Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.235
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0285892, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38335176

RESUMO

BACKGROUND: Following the low incidence rates of non-SARS-CoV-2 respiratory viruses registered during the strict lockdown enforced in the pandemic, a resurgence of several endemic viruses in Catalonia (Spain) was noted during the early summer of 2021. OBJECTIVES: In this study, we investigated whether the circulation of non-SARS-CoV-2 respiratory viruses in Catalonia, assessed by Microbiological Reporting System of Catalonia (MRSC) and the Epidemiological Surveillance Network of Catalonia, was affected by the strict lockdown measures, as well as, the implication of the Coronavirus Disease 19 (COVID-19) de-escalation process in the late season outbreaks registered during the 2020-2021 season. STUDY DESIGN: A retrospective comparison of epidemic patterns in the respiratory viruses' incidence, using regional public health surveillance data from MRSC, was performed between weeks 26/2016 to week 27/2021. Data were expressed as the weekly total number of test positivity for individual viruses. A segmented negative binomial regression model was conducted, with two parameters included (level and trend) for each segment of the time series (2020 pre-lockdown, 2020 post-lockdown and 2021). Results were reported as a unit changed in the strict lockdown. RESULTS: A total of 51588 confirmed cases of the different respiratory viruses were included in the analysis, the majority were influenza cases (63.7%). An immediate reduction in the weekly number of cases was observed in 2020 after the COVID-19 outbreak for human adenovirus virus (HAdV) (ß2 = -2.606; P <0.01), human parainfluenza virus (HPIV) (ß2 = -3.023; P <0.01), influenza virus (IFV) (ß2 = -1.259; P <0.01), but not for respiratory syncytial virus (RSV), where the number of cases remained unchanged. During 2020, a significant negative trend was found for RSV (ß3 = -0.170, P <0.01), and a positive trend for HAdV (ß3 = 0.075, P <0.01). During 2021, a significant reduction in the weekly number of cases was also observed for all respiratory viruses, and a borderline non-significant reduction for HPIV (ß3 = -0.027; P = 0.086). Moreover, significant positive trends were found for each viral pathogen, except for influenza during 2020-2021 season, where cases remained close to zero. The respiratory viruses increased activity and their late season epidemic start particularly affected children under 6 years old. CONCLUSIONS: Our data not only provides evidence that occurrence of different respiratory virus infections was affected by the strict lockdown taken against SARS-CoV-2 but it also shows a late resurgence of seasonal respiratory viruses' cases during the 2020-2021 season following the relaxation of COVID-19-targeted non-pharmaceutical interventions.


Assuntos
COVID-19 , Influenza Humana , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Criança , Humanos , Pré-Escolar , COVID-19/epidemiologia , Influenza Humana/epidemiologia , Espanha/epidemiologia , SARS-CoV-2 , Estudos Retrospectivos , Controle de Doenças Transmissíveis , Vírus da Parainfluenza 1 Humana , Pandemias , Infecções Respiratórias/epidemiologia
2.
BMC Infect Dis ; 23(1): 467, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37442963

RESUMO

BACKGROUND: To investigate the impact of the coronavirus disease 2019 (COVID-19) outbreak on the prevalence of respiratory viruses among pediatric patients with acute respiratory infections in Xuzhou from 2015-2021. METHODS: Severe acute respiratory infection (SARI) cases in hospitalized children were collected from 2015-2021 in Xuzhou, China. Influenza virus(IFV), respiratory syncytial virus (RSV), human parainfluenza virus type 3(hPIV-3), human rhinovirus (hRV), human adenovirus(hAdV), human coronavirus(hCoV) were detected by real-time fluorescence polymerase chain reaction(RT-qPCR), and the results were statistically analyzed by SPSS 23.0 software. RESULTS: A total of 1663 samples with SARI were collected from 2015-2021, with a male-to-female ratio of 1.67:1 and a total virus detection rate of 38.5% (641/1663). The total detection rate of respiratory viruses decreased from 46.2% (2015-2019) to 36% (2020-2021) under the control measures for COVID-19 (P < 0.01). The three viruses with the highest detection rates changed from hRV, RSV, and hPIV-3 to hRV, RSV, and hCoV. The epidemic trend of hPIV-3 and hAdV was upside down before and after control measures(P < 0.01); however, the epidemic trend of RV and RSV had not changed from 2015 to 2021(P > 0.05). After the control measures, the detection rate of hPIV-3 decreased in all age groups, and the detection rate of hCoV increased in all except the 1 ~ 3 years old group. CONCLUSIONS: Implementing control measures for COVID-19 outbreak curbed the spread of respiratory viruses among children as a whole. However, the epidemic of RV and RSV was not affected by the COVID-19 control policy.


Assuntos
COVID-19 , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Vírus , Criança , Humanos , Masculino , Feminino , Lactente , Pré-Escolar , Pandemias , Conduta Expectante , COVID-19/epidemiologia , Infecções Respiratórias/epidemiologia , China/epidemiologia , Vírus da Parainfluenza 1 Humana
3.
J Microbiol Immunol Infect ; 56(4): 772-781, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37246060

RESUMO

BACKGROUND: Acute respiratory infections (ARIs) are common in children. We developed machine learning models to predict pediatric ARI pathogens at admission. METHODS: We included hospitalized children with respiratory infections between 2010 and 2018. Clinical features were collected within 24 h of admission to construct models. The outcome of interest was the prediction of 6 common respiratory pathogens, including adenovirus, influenza virus types A and B, parainfluenza virus (PIV), respiratory syncytial virus (RSV), and Mycoplasma pneumoniae (MP). Model performance was estimated using area under the receiver operating characteristic curve (AUROC). Feature importance was measured using Shapley Additive exPlanation (SHAP) values. RESULTS: A total of 12,694 admissions were included. Models trained with 9 features (age, event pattern, fever, C-reactive protein, white blood cell count, platelet count, lymphocyte ratio, peak temperature, peak heart rate) achieved the best performance (AUROC: MP 0.87, 95% CI 0.83-0.90; RSV 0.84, 95% CI 0.82-0.86; adenovirus 0.81, 95% CI 0.77-0.84; influenza A 0.77, 95% CI 0.73-0.80; influenza B 0.70, 95% CI 0.65-0.75; PIV 0.73, 95% CI 0.69-0.77). Age was the most important feature to predict MP, RSV and PIV infections. Event patterns were useful for influenza virus prediction, and C-reactive protein had the highest SHAP value for adenovirus infections. CONCLUSION: We demonstrate how artificial intelligence can assist clinicians identify potential pathogens associated with pediatric ARIs upon admission. Our models provide explainable results that could help optimize the use of diagnostic testing. Integrating our models into clinical workflows may lead to improved patient outcomes and reduce unnecessary medical costs.


Assuntos
Infecções por Adenoviridae , Influenza Humana , Pneumonia , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Criança , Humanos , Lactente , Criança Hospitalizada , Inteligência Artificial , Proteína C-Reativa , Infecções Respiratórias/diagnóstico , Mycoplasma pneumoniae , Adenoviridae , Vírus da Parainfluenza 1 Humana , Aprendizado de Máquina
4.
Sci Rep ; 13(1): 6319, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072619

RESUMO

Respiratory tract infection is one of the most common reasons for both morbidity and mortality worldwide. High attention has been paid to the etiological tracing of respiratory tract infection since the advent of COVID-19. In this study, we aimed to evaluate the epidemiological features of pathogens in respiratory tract infection, especially during COVID-19 pandemic. A total of 7668 patients with respiratory tract infection who admitted to Qilu Hospital of Shandong University from March 2019 to Dec 2021 were retrospectively included. The respiratory tract specimens were detected using a commercial multiplex PCR-based panel assay for common respiratory pathogens including influenza A virus (Flu-A), influenza A virus H1N1 (H1N1), influenza A virus H3N2 (H3N2), influenza B virus (Flu-B), parainfluenza virus (PIV), respiratory syncytial virus (RSV), adenovirus (ADV), Boca virus (Boca), human Rhinovirus (HRV), Metapneumovirus (MPV), Coronavirus (COV), Mycoplasma pneumoniae (MP), and Chlamydia (Ch). The positive rates were compared using a chi-square test. Compared with 2019, the positive rate of pathogen detection during from January 2020 to December 2021 was significantly lower, especially the detection of Flu-A. The positive rate of respiratory pathogen strains was 40.18% during COVID-19 pandemic, and a total of 297 cases (4.69%) of mixed infection with two or more pathogens were detected. There was no statistical difference in the positive rate between male and female patients. However, the positive rates of infection were different among different age groups, with higher incidence of RSV in infancy and toddler group, and MP infection in children and teenager group. While, HRV was the most common pathogen in the adult patients. Moreover, Flu-A and Flu-B were higher in winter, and MP and RSV were higher in spring, autumn and winter. The pathogens such as ADV, BOCA, PIV, and COV were detected without significant seasonal distribution. In conclusion, respiratory pathogen infection rates may vary by age and season, regardless of gender. During the COVID-19 epidemic, blocking transmission routes could help reduce the incidence of respiratory tract infection. The current prevalence of respiratory tract infection pathogens is of great significance for clinical prevention, diagnosis and treatment.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Adulto , Adolescente , Humanos , Masculino , Feminino , Lactente , COVID-19/epidemiologia , Vírus da Influenza A Subtipo H3N2 , Pandemias , Estudos Retrospectivos , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia , Influenza Humana/epidemiologia , China/epidemiologia , Reação em Cadeia da Polimerase Multiplex , Mycoplasma pneumoniae , Vírus da Parainfluenza 1 Humana
5.
PeerJ ; 11: e15008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935913

RESUMO

Background: The epidemiology of respiratory tract infections (RTI) has dramatically changed over the course of the COVID-19 pandemic. A major effort in the clinical management of RTI has been directed toward diagnosing COVID-19, while the causes of other, common community RTI often remain enigmatic. To shed light on the etiological causes of RTI during a low COVID-19 transmission period in 2021, we did a pilot study using molecular testing for virologic causes of upper RTI among adults with respiratory symptoms from Almaty, Kazakhstan. Methods: Adults presenting at two public hospitals with respiratory symptoms were screened using SARS-CoV-2 PCR on nasopharyngeal swabs. A subset of RTI+, COVID-19-negative adults (n = 50) was then tested for the presence of common RTI viruses and influenza A virus (IAV). Next generation virome sequencing was used to further characterize the PCR-detected RTI pathogens. Results: Of 1,812 symptomatic adults, 21 (1.2%) tested SARS-CoV-2-positive. Within the COVID-19 negative outpatient subset, 33/50 subjects (66%) had a positive PCR result for a common community RTI virus, consisting of human parainfluenza virus 3-4 (hPIV 3-4) in 25/50 (50%), rhinovirus (hRV) in 2 (4%), hPIV4-hRV co-infection in four (8%) and adenovirus or the OCR43/HKU-1 coronavirus in two (4%) cases; no IAV was detected. Virome sequencing allowed to reconstruct sequences of most PCR-identified rhinoviruses and hPIV-3/human respirovirus-3. Conclusions: COVID-19 was cause to a low proportion of symptomatic RTI among adults. Among COVID-negative participants, symptomatic RTI was predominantly associated with hPIV and hRV. Therefore, respiratory viruses other than SARS-CoV-2 should be considered in the clinical management and prevention of adult RTI in the post-pandemic era.


Assuntos
COVID-19 , Vírus da Influenza A , Infecções Respiratórias , Adulto , Humanos , COVID-19/epidemiologia , Pandemias , Projetos Piloto , SARS-CoV-2/genética , Infecções Respiratórias/diagnóstico , Vírus da Parainfluenza 1 Humana , Rhinovirus/genética , Vírus da Parainfluenza 2 Humana , Reação em Cadeia da Polimerase Multiplex
6.
Adv Exp Med Biol ; 1370: 19-28, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35699841

RESUMO

The availability of virucidal compounds to reduce the impact of respiratory viruses is a relevant topic for public health, especially during the recent coronavirus disease (COVID-19) pandemic. Antimicrobial properties of Xibornol are known since the 1970s, but its activity on viruses is currently little explored. In this study, Xibornol activity at a fixed concentration of 0.03 mg/100 ml has been evaluated on five respiratory viruses (Human Adenovirus 5, Human Rhinovirus type 13, Human Coronavirus 229E, Human Parainfluenza Virus type 1, and Human Respiratory Syncytial Virus) through in vitro experiments based on adapted European standard UNI EN 14476-20019. The experiments were carried out under two different environmental conditions, one with the addition of fetal bovine serum to simulate an in vivo condition (dirty condition) and the other without the addition of any organic substances (clean condition). The viral abatement of Xibornol (expressed as Log10 reduction - LR) was statistically significant under both clean and dirty environmental conditions. Namely, in clean condition, LR ranged from 2.67 to 3.84, while in the dirty one the abatement was slightly lower (from 1.75 to 3.03). Parainfluenza Virus and Human Adenovirus were most resistant compared to the other viruses. The obtained data confirmed Xibornol activity and its use as topic substance for viral inactivation to prevent upper respiratory tract disease.


Assuntos
Adenovírus Humanos , COVID-19 , Coronavirus Humano 229E , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Humanos , Vírus da Parainfluenza 1 Humana , Rhinovirus
7.
J Med Virol ; 94(9): 4319-4328, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35593042

RESUMO

The viral etiologies responsible for acute lower respiratory tract infections (ALRI) are a major cause of pediatric hospitalization, and some develop severe diseases requiring pediatric intensive care unit (PICU) admission. The aim of this study is to determine the prevalence of viruses and risk factors associated with PICU admission among patients hospitalized for ALRI. Nasopharyngeal swabs were collected to detect human rhinovirus (HRV), influenza A and B viruses (IAV and IBV), parainfluenza viruses (PIV), and respiratory syncytial virus (RSV) by reverse transcription-polymerase chain reaction (PCR) and adenovirus (ADV) by PCR. Of the 5590 pediatric inpatients enrolled, respiratory viral infection occurred in 2102 (37.60%) patients, including 1846 (33.02%) single and 256 (4.58%) mixed viral infections. Among the nasopharyngeal swabs from pediatric inpatients, HRV accounted for the highest detection rate (16.48%), followed by PIV (8.35%), RSV (7.41%), ADV (4.63%), IAV (3.51%), and IBV (2.08%). The positive rate of viral tests decreased with increasing age and was higher in males (39.29%) than females (34.67%). The prevalence of viral infection was the highest in winter (41.57%) and lowest in autumn (31.78%). Each virus had a seasonal pattern, with peaks occurring in months of their epidemic seasons. RSV infection and the presence of comorbidities including congenital tracheal stenosis, congenital heart disease, metabolic disorder, immunodeficiency, renal disease, gastrointestinal disease, and neurological disorder might be associated with the need for PICU admission. Therefore, this study provides useful information for the prevention and control of virus-related respiratory diseases and the early identification of and intervention in severe cases.


Assuntos
Enterovirus , Vírus da Influenza A , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Viroses , Adenoviridae , Criança , China/epidemiologia , Feminino , Humanos , Lactente , Vírus da Influenza B , Pacientes Internados , Masculino , Vírus da Parainfluenza 1 Humana , Vírus Sincicial Respiratório Humano/genética , Estações do Ano
8.
Clin Infect Dis ; 75(1): e1054-e1062, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34788811

RESUMO

BACKGROUND: To combat the coronavirus disease 2019 (COVID-19) pandemic, nonpharmaceutical interventions (NPIs) were implemented worldwide, which impacted a broad spectrum of acute respiratory infections (ARIs). METHODS: Etiologically diagnostic data from 142 559 cases with ARIs, who were tested for 8 viral pathogens (influenza virus [IFV], respiratory syncytial virus [RSV], human parainfluenza virus [HPIV], human adenovirus [HAdV], human metapneumovirus [HMPV], human coronavirus [HCoV], human bocavirus [HBoV], and human rhinovirus [HRV]) between 2012 and 2021, were analyzed to assess the changes in respiratory infections in China during the first COVID-19 pandemic year compared with pre-pandemic years. RESULTS: Test-positive rates of all respiratory viruses decreased during 2020, compared to the average levels during 2012-2019, with changes ranging from -17.2% for RSV to -87.6% for IFV. Sharp decreases mostly occurred between February and August when massive NPIs remained active, although HRV rebounded to the historical level during the summer. While IFV and HMPV were consistently suppressed year-round, RSV, HPIV, HCoV, HRV, and HBoV resurged and went beyond historical levels during September 2020-January 2021, after NPIs were largely relaxed and schools reopened. Resurgence was more prominent among children <18 years and in northern China. These observations remain valid after accounting for seasonality and long-term trend of each virus. CONCLUSIONS: Activities of respiratory viral infections were reduced substantially in the early phases of the COVID-19 pandemic, and massive NPIs were likely the main driver. Lifting of NPIs can lead to resurgence of viral infections, particularly in children.


Assuntos
COVID-19 , Bocavirus Humano , Metapneumovirus , Orthomyxoviridae , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Viroses , Vírus , COVID-19/epidemiologia , Criança , Humanos , Pandemias , Vírus da Parainfluenza 1 Humana
9.
Viruses ; 13(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34696497

RESUMO

Respiratory viruses are known to be the most frequent causative mediators of lung infections in humans, bearing significant impact on the host cell signaling machinery due to their host-dependency for efficient replication. Certain cellular functions are actively induced by respiratory viruses for their own benefit. This includes metabolic pathways such as glycolysis, fatty acid synthesis (FAS) and the tricarboxylic acid (TCA) cycle, among others, which are modified during viral infections. Here, we summarize the current knowledge of metabolic pathway modifications mediated by the acute respiratory viruses respiratory syncytial virus (RSV), rhinovirus (RV), influenza virus (IV), parainfluenza virus (PIV), coronavirus (CoV) and adenovirus (AdV), and highlight potential targets and compounds for therapeutic approaches.


Assuntos
Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético/fisiologia , Ácidos Graxos/biossíntese , Glicólise/fisiologia , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia , Adenoviridae/metabolismo , Coronavirus/metabolismo , Humanos , Orthomyxoviridae/metabolismo , Vírus da Parainfluenza 1 Humana/metabolismo , Vírus Sinciciais Respiratórios/metabolismo , Rhinovirus/metabolismo
10.
J Microbiol Immunol Infect ; 54(5): 801-807, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34217634

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) manifests symptoms as common etiologies of respiratory tract infections (RTIs). During the pandemic of COVID-19, identifying the etiologies correctly from patients with RTI symptoms was crucial in not only disease control but preventing healthcare system from collapsing. By applying sensitive PCR-based molecular assays, we detected the etiologic agents and delineated the epidemiologic picture of RTIs in the early phase of COVID-19 pandemic. METHODS: From December 2019 to February 2020, we screened patients presented with RTIs using multiplex PCR-based diagnostic assays. Data from pediatric and adult patients were compared with different months and units in the hospital. RESULTS: Of all 1631 patients including 1445 adult and 186 pediatric patients screened, 8 viruses and 4 bacteria were identified. Positive rates were 25% in December, 37% in January, and 20% in February, with pediatric patients having higher positive rates than adults (Ps < 0.001). In pediatric patients, RhV/EnV was the most commonly detected, followed by parainfluenza viruses. Most Mycoplasma pneumoniae infection occurred in pediatric patients. RhV/EnV was the most commonly detected agent in pediatric patients admitted to intensive care units (ICUs), while influenza accounted for the majority of adult cases with critical illness. Noticeably, seasonal coronavirus ranked second in both adult and pediatric patients with ICU admission. CONCLUSION: While we focused on the pandemic of COVID-19, common etiologies still accounted for the majority of RTIs and lead to severe diseases, including other seasonal coronaviruses.


Assuntos
COVID-19/epidemiologia , Surtos de Doenças , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/etiologia , Adulto , COVID-19/diagnóstico , Criança , Humanos , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Reação em Cadeia da Polimerase Multiplex , Pandemias , Vírus da Parainfluenza 1 Humana , Vírus da Parainfluenza 2 Humana , Pneumonia por Mycoplasma/diagnóstico , Pneumonia por Mycoplasma/epidemiologia , Estudos Retrospectivos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Estações do Ano , Taiwan/epidemiologia
11.
Viruses ; 13(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072332

RESUMO

Human respiratory syncytial virus (HRSV), human metapneumovirus (HMPV), and human parainfluenza viruses (HPIVs) are leading causes of respiratory disease in young children, the elderly, and individuals of all ages with immunosuppression. Vaccination strategies against these pneumoviruses and paramyxoviruses are vast in number, yet no licensed vaccines are available. Here, we review development of Sendai virus (SeV), a versatile pediatric vaccine that can (a) serve as a Jennerian vaccine against HPIV1, (b) serve as a recombinant vaccine against HRSV, HPIV2, HPIV3, and HMPV, (c) accommodate foreign genes for viral glycoproteins in multiple intergenic positions, (d) induce durable, mucosal, B-cell, and T-cell immune responses without enhanced immunopathology, (e) protect cotton rats, African green monkeys, and chimpanzees from infection, and (f) be formulated into a vaccine cocktail. Clinical phase I safety trials of SeV have been completed in adults and 3-6-year-old children. Clinical testing of SeVRSV, an HRSV fusion (F) glycoprotein gene recombinant, has also been completed in adults. Positive results from these studies, and collaborative efforts with the National Institutes of Health and the Serum Institute of India assist advanced development of SeV-based vaccines. Prospects are now good for vaccine successes in infants and consequent protection against serious viral disease.


Assuntos
Vetores Genéticos/genética , Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/virologia , Vírus Sendai/genética , Proteínas do Envelope Viral/genética , Vacinas Virais/genética , Vírus/genética , Animais , Anticorpos Antivirais/sangue , Ensaios Clínicos como Assunto , Camundongos , Vírus da Parainfluenza 1 Humana/genética , Vírus da Parainfluenza 1 Humana/imunologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Vírus/classificação , Vírus/imunologia
12.
Food Environ Virol ; 13(3): 322-328, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34086254

RESUMO

The objective of this study was to investigate human coronavirus NL63 (HCoV-NL63) prevalence among the other respiratory viruses such as parainfluenza, respiratory syncytial virus, and non-enteric adenoviruses in clinical specimens of Egyptian children and raw sewage samples. One hundred clinical specimens were collected from Egyptian children suffering from upper and lower respiratory viral infections in the years 2005-2006 to detect HCoV-NL63 genome using RT-PCR. All the specimens were negative for the virus. Also, a complete absence of HCoV-NL63 genome was observed in the twenty-four raw sewage samples collected from two wastewater treatment plants within Greater Cairo from February 2006 to January 2007. Using nested RT-PCR, parainfluenza virus type 1, respiratory syncytial virus type A, adenovirus type 4, and adenovirus type 7 were detected in 3%, 2%, 5%, and 2% of the clinical specimens, respectively. Of these viruses, only adenovirus type 4 was detected in 1/24 (4.17%) of the raw sewage samples, while a complete absence of the other investigated respiratory viruses was observed in the raw sewage samples. The low percentage of positivity in the clinical specimens, the concentration method of the raw sewage samples, and the indirect routes of transmission may be the reasons for the absence of respiratory viruses in raw sewage samples. On the other hand, enteric adenoviruses were detected in 21/24 (87.5%) of the raw sewage samples with a higher prevalence of adenovirus type 41 than adenovirus type 40. A direct route of transmission of enteric viruses to raw sewage may be the reason for the high positivity percentage of enteric adenoviruses in raw sewage samples.


Assuntos
Adenoviridae , Infecções por Coronavirus/virologia , Coronavirus Humano NL63 , Vírus da Parainfluenza 1 Humana , Vírus Sincicial Respiratório Humano , Infecções Respiratórias/virologia , Esgotos/virologia , Infecções por Adenoviridae/virologia , Pré-Escolar , Cidades , Egito/epidemiologia , Humanos , Lactente , Reação em Cadeia da Polimerase , Infecções por Vírus Respiratório Sincicial/virologia , Infecções por Respirovirus/virologia , Manejo de Espécimes , Vírus
13.
Trop Med Int Health ; 26(6): 672-679, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33666303

RESUMO

OBJECTIVE: The frequency and seasonality of viruses in tropical regions are scarcely reported. We estimated the frequency of seven respiratory viruses and assessed seasonality of respiratory syncytial virus (RSV) and influenza viruses in a tropical city. METHODS: Children (age ≤ 18 years) with acute respiratory infection were investigated in Salvador, Brazil, between July 2014 and June 2017. Respiratory viruses were searched by direct immunofluorescence and real-time polymerase chain reaction for detection of RSV, influenza A virus, influenza B virus, adenovirus (ADV) and parainfluenza viruses (PIV) 1, 2 and 3. Seasonal distribution was evaluated by Prais-Winsten regression. Due to similar distribution, influenza A and influenza B viruses were grouped to analyse seasonality. RESULTS: The study group comprised 387 cases whose median (IQR) age was 26.4 (10.5-50.1) months. Respiratory viruses were detected in 106 (27.4%) cases. RSV (n = 76; 19.6%), influenza A virus (n = 11; 2.8%), influenza B virus (n = 7; 1.8%), ADV (n = 5; 1.3%), PIV 1 (n = 5; 1.3%), PIV 3 (n = 3; 0.8%) and PIV 2 (n = 1; 0.3%) were identified. Monthly count of RSV cases demonstrated seasonal distribution (b3 = 0.626; P = 0.003). More than half (42/76 [55.3%]) of all RSV cases were detected from April to June. Monthly count of influenza cases also showed seasonal distribution (b3 = -0.264; P = 0.032). Influenza cases peaked from November to January with 44.4% (8/18) of all influenza cases. CONCLUSIONS: RSV was the most frequently detected virus. RSV and influenza viruses showed seasonal distribution. These data may be useful to plan the best time to carry out prophylaxis and to increase the number of hospital beds.


Assuntos
Influenza Humana/epidemiologia , Infecções por Paramyxoviridae/epidemiologia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Estações do Ano , Adenoviridae/isolamento & purificação , Brasil/epidemiologia , Pré-Escolar , Estudos Transversais , Feminino , Imunofluorescência , Humanos , Incidência , Lactente , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Masculino , Vírus da Parainfluenza 1 Humana/isolamento & purificação , Vírus da Parainfluenza 2 Humana/isolamento & purificação , Vírus da Parainfluenza 3 Humana/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Vírus Sinciciais Respiratórios/isolamento & purificação , Clima Tropical
14.
Hum Vaccin Immunother ; 17(2): 554-559, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750273

RESUMO

SeVRSV is a replication-competent Sendai virus (SeV)-based vaccine carrying the respiratory syncytial virus (RSV) fusion protein (F) gene. Unmanipulated, non-recombinant SeV is a murine parainfluenza virus type 1 (PIV-1) and serves as a Jennerian vaccine for human PIV-1 (hPIV-1). SeV protects African green monkeys (AGM) from infection after hPIV-1 challenge. The recombinant SeVRSV additionally targets RSV and protects AGM from lower respiratory infections after RSV challenge. The present study is the first to report on the safety, viral genome detection, and immunogenicity following SeVRSV vaccination of healthy adults. Seventeen and four healthy adults received intranasal SeVRSV and PBS, respectively, followed by six months of safety monitoring. Virus genome (in nasal wash) and vaccine-specific antibodies (in sera) were monitored for two and four weeks, respectively, post-vaccination. The vaccine was well-tolerated with only mild to moderate reactions that were also present in the placebo group. No severe reactions occurred. As expected, due to preexisting immunity toward hPIV-1 and RSV in adults, vaccine genome detection was transient. There were minimal antibody responses to SeV and negligible responses to RSV F. Results encourage further studies of SeVRSV with progression toward a clinical trial in seronegative children. Abbreviations: AE-adverse event; SAE-serious adverse event; SeV-Sendai virus; RSV-respiratory syncytial virus; PIV-1-parainfluenza virus-type 1; hPIV-1-human parainfluenza virus-type 1; F-RSV fusion protein; SeVRSV-recombinant SeV carrying the RSV F gene; Ab-antibody; MSW-medically significant wheezing; NOCMC-new onset chronic medical condition, mITT-modified Intent to Treat; ALRI-acute lower respiratory tract infection.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Adulto , Animais , Anticorpos Antivirais , Chlorocebus aethiops , Humanos , Imunogenicidade da Vacina , Vírus da Parainfluenza 1 Humana/genética , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/genética , Vírus Sendai/genética , Proteínas Virais de Fusão/genética
15.
PLoS One ; 15(12): e0243735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33315873

RESUMO

INTRODUCTION: Wheezing is a major problem in children, and respiratory viruses are often believed to be the causative agent. While molecular detection tools enable identification of respiratory viruses in wheezing children, it remains unclear if and how these viruses are associated with wheezing. The objective of this systematic review is to clarify the prevalence of different respiratory viruses in children with wheezing. METHODS: We performed an electronic in Pubmed and Global Index Medicus on 01 July 2019 and manual search. We performed search of studies that have detected common respiratory viruses in children ≤18 years with wheezing. We included only studies using polymerase chain reaction (PCR) assays. Study data were extracted and the quality of articles assessed. We conducted sensitivity, subgroup, publication bias, and heterogeneity analyses using a random effects model. RESULTS: The systematic review included 33 studies. Rhinovirus, with a prevalence of 35.6% (95% CI 24.6-47.3, I2 98.4%), and respiratory syncytial virus, at 31.0% (95% CI 19.9-43.3, I2 96.4%), were the most common viruses detected. The prevalence of other respiratory viruses was as follows: human bocavirus 8.1% (95% CI 5.3-11.3, I2 84.6%), human adenovirus 7.7% (95% CI 2.6-15.0, I2 91.0%), influenza virus6.5% (95% CI 2.2-12.6, I2 92.4%), human metapneumovirus5.8% (95% CI 3.4-8.8, I2 89.0%), enterovirus 4.3% (95% CI 0.1-12.9, I2 96.2%), human parainfluenza virus 3.8% (95% CI 1.5-6.9, I2 79.1%), and human coronavirus 2.2% (95% CI 0.6-4.4, I2 79.4%). CONCLUSIONS: Our results suggest that rhinovirus and respiratory syncytial virus may contribute to the etiology of wheezing in children. While the clinical implications of molecular detection of respiratory viruses remains an interesting question, this study helps to illuminate the potential of role respiratory viruses in pediatric wheezing. REVIEW REGISTRATION: PROSPERO, CRD42018115128.


Assuntos
Sons Respiratórios/etiologia , Sons Respiratórios/genética , Infecções Respiratórias/diagnóstico , Bocavirus/genética , Bocavirus/isolamento & purificação , Bocavirus/patogenicidade , Criança , Pré-Escolar , Coronavirus/isolamento & purificação , Coronavirus/patogenicidade , Humanos , Orthomyxoviridae/genética , Orthomyxoviridae/isolamento & purificação , Orthomyxoviridae/patogenicidade , Vírus da Parainfluenza 1 Humana/genética , Vírus da Parainfluenza 1 Humana/isolamento & purificação , Vírus da Parainfluenza 1 Humana/patogenicidade , Reação em Cadeia da Polimerase , Sons Respiratórios/fisiopatologia , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Infecções Respiratórias/genética , Infecções Respiratórias/virologia
16.
Front Immunol ; 11: 575977, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123159

RESUMO

Human Parainfluenza Virus-3 (HPIV3) causes severe respiratory illness in immunocompromised patients and lacks approved anti-viral therapies. A phase I study of adoptively transferred virus-specific T-cells (VSTs) targeting HPIV3 following bone marrow transplantation is underway (NCT03180216). We sought to identify immunodominant epitopes within HPIV3 Matrix protein and their cross-reactivity against related viral proteins. VSTs were generated from peripheral blood of healthy donors by ex-vivo expansion after stimulation with a 15-mer peptide library encompassing HPIV3 matrix protein. Epitope mapping was performed using IFN-γ ELIspot with combinatorial peptide pools. Flow cytometry was used to characterize products with intracellular cytokine staining. In 10 VST products tested, we discovered 12 novel immunodominant epitopes. All products recognized an epitope at the C-terminus. On IFN-γ ELISpot, individual peptides eliciting activity demonstrated mean IFN-γ spot forming units per well (SFU)/1x105 cells of 115.5 (range 24.5-247.5). VST products were polyfunctional, releasing IFN-γ and TNF-α in response to identified epitopes, which were primarily HLA Class II restricted. Peptides from Human Parainfluenza Virus-1 corresponding to the HPIV3 epitopes showed cross-reactivity for HPIV1 in 11 of 12 tested epitopes (mean cross reactivity index: 1.19). Characterization of HPIV3 epitopes may enable development of third-party VSTs to treat immune suppressed patients with HPIV infection.


Assuntos
Transferência Adotiva , Epitopos Imunodominantes , Vírus da Parainfluenza 1 Humana/imunologia , Vírus da Parainfluenza 3 Humana/imunologia , Infecções por Respirovirus/terapia , Linfócitos T/transplante , Proteínas da Matriz Viral/imunologia , Células Cultivadas , Ensaios Clínicos Fase I como Assunto , Reações Cruzadas , ELISPOT , Mapeamento de Epitopos , Interações Hospedeiro-Patógeno , Humanos , Interferon gama/metabolismo , Testes de Liberação de Interferon-gama , Vírus da Parainfluenza 1 Humana/patogenicidade , Vírus da Parainfluenza 3 Humana/patogenicidade , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
17.
Semin Respir Crit Care Med ; 41(4): 579-591, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32629492

RESUMO

Community-acquired pneumonia (CAP) is a major cause of morbidity and mortality worldwide. There is growing appreciation of the burden of noninfluenza viral pathogens in CAP. Due to multiple factors including pneumococcal vaccination programs, declining rates of cigarette smoking, an aging population, and increasingly sensitive diagnostic tests, respiratory viruses are now the most common pathogens detected in CAP, outpacing Streptococcus pneumoniae. Noninfluenza respiratory pathogens are widely accepted as causal pathogens in CAP including in immunocompetent patients. This review provides an overview of five noninfluenza respiratory viral pathogens commonly implicated in CAP pathogenesis: rhinovirus, human metapneumovirus, respiratory syncytial virus, human parainfluenza virus, and human adenoviruses. Nucleic acid amplification testing platforms and their impact on antimicrobial stewardship efforts are also considered.


Assuntos
Infecções Comunitárias Adquiridas/virologia , Pneumonia Viral/virologia , Viroses/virologia , Adenovírus Humanos , Coinfecção/virologia , Humanos , Hospedeiro Imunocomprometido , Metapneumovirus , Vírus da Parainfluenza 1 Humana , Vírus da Parainfluenza 3 Humana , Pneumonia Viral/diagnóstico , Pneumonia Viral/terapia , Vírus Sincicial Respiratório Humano , Rhinovirus
18.
J Med Virol ; 92(8): 982-987, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31889316

RESUMO

This study investigated the seasonality and secular trends in the etiology of viral lower respiratory tract infections (LRTIs) among hospitalized children in Wenzhou, southeastern China. A retrospective review was conducted concerning viral LRTIs in children hospitalized at a university hospital between January 1, 2008 and December 31, 2017. Direct immunofluorescence was used to detect respiratory syncytial virus (RSV), adenovirus (AdV), influenza A virus (Inf A), influenza B virus (Inf B), and human parainfluenza virus types 1 to 3 (hPIV1-3). Of 89 898 children tested, at least one viral respiratory pathogen was identified in 25.6% and multiple pathogens were identified in 0.4%. RSV (17.6%), hPIV3 (4.0%), and AdV (2.2%) were the most frequently detected pathogens. The proportion of positive samples varied with age and was the highest in children aged <6 months (36.2%). Seasonal differences were observed in RSV, AdV, Inf A, Inf B, hPIV1, and hPIV3 infections. There was a declining trend in the proportion of positive samples over time, primarily due to a decrease in RSV and hPIV3 infections. RSV, hPIV3, and AdV were the most common viral respiratory pathogens identified among hospitalized children with LRTIs. The distribution of viruses varied with age and season.


Assuntos
Infecções por Adenovirus Humanos/epidemiologia , Influenza Humana/epidemiologia , Infecções por Paramyxoviridae/epidemiologia , Infecções Respiratórias/virologia , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/isolamento & purificação , Adolescente , Distribuição por Idade , Fatores Etários , Criança , Pré-Escolar , China/epidemiologia , Coinfecção/virologia , Hospitalização , Humanos , Lactente , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/virologia , Vírus da Parainfluenza 1 Humana , Vírus da Parainfluenza 2 Humana/isolamento & purificação , Vírus da Parainfluenza 3 Humana/isolamento & purificação , Infecções por Paramyxoviridae/virologia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sinciciais Respiratórios/isolamento & purificação , Infecções Respiratórias/epidemiologia , Estudos Retrospectivos , Estações do Ano
19.
Epidemiol Infect ; 147: e221, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-31364539

RESUMO

Several studies have reported evidence of interference between respiratory viruses: respiratory viruses rarely reach their epidemic peak concurrently and there appears to be a negative association between infection with one respiratory virus and co-infection with another. We used results spanning 16 years (2002-2017) of a routine diagnostic multiplex panel that tests for nine respiratory viruses to further investigate these interactions in Victoria, Australia. Time series analyses were used to plot the proportion positive for each virus. The seasonality of all viruses included was compared with respiratory syncytial virus (RSV) and influenza A virus using cross-correlations. Logistic regression was used to explore the likelihood of co-infection with one virus given infection with another. Seasonal peaks were observed each year for influenza A and RSV and less frequently for influenza B, coronavirus and parainfluenza virus. RSV circulated an average of 6 weeks before influenza A. Co-infection with another respiratory virus was less common with picornavirus, RSV or influenza A infection. Our findings provide further evidence of a temporal relationship in the circulation of respiratory viruses. A greater understanding of the interaction between respiratory viruses may enable better prediction of the timing and magnitude of respiratory virus epidemics.


Assuntos
Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/isolamento & purificação , Adenoviridae/isolamento & purificação , Adolescente , Adulto , Distribuição por Idade , Austrália/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Coinfecção/epidemiologia , Coronavirus/isolamento & purificação , Testes Diagnósticos de Rotina , Feminino , Humanos , Vírus da Influenza A/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Vírus da Parainfluenza 1 Humana/isolamento & purificação , Vírus da Parainfluenza 2 Humana/isolamento & purificação , Prevalência , Estudos Retrospectivos , Medição de Risco , Distribuição por Sexo , Análise de Sobrevida , Vitória/epidemiologia , Adulto Jovem
20.
Biol Pharm Bull ; 42(5): 827-832, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31061326

RESUMO

Human parainfluenza virus type 1 (hPIV1) has two spike glycoproteins, the hemagglutinin-neuraminidase (HN) glycoprotein as a receptor-binding protein and the fusion (F) glycoprotein as a membrane-fusion protein. The F glycoprotein mediates both membrane fusion between the virus and cell and membrane fusion between cells, called syncytium formation. Wild-type C35 strain (WT) of hPIV1 shows little syncytium formation of infected cells during virus growth. In the present study, we isolated a variant virus (Vr) from the WT that showed enhanced syncytium formation of infected cells by using our previously established hPIV1 plaque formation assay. Vr formed a larger focus and showed increased virus growth compared with WT. Sequence analysis of the spike glycoprotein genes showed that the Vr had a single amino acid substitution of Ile to Val at position 131 in the fusion peptide region of the F glycoprotein without any substitutions of the HN glycoprotein. The Vr F glycoprotein showed enhanced syncytium formation in F and HN glycoprotein-expressing cells. Additionally, expression of the Vr F glycoprotein increased the focus area of the WT-infected cells. The single amino acid substitution at position 131 in the F glycoprotein of hPIV1 gives hPIV1 abilities to enhance syncytium formation and increase cell-to-cell spread. The present study supports the possibility that hPIV1 acquires increased virus growth in vitro from promotion of direct cell-to-cell transmission by syncytium formation.


Assuntos
Vírus da Parainfluenza 1 Humana/fisiologia , Proteínas Virais de Fusão/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Células Gigantes , Proteína HN/química , Proteína HN/fisiologia , Humanos , Macaca mulatta , Valina/química , Proteínas Virais de Fusão/química , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA