human lung A549 epithelial cells were treated with calcitriol (100 nM) and then infected with an H9N2 influenza virus, or infected and then treated with calcitriol (30 nM). Culture supernatants were collected every 24 h post infection and the viral growth kinetics and inflammatory response were evaluated. Calcitriol (5 mg/kg) was administered daily by intraperitoneal injection to BABL/c mice for 15 days following H9N2 influenza virus infection. Mice were monitored for clinical signs of disease, lung pathology and inflammatory responses. RESULTS: Calcitriol treatment prior to and post infection with H9N2 influenza significantly decreased expression of the influenza M gene, IL-6, and IFN-ß in A549 cells, but did not affect virus replication. In vivo, we found that calcitriol treatment significantly downregulated pulmonary inflammation in mice 2 days post-infection, but increased the inflammatory response 4 to 6 days post-infection. In contrast, the antiviral cytokine IFN-ß was significantly higher in calcitriol-treated mice than in the untreated infected mice at 2 days post-infection, but lower than in untreated infected mice on days 4 and 8 post-infection. The elevated levels of pro-inflammatory cytokines and the decreased levels of antiviral cytokine are consistent with the period of maximum body weight loss and the lung damage in calcitriol-treated mice. CONCLUSIONS: These results suggest that calcitriol treatment might have a negative impact on the innate immune response elicited by H9N2 infection in mice, especially at the later stage of influenza virus infection. This study will provide some novel insights into the use of calcitriol to modulate the inflammatory response elicited by influenza virus infection in humans.


Assuntos
Calcitriol/administração & dosagem , Calcitriol/farmacologia , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/farmacologia , Inflamação/patologia , Vírus da Influenza A Subtipo H9N2/patogenicidade , Infecções por Orthomyxoviridae/tratamento farmacológico , Animais , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Injeções Intraperitoneais , Pulmão/patologia , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Resultado do Tratamento
5.
J Virol ; 90(24): 11157-11167, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27707929

RESUMO

A role for pulmonary endothelial cells in the orchestration of cytokine production and leukocyte recruitment during influenza virus infection, leading to severe lung damage, has been recently identified. As the mechanistic pathway for this ability is not fully known, we extended previous studies on influenza virus tropism in cultured human pulmonary endothelial cells. We found that a subset of avian influenza viruses, including potentially pandemic H5N1, H7N9, and H9N2 viruses, could infect human pulmonary endothelial cells (HULEC) with high efficiency compared to human H1N1 or H3N2 viruses. In HULEC, human influenza viruses were capable of binding to host cellular receptors, becoming internalized and initiating hemifusion but failing to uncoat the viral nucleocapsid and to replicate in host nuclei. Unlike numerous cell types, including epithelial cells, we found that pulmonary endothelial cells constitutively express a high level of the restriction protein IFITM3 in endosomal compartments. IFITM3 knockdown by small interfering RNA (siRNA) could partially rescue H1N1 virus infection in HULEC, suggesting IFITM3 proteins were involved in blocking human influenza virus infection in endothelial cells. In contrast, selected avian influenza viruses were able to escape IFITM3 restriction in endothelial cells, possibly by fusing in early endosomes at higher pH or by other, unknown mechanisms. Collectively, our study demonstrates that the human pulmonary endothelium possesses intrinsic immunity to human influenza viruses, in part due to the constitutive expression of IFITM3 proteins. Notably, certain avian influenza viruses have evolved to escape this restriction, possibly contributing to virus-induced pneumonia and severe lung disease in humans. IMPORTANCE: Avian influenza viruses, including H5N1 and H7N9, have been associated with severe respiratory disease and fatal outcomes in humans. Although acute respiratory distress syndrome (ARDS) and progressive pulmonary endothelial damage are known to be present during severe human infections, the role of pulmonary endothelial cells in the pathogenesis of avian influenza virus infections is largely unknown. By comparing human seasonal influenza strains to avian influenza viruses, we provide greater insight into the interaction of influenza virus with human pulmonary endothelial cells. We show that human influenza virus infection is blocked during the early stages of virus entry, which is likely due to the relatively high expression of the host antiviral factors IFITMs (interferon-induced transmembrane proteins) located in membrane-bound compartments inside cells. Overall, this study provides a mechanism by which human endothelial cells limit replication of human influenza virus strains, whereas avian influenza viruses overcome these restriction factors in this cell type.


Assuntos
Células Endoteliais/imunologia , Interações Hospedeiro-Patógeno , Células Endoteliais da Veia Umbilical Humana/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Proteínas de Membrana/imunologia , Proteínas de Ligação a RNA/imunologia , Animais , Aves , Linhagem Celular , Endossomos/química , Endossomos/imunologia , Endossomos/virologia , Células Endoteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Concentração de Íons de Hidrogênio , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Virus da Influenza A Subtipo H5N1/crescimento & desenvolvimento , Virus da Influenza A Subtipo H5N1/imunologia , Subtipo H7N9 do Vírus da Influenza A/crescimento & desenvolvimento , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H9N2/imunologia , Pulmão , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Especificidade de Órgãos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Especificidade da Espécie , Internalização do Vírus , Replicação Viral/imunologia
6.
Med Microbiol Immunol ; 204(4): 505-14, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25265877

RESUMO

The H9N2 avian influenza virus is a pandemic threat which has repeatedly caused infection in humans and shows enhanced replication and transmission in mice. Previous reports showed that host factors, the interferon-inducible transmembrane (IFITM) protein, can block the replication of pathogens and affect their pathogenesis. BALB/c mice are routine laboratory animals used in influenza virus research, but the effects of H9N2 influenza virus on tissue distribution and expression pattern of IFITM in these mice are unknown. Here, we investigated the expression patterns and tissue distribution of IFITM1 and IFITM3 in BALB/c mice by infection with H9N2 AIV strains with only a PB2 residue 627 difference. The results showed that the expression patterns of ITITM1 and IFITM3 differ in various tissues of BALB/c mice at different time points after infection. IFITM1 and IFITM3 showed cell- and tissue-specific distribution in the lung, heart, liver, spleen, kidney and brain. Notably, the epithelial and neuronal cells all expressed the proteins of IFITM1 and IFITM3. Our results provide the first look at differences in IFITM1 and IFITM3 expression patterns in BALB/c mice infected by H9N2 influenza viruses. This will enhance research on the interaction between AIV and host and further will elucidate the pathogenesis of influenza virus infection based on the interferon-inducible transmembrane (IFITM) protein.


Assuntos
Antígenos de Diferenciação/análise , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Proteínas de Membrana/análise , Infecções por Orthomyxoviridae/patologia , Estruturas Animais/patologia , Animais , Vírus da Influenza A Subtipo H9N2/imunologia , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Fatores de Tempo
7.
J Virol Methods ; 212: 71-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25445801

RESUMO

Many viruses infect and replicate in their host via the intestinal tract, e.g. many picornaviruses, several coronaviruses and avian influenza viruses of waterfowl. To analyze infection of enterocytes is a challenging task as culture systems for differentiated intestinal epithelial cells are not readily available and often have a life span that is too short for infection studies. Precision-cut intestinal slices (PCIS) from chicken embryos were prepared and shown that the epithelial cells lining the lumen of the intestine are viable for up to 4 days. Using lectin staining, it was demonstrated that α2,3-linked sialic acids, the preferred receptor determinants of avian influenza viruses, are present on the apical side of the epithelial cells. Furthermore, the epithelial cells (at the tips) of the villi were shown to be susceptible to infection by an avian influenza virus of the H9N2 subtype. This culture system will be useful to analyze virus infection of intestinal epithelial cells and it should be applicable also to the intestine of other species.


Assuntos
Células Epiteliais/virologia , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Influenza Aviária/patologia , Mucosa Intestinal/virologia , Experimentação Animal , Animais , Galinhas , Vírus da Influenza A Subtipo H9N2/isolamento & purificação
8.
Virol J ; 11: 229, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25547136

RESUMO

BACKGROUND: H9N2 avian influenza virus (AIV) becomes the focus for its ability of transmission to mammals and as a donor to provide internal genes to form the new epidemic lethal influenza viruses. Residue 627 in PB2 has been proven the virulence factor of H9N2 avian influenza virus in mice, but the detailed data for inflammation difference between H9N2 virus strains with site 627 mutation is still unclear. The inflammasome NLRP3 is recently reported as the cellular machinery responsible for activation of inflammatory processes and plays an important role during the development of inflammation caused by influenza virus infection. METHODS: In this study, we investigated the expression pattern of NLRP3 and its related cytokines of IL-1ß and TNF-α in BALB/c mice infected by H9N2 AIV strains with only a site 627 difference at both mRNA and protein levels at different time points. RESULTS: The results showed that the expression level of NLRP3, IL-1ß and TNF-α changed in the lung and brain of BALB/c mice after infection by VK627 and rVK627E. The immunohistological results showed that the positive cells of NLRP3, IL-1ß and TNF-α altered the positive levels of original cells in tissues and infiltrated inflammatory cells which caused by H9N2 infection. CONCLUSIONS: Our results provided the basic data at differences in expression pattern of NLRP3 and its related cytokines in BALB/c mice infected by H9N2 influenza viruses with only a site 627 difference. This implied that NLRP3 inflammasome plays a role in host response to influenza virus infection and determines the outcome of clinical manifestation and pathological injury. This will explain the variable of pathological presentation in tissues and enhance research on inflammation process of the AIV H9N2 infection.


Assuntos
Encéfalo/patologia , Proteínas de Transporte/biossíntese , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Interleucina-1beta/biossíntese , Pulmão/patologia , Infecções por Orthomyxoviridae/patologia , Fator de Necrose Tumoral alfa/biossíntese , Animais , Encéfalo/virologia , Proteínas de Transporte/genética , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Interleucina-1beta/genética , Pulmão/virologia , Camundongos Endogâmicos BALB C , Proteína 3 que Contém Domínio de Pirina da Família NLR , Infecções por Orthomyxoviridae/virologia , Fator de Necrose Tumoral alfa/genética
9.
Nature ; 501(7468): 556-9, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23842497

RESUMO

On 29 March 2013, the Chinese Center for Disease Control and Prevention confirmed the first reported case of human infection with an avian influenza A(H7N9) virus. The recent human infections with H7N9 virus, totalling over 130 cases with 39 fatalities to date, have been characterized by severe pulmonary disease and acute respiratory distress syndrome (ARDS). This is concerning because H7 viruses have typically been associated with ocular disease in humans, rather than severe respiratory disease. This recent outbreak underscores the need to better understand the pathogenesis and transmission of these viruses in mammals. Here we assess the ability of A/Anhui/1/2013 and A/Shanghai/1/2013 (H7N9) viruses, isolated from fatal human cases, to cause disease in mice and ferrets and to transmit to naive animals. Both H7N9 viruses replicated to higher titre in human airway epithelial cells and in the respiratory tract of ferrets compared to a seasonal H3N2 virus. Moreover, the H7N9 viruses showed greater infectivity and lethality in mice compared to genetically related H7N9 and H9N2 viruses. The H7N9 viruses were readily transmitted to naive ferrets through direct contact but, unlike the seasonal H3N2 virus, did not transmit readily by respiratory droplets. The lack of efficient respiratory droplet transmission was corroborated by low receptor-binding specificity for human-like α2,6-linked sialosides. Our results indicate that H7N9 viruses have the capacity for efficient replication in mammals and human airway cells and highlight the need for continued public health surveillance of this emerging virus.


Assuntos
Furões/virologia , Vírus da Influenza A/patogenicidade , Camundongos/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Animais , Linhagem Celular , Polaridade Celular , Modelos Animais de Doenças , Células Epiteliais/virologia , Feminino , Humanos , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H3N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/metabolismo , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos BALB C , Polissacarídeos/química , Polissacarídeos/metabolismo , Receptores Virais/química , Receptores Virais/metabolismo , Sistema Respiratório/citologia , Especificidade por Substrato , Replicação Viral/fisiologia
10.
PLoS One ; 7(3): e33732, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470468

RESUMO

The host response to the low pathogenic avian influenza (LPAI) H5N2, H5N3 and H9N2 viruses were examined in A549, MDCK, and CEF cells using a systems-based approach. The H5N2 and H5N3 viruses replicated efficiently in A549 and MDCK cells, while the H9N2 virus replicated least efficiently in these cell types. However, all LPAI viruses exhibited similar and higher replication efficiencies in CEF cells. A comparison of the host responses of these viruses and the H1N1/WSN virus and low passage pH1N1 clinical isolates was performed in A549 cells. The H9N2 and H5N2 virus subtypes exhibited a robust induction of Type I and Type III interferon (IFN) expression, sustained STAT1 activation from between 3 and 6 hpi, which correlated with large increases in IFN-stimulated gene (ISG) expression by 10 hpi. In contrast, cells infected with the pH1N1 or H1N1/WSN virus showed only small increases in Type III IFN signalling, low levels of ISG expression, and down-regulated expression of the IFN type I receptor. JNK activation and increased expression of the pro-apoptotic XAF1 protein was observed in A549 cells infected with all viruses except the H1N1/WSN virus, while MAPK p38 activation was only observed in cells infected with the pH1N1 and the H5 virus subtypes. No IFN expression and low ISG expression levels were generally observed in CEF cells infected with either AIV, while increased IFN and ISG expression was observed in response to the H1N1/WSN infection. These data suggest differences in the replication characteristics and antivirus signalling responses both among the different LPAI viruses, and between these viruses and the H1N1 viruses examined. These virus-specific differences in host cell signalling highlight the importance of examining the host response to avian influenza viruses that have not been extensively adapted to mammalian tissue culture.


Assuntos
Células Epiteliais/metabolismo , Influenza Humana/patologia , Interferon Tipo I/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Aves , Linhagem Celular Tumoral , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H5N2/genética , Vírus da Influenza A Subtipo H5N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Influenza Aviária/genética , Influenza Aviária/virologia , Influenza Humana/enzimologia , Interferon Tipo I/genética , Interferons , Interleucinas/genética , Interleucinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Viral/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Fator de Transcrição STAT1/metabolismo , Replicação Viral , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Peptides ; 32(6): 1103-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21550370

RESUMO

The bursa of Fabricius (BF) is acknowledged as central humoral immune organ unique to birds. Our purpose was to identify the potential function of a novel bursal-derived bioactive peptide. A bursal septpeptide (BSP-I), EPASGMM, first isolated from BF, reduced MCF and Hela tumor cells proliferation, and enhanced antitumor factor p53 luciferase activity and protein expression. Further, we found the significantly immune inducing function of BSP-I on antigen-specific immune response in BALB/c mice intraperitoneally immunized with inactivated avian influence virus (AIV, H(9)N(2) subtype) vaccine, including of enhancing the antibody (IgG, the isotypes IgG1 and IgG2a) production, and stimulating cytokines IL-4 and IFN-γ level, and inducing T cell immunophenotyping and lymphocyte proliferation. These results suggested that as the bioactive peptide from avian humoral immune system, various biological function of BSP-I may have far-reaching implication on immune system significance, which might provide novel insight on linking between humoral immune system and development of effective immunotherapeutic strategies for treating human cancers diseases.


Assuntos
Proteínas Aviárias/farmacologia , Bolsa de Fabricius/química , Imunoglobulina G/biossíntese , Fatores Imunológicos/farmacologia , Interferon gama/biossíntese , Interleucina-4/biossíntese , Oligopeptídeos/farmacologia , Animais , Anticorpos/imunologia , Proteínas Aviárias/química , Proteínas Aviárias/imunologia , Proteínas Aviárias/isolamento & purificação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Bolsa de Fabricius/imunologia , Bolsa de Fabricius/metabolismo , Proliferação de Células/efeitos dos fármacos , Galinhas/imunologia , Cromatografia de Fase Reversa , Ensaio de Imunoadsorção Enzimática , Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Imunoglobulina G/imunologia , Fatores Imunológicos/química , Fatores Imunológicos/imunologia , Fatores Imunológicos/isolamento & purificação , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H9N2/imunologia , Influenza Aviária/tratamento farmacológico , Influenza Aviária/imunologia , Interferon gama/imunologia , Interleucina-4/imunologia , Luciferases/análise , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Oligopeptídeos/química , Oligopeptídeos/imunologia , Oligopeptídeos/isolamento & purificação , Peptídeos/química , Peptídeos/imunologia , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Linfócitos T/imunologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Am J Respir Cell Mol Biol ; 44(1): 24-33, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20118223

RESUMO

The avian influenza virus H9N2 subtype has circulated in wild birds, is prevalent in domestic poultry, and has successfully crossed the species boundary to infect humans. Phylogenetic analyses showed that viruses of this subtype appear to have contributed to the generation of highly pathogenic H5N1 viruses. Little is known about the host responses to H9N2 viruses in human airway respiratory epithelium, the primary portal for viral infection. Using an apically differentiated primary human tracheobronchial epithelial (TBE) culture, we examined host immune responses to infection by an avian H9N2 virus, in comparison with a human H9N2 isolate. We found that IFN-ß was the prominent antiviral component, whereas interferon gamma-induced protein 10 kDa (IP-10), chemokine (C-C motif) ligand (CCL)-5 and TNF-α may be critical in proinflammatory responses to H9N2 viruses. In contrast, proinflammatory IL-1ß, IL-8, and even IL-6 may only play a minor role in pathogenicity. Apparently Toll-like receptor (TLR)-3, TLR-7, and melanoma differentiation-associated gene 5 (MDA-5) contributed to the innate immunity against the H9N2 viruses, and MDA-5 was important in the induction of IFN-ß. We showed that the avian H9N2 virus induced apoptosis through the mitochondria/cytochrome c-mediated intrinsic pathway, in addition to the caspase 8-mediated extrinsic pathway, as evidenced by the cytosolic presence of active caspase 9 and cytochrome c, independent of truncated BH3 interacting domain death agonist (Bid) activation. Further, we demonstrated that FLICE-like inhibitory protein (FLIP), an apoptotic dual regulator, and the p53-dependent Bcl-2 family members, Bax and Bcl-x(s), appeared to be involved in the regulation of extrinsic and intrinsic apoptotic pathways, respectively. The findings in this study will further our understanding of host defense mechanisms and the pathogenesis of H9N2 influenza viruses in human respiratory epithelium.


Assuntos
Apoptose , Brônquios/virologia , Células Epiteliais/virologia , Imunidade Inata , Vírus da Influenza A Subtipo H9N2/patogenicidade , Influenza Aviária/virologia , Influenza Humana/virologia , Traqueia/virologia , Animais , Apoptose/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Aves , Brônquios/imunologia , Brônquios/patologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspases/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Efeito Citopatogênico Viral , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Ativação Enzimática , Células Epiteliais/imunologia , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Imunidade Inata/genética , Mediadores da Inflamação/metabolismo , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Influenza Aviária/imunologia , Influenza Aviária/patologia , Influenza Humana/imunologia , Influenza Humana/patologia , Helicase IFIH1 Induzida por Interferon , Interferência de RNA , Fatores de Tempo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Traqueia/imunologia , Traqueia/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
13.
Virol J ; 7: 71, 2010 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-20334690

RESUMO

Avian influenza virus H9N2 isolates cause a mild influenza-like illness in humans. However, the pathogenesis of the H9N2 subtypes in human remains to be investigated. Using a human alveolar epithelial cell line A549 as host, we found that A/Quail/Hong Kong/G1/97 (H9N2/G1), which shares 6 viral "internal genes" with the lethal A/Hong Kong/156/97 (H5N1/97) virus, replicates efficiently whereas other H9N2 viruses, A/Duck/Hong Kong/Y280/97 (H9N2/Y280) and A/Chicken/Hong Kong/G9/97 (H9N2/G9), replicate poorly. Interestingly, we found that there is a difference in the translation of viral protein but not in the infectivity or transcription of viral genes of these H9N2 viruses in the infected cells. This difference may possibly be explained by H9N2/G1 being more efficient on viral protein production in specific cell types. These findings suggest that the H9N2/G1 virus like its counterpart H5N1/97 may be better adapted to the human host and replicates efficiently in human alveolar epithelial cells.


Assuntos
Células Epiteliais/virologia , Vírus da Influenza A Subtipo H9N2/fisiologia , Alvéolos Pulmonares/virologia , Replicação Viral , Linhagem Celular , Humanos , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Influenza Humana/virologia , Biossíntese de Proteínas , Proteínas Virais/biossíntese
14.
Virol J ; 7: 372, 2010 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-21192783

RESUMO

BACKGROUND: The importance of enhancing influenza resistance in domestic flocks is quite clear both scientifically and economically. Chicken is very susceptible to influenza virus. It has been reported that human cellular cyclophilin A (CypA) impaired influenza virus infection in 293T cells. Whether chicken CypA (chCypA) inhibits influenza virus replication is not known. The molecular mechanism of resistance in chicken to influenza virus remains to be studied. RESULTS: The chCypA gene was isolated and characterized in the present study. It contained an ORF of 498 bp encoding a polypeptide of 165 amino acids with an estimated molecular mass of 17.8 kDa sharing high identity with mammalian CypA genes. The chCypA demonstrated an anti-influenza activity as expected. ChCypA protein was shown to be able to specifically interact with influenza virus M1 protein. Cell susceptibility to influenza virus was reduced by over-expression of chCypA in CEF cells. The production of recombinant influenza virus A/WSN/33 reduced to one third in chCypA expressing cells comparing to chCypA absent cells. ChCypA was widely distributed in a variety of chicken tissues. It localized in cytoplasm of chicken embryo fibroblast (CEF) cells. Avian influenza virus infection induced its translocation from cytoplasm into nucleus. ChCypA expression was not significantly up-regulated by avian influenza virus infection. The present study indicated that chCypA was an inhibitory protein to influenza virus replication, suggesting a role as an intrinsic immunity factor against influenza virus infection. CONCLUSION: The present data demonstrates that chCypA possesses anti-influenza virus activity which allows the consideration of genetic improvement for resistance to influenza virus in chickens.


Assuntos
Ciclofilina A/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/virologia , Replicação Viral , Sequência de Aminoácidos , Animais , Linhagem Celular , Galinhas , Ciclofilina A/genética , Cães , Regulação da Expressão Gênica , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Influenza Aviária/metabolismo , Dados de Sequência Molecular , Transporte Proteico , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Proteínas da Matriz Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA