Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1277447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633245

RESUMO

Modified vaccinia virus Ankara (MVA) has been widely tested in clinical trials as recombinant vector vaccine against infectious diseases and cancers in humans and animals. However, one biosafety concern about the use of MVA vectored vaccine is the potential for MVA to recombine with naturally occurring orthopoxviruses in cells and hosts in which it multiplies poorly and, therefore, producing viruses with mosaic genomes with altered genetic and phenotypic properties. We previously conducted co-infection and superinfection experiments with MVA vectored influenza vaccine (MVA-HANP) and a feline Cowpox virus (CPXV-No-F1) in Vero cells (that were semi-permissive to MVA infection) and showed that recombination occurred in both co-infected and superinfected cells. In this study, we selected the putative recombinant viruses and performed genomic characterization of these viruses. Some putative recombinant viruses displayed plaque morphology distinct of that of the parental viruses. Our analysis demonstrated that they had mosaic genomes of different lengths. The recombinant viruses, with a genome more similar to MVA-HANP (>50%), rescued deleted and/or fragmented genes in MVA and gained new host ranges genes. Our analysis also revealed that some MVA-HANP contained a partially deleted transgene expression cassette and one recombinant virus contained part of the transgene expression cassette similar to that incomplete MVA-HANP. The recombination in co-infected and superinfected Vero cells resulted in recombinant viruses with unpredictable biological and genetic properties as well as recovery of delete/fragmented genes in MVA and transfer of the transgene into replication competent CPXV. These results are relevant to hazard characterization and risk assessment of MVA vectored biologicals.


Assuntos
Coinfecção , Vacinas contra Influenza , Superinfecção , Chlorocebus aethiops , Animais , Gatos , Humanos , Vacinas contra Influenza/genética , Vírus da Varíola Bovina/genética , Células Vero , Vaccinia virus , Vacinas Sintéticas/genética , Sequenciamento Completo do Genoma
2.
Emerg Infect Dis ; 27(10): 2570-2577, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34352194

RESUMO

Cowpox virus (CPXV) has an animal reservoir and is typically transmitted to humans by contact with infected animals. In 2017, CPXV infection of a pregnant woman in France led to the death of her fetus. Fetal death after maternal orthopoxvirus (smallpox) vaccination has been reported; however, this patient had not been vaccinated. Investigation of the patient's domestic animals failed to demonstrate prevalence of CPXV infection among them. The patient's diagnosis was confirmed by identifying CPXV DNA in all fetal and maternal biopsy samples and infectious CPXV in biopsy but not plasma samples. This case of fetal death highlights the risk for complications of orthopoxvirus infection during pregnancy. Among orthopoxviruses, fetal infection has been reported for variola virus and vaccinia virus; our findings suggest that CPXV poses the same threats for infection complications as vaccinia virus.


Assuntos
Varíola Bovina , Orthopoxvirus , Animais , Varíola Bovina/diagnóstico , Varíola Bovina/epidemiologia , Varíola Bovina/veterinária , Vírus da Varíola Bovina/genética , Feminino , Morte Fetal , Feto , França/epidemiologia , Humanos , Adulto Jovem
3.
Virol J ; 18(1): 173, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425838

RESUMO

Zoonotic orthopoxvirus infections continue to represent a threat to human health. The disease caused by distinct orthopoxviruses differs in terms of symptoms and severity, which may be explained by the unique repertoire of virus factors that modulate the host's immune response and cellular machinery. We report here on the construction of recombinant cowpox viruses (CPXV) which either lack the host range factor p28 completely or express truncated variants of p28. We show that p28 is essential for CPXV replication in macrophages of human or mouse origin and that the C-terminal RING finger domain of p28 is necessary to allow CPXV replication in macrophages.


Assuntos
Vírus da Varíola Bovina , Especificidade de Hospedeiro , Macrófagos/virologia , Proteínas Virais/genética , Replicação Viral , Animais , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/fisiologia , Camundongos
4.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30996093

RESUMO

Vaccinia virus is a promising viral vaccine and gene delivery candidate and has historically been used as a model to study poxvirus-host cell interactions. We employed a genome-wide insertional mutagenesis approach in human haploid cells to identify host factors crucial for vaccinia virus infection. A library of mutagenized HAP1 cells was exposed to modified vaccinia virus Ankara (MVA). Deep-sequencing analysis of virus-resistant cells identified host factors involved in heparan sulfate synthesis, Golgi organization, and vesicular protein trafficking. We validated EXT1, TM9SF2, and TMED10 (TMP21/p23/p24δ) as important host factors for vaccinia virus infection. The critical roles of EXT1 in heparan sulfate synthesis and vaccinia virus infection were confirmed. TM9SF2 was validated as a player mediating heparan sulfate expression, explaining its contribution to vaccinia virus infection. In addition, TMED10 was found to be crucial for virus-induced plasma membrane blebbing and phosphatidylserine-induced macropinocytosis, presumably by regulating the cell surface expression of the TAM receptor Axl.IMPORTANCE Poxviruses are large DNA viruses that can infect a wide range of host species. A number of these viruses are clinically important to humans, including variola virus (smallpox) and vaccinia virus. Since the eradication of smallpox, zoonotic infections with monkeypox virus and cowpox virus are emerging. Additionally, poxviruses can be engineered to specifically target cancer cells and are used as a vaccine vector against tuberculosis, influenza, and coronaviruses. Poxviruses rely on host factors for most stages of their life cycle, including attachment to the cell and entry. These host factors are crucial for virus infectivity and host cell tropism. We used a genome-wide knockout library of host cells to identify host factors necessary for vaccinia virus infection. We confirm a dominant role for heparin sulfate in mediating virus attachment. Additionally, we show that TMED10, previously not implicated in virus infections, facilitates virus uptake by modulating the cellular response to phosphatidylserine.


Assuntos
Haploidia , Heparitina Sulfato/genética , Heparitina Sulfato/isolamento & purificação , Pinocitose/fisiologia , Vaccinia virus/genética , Vaccinia virus/metabolismo , Vacínia/virologia , Proteínas de Transporte Vesicular/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Vírus da Varíola Bovina/genética , Vírus de DNA , Técnicas de Inativação de Genes , Testes Genéticos , Complexo de Golgi , Células HEK293 , Células HeLa , Heparitina Sulfato/metabolismo , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Membrana , Monkeypox virus/genética , N-Acetilglucosaminiltransferases , Fosfatidilserinas/metabolismo , Poxviridae/genética , Ligação Viral
5.
Sci Rep ; 8(1): 1807, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379051

RESUMO

The emergence of Variola virus-like viruses by natural evolution of zoonotic Orthopoxviruses, like Cowpox virus (CPXV), is a global health threat. The proteasome is essential for poxvirus replication, making the viral components interacting with the ubiquitin-proteasome system attractive antiviral targets. We show that proteasome inhibition impairs CPXV replication by prevention of uncoating, suggesting that uncoating is mediated by proteasomal degradation of viral core proteins. Although Orthopoxvirus particles contain considerable amounts of ubiquitin, distinct modification sites are largely unknown. Therefore, for the first time, we analyzed globally ubiquitination sites in CPXV mature virion proteins using LC-MS/MS. Identification of 137 conserved sites in 54 viral proteins among five CPXV strains revealed extensive ubiquitination of structural core proteins. Moreover, since virions contained primarily K48-linked polyubiquitin, we hypothesized that core proteins are modified accordingly. However, quantitative analysis of ubiquitinated CPXV proteins early in infection showed no proteasomal degradation of core proteins. Instead, our data indicate that the recently suggested proteasomal regulation of the uncoating factor E5 is a prerequisite for uncoating. Expanding our understanding of poxvirus uncoating and elucidating a multitude of novel ubiquitination sites in poxvirus proteins, the present study verifies the major biological significance of ubiquitin in poxvirus infection.


Assuntos
Vírus da Varíola Bovina/genética , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitinação/genética , Proteínas do Core Viral/genética , Proteínas Virais/genética , Linhagem Celular Tumoral , Replicação do DNA/genética , Células HeLa , Humanos , Poliubiquitina/genética , Ubiquitina/genética , Vírion/genética
6.
Viruses ; 9(6)2017 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-28604604

RESUMO

Cowpox virus (CPXV) was considered as uniform species within the genus Orthopoxvirus (OPV). Previous phylogenetic analysis indicated that CPXV is polyphyletic and isolates may cluster into different clades with two of these clades showing genetic similarities to either variola (VARV) or vaccinia viruses (VACV). Further analyses were initiated to assess both the genetic diversity and the evolutionary background of circulating CPXVs. Here we report the full-length sequences of 20 CPXV strains isolated from different animal species and humans in Germany. A phylogenetic analysis of altogether 83 full-length OPV genomes confirmed the polyphyletic character of the species CPXV and suggested at least four different clades. The German isolates from this study mainly clustered into two CPXV-like clades, and VARV- and VACV-like strains were not observed. A single strain, isolated from a cotton-top tamarin, clustered distantly from all other CPXVs and might represent a novel and unique evolutionary lineage. The classification of CPXV strains into clades roughly followed their geographic origin, with the highest clade diversity so far observed for Germany. Furthermore, we found evidence for recombination between OPV clades without significant disruption of the observed clustering. In conclusion, this analysis markedly expands the number of available CPXV full-length sequences and confirms the co-circulation of several CPXV clades in Germany, and provides the first data about a new evolutionary CPXV lineage.


Assuntos
Vírus da Varíola Bovina/classificação , Variação Genética , Animais , Análise por Conglomerados , Varíola Bovina/virologia , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/isolamento & purificação , Genoma Viral , Alemanha , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenótipo , Filogenia , Recombinação Genética , Vaccinia virus/genética , Vírus da Varíola/genética
7.
Viruses ; 9(5)2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28486428

RESUMO

Traditionally, virus taxonomy relied on phenotypic properties; however, a sequence-based virus taxonomy has become essential since the recent requirement of a species to exhibit monophyly. The species Cowpox virus has failed to meet this requirement, necessitating a reexamination of this species. Here, we report the genomic sequences of nine Cowpox viruses and, by combining them with the available data of 37 additional genomes, confirm polyphyly of Cowpox viruses and find statistical support based on genetic data for more than a dozen species. These results are discussed in light of the current International Committee on Taxonomy of Viruses species definition, as well as immediate and future implications for poxvirus taxonomic classification schemes. Data support the recognition of five monophyletic clades of Cowpox viruses as valid species.


Assuntos
Vírus da Varíola Bovina/classificação , Vírus da Varíola Bovina/genética , Filogenia , Poxviridae/classificação , Animais , Linhagem Celular , Genoma Viral , Genômica , Poxviridae/genética , Vaccinia virus/genética
8.
Pediatr Nephrol ; 32(3): 533-536, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27796621

RESUMO

BACKGROUND: A 17-year-old boy on long-term immunosuppression following renal transplantation for chronic kidney disease (CKD), the result of dysplastic kidneys, initially presented with a swelling in his neck while attending hospital for an unrelated problem. A clinical diagnosis of tonsillitis was made, and he was treated with broad-spectrum antibiotics. Over a few days, his condition deteriorated, and he developed multiple vesicopustular skin lesions and required an emergency tonsillectomy due to respiratory distress. CASE DIAGNOSIS/TREATMENT: Histological investigation of the skin and tonsillar tissue suggested a viral aetiology, and subsequent electron microscopy and polymerase chain reaction (PCR) tissue examination proved disseminated cowpox infection. The family cat, which was reported as having self-resolving sores on its skin, was likely the source of the infection. The child failed to respond to antiviral treatment and succumbed to multiorgan failure within a month of admission. CONCLUSIONS: We report this case of fatal disseminated cowpox infection to highlight an increasing risk of this illness in the post-transplant population and to detail some unusual features not previously described, such as tonsillar involvement, disseminated skin lesions and multiorgan failure.


Assuntos
Varíola Bovina/virologia , Transplante de Rim/efeitos adversos , Adolescente , Antibacterianos/uso terapêutico , Varíola Bovina/patologia , Vírus da Varíola Bovina/genética , Evolução Fatal , Humanos , Masculino , Insuficiência de Múltiplos Órgãos/etiologia , Reação em Cadeia da Polimerase , Insuficiência Renal Crônica/cirurgia , Dermatopatias/etiologia , Dermatopatias/virologia , Tonsilite/tratamento farmacológico , Transplantados
10.
J Biol Chem ; 290(26): 15973-84, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25940088

RESUMO

The blockade of tumor necrosis factor (TNF) by etanercept, a soluble version of the human TNF receptor 2 (hTNFR2), is a well established strategy to inhibit adverse TNF-mediated inflammatory responses in the clinic. A similar strategy is employed by poxviruses, encoding four viral TNF decoy receptor homologues (vTNFRs) named cytokine response modifier B (CrmB), CrmC, CrmD, and CrmE. These vTNFRs are differentially expressed by poxviral species, suggesting distinct immunomodulatory properties. Whereas the human variola virus and mouse ectromelia virus encode one vTNFR, the broad host range cowpox virus encodes all vTNFRs. We report the first comprehensive study of the functional and binding properties of these four vTNFRs, providing an explanation for their expression profile among different poxviruses. In addition, the vTNFRs activities were compared with the hTNFR2 used in the clinic. Interestingly, CrmB from variola virus, the causative agent of smallpox, is the most potent TNFR of those tested here including hTNFR2. Furthermore, we demonstrate a new immunomodulatory activity of vTNFRs, showing that CrmB and CrmD also inhibit the activity of lymphotoxin ß. Similarly, we report for the first time that the hTNFR2 blocks the biological activity of lymphotoxin ß. The characterization of vTNFRs optimized during virus-host evolution to modulate the host immune response provides relevant information about their potential role in pathogenesis and may be used to improve anti-inflammatory therapies based on soluble decoy TNFRs.


Assuntos
Vírus da Varíola Bovina/metabolismo , Poxviridae/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/química , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Chamariz do Fator de Necrose Tumoral/química , Receptores Chamariz do Fator de Necrose Tumoral/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Vírus da Varíola Bovina/química , Vírus da Varíola Bovina/genética , Humanos , Linfotoxina-beta/metabolismo , Camundongos , Dados de Sequência Molecular , Poxviridae/química , Poxviridae/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética , Alinhamento de Sequência , Receptores Chamariz do Fator de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo , Proteínas Virais/genética
11.
J Immunol ; 193(4): 1578-89, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25024387

RESUMO

CD8(+) CTLs detect virus-infected cells through recognition of virus-derived peptides presented at the cell surface by MHC class I molecules. The cowpox virus protein CPXV012 deprives the endoplasmic reticulum (ER) lumen of peptides for loading onto newly synthesized MHC class I molecules by inhibiting the transporter associated with Ag processing (TAP). This evasion strategy allows the virus to avoid detection by the immune system. In this article, we show that CPXV012, a 9-kDa type II transmembrane protein, prevents peptide transport by inhibiting ATP binding to TAP. We identified a segment within the ER-luminal domain of CPXV012 that imposes the block in peptide transport by TAP. Biophysical studies show that this domain has a strong affinity for phospholipids that are also abundant in the ER membrane. We discuss these findings in an evolutionary context and show that a frameshift deletion in the CPXV012 gene in an ancestral cowpox virus created the current form of CPXV012 that is capable of inhibiting TAP. In conclusion, our findings indicate that the ER-luminal domain of CPXV012 inserts into the ER membrane, where it interacts with TAP. CPXV012 presumably induces a conformational arrest that precludes ATP binding to TAP and, thus, activity of TAP, thereby preventing the presentation of viral peptides to CTLs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Vírus da Varíola Bovina/imunologia , Evasão da Resposta Imune/imunologia , Linfócitos T Citotóxicos/imunologia , Proteínas Virais/imunologia , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Vírus da Varíola Bovina/genética , Retículo Endoplasmático/imunologia , Mutação da Fase de Leitura , Células HEK293 , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Ligação Proteica/imunologia , Transporte Proteico/imunologia , Proteínas Virais/genética
12.
Virol J ; 11: 119, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24972911

RESUMO

BACKGROUND: Cowpox virus (CPXV), a rodent-borne Orthopoxvirus (OPV) that is indigenous to Eurasia can infect humans, cattle, felidae and other animals. Molecular characterization of CPXVs isolated from different geographic locations is important for the understanding of their biology, geographic distribution, classification and evolution. Our aim was to characterize CPXVs isolated from Fennoscandia on the basis of A-type inclusion (ATI) phenotype, restriction fragment length polymorphism (RFLP) profiles of atip gene fragment amplicon, and phylogenetic tree topology in conjunction with the patristic and genetic distances based on full length DNA sequence of the atip and p4c genes. METHODS: ATI phenotypes were determined by transmission electron microcopy and RFLP profiles were obtained by restriction enzyme digestion of the atip gene fragment PCR product. A 6.2 kbp region spanning the entire atip and p4c genes of Fennoscandian CPXV isolates was amplified and sequenced. The phylogenetic affinity of Fennoscandian CPXV isolates to OPVs isolated from other geographic regions was determined on the basis of the atip and p4c genes. RESULTS: Fennoscandian CPXV isolates encoded full length atip and p4c genes. They produce wild type V+ ATI except for CPXV-No-H2. CPXVs were resolved into six and seven species clusters based on the phylogeny of the atip and p4c genes respectively. The CPXVs isolated from Fennoscandia were grouped into three distinct clusters that corresponded to isolates from Norway, Sweden and Finland. CONCLUSION: CPXV is a polyphyletic assemblage of six or seven distinct clusters and the current classification in which CPXVs are united as one single species should be re-considered. Our results are of significance to the classification and evolution of OPVs.


Assuntos
Vírus da Varíola Bovina/classificação , Vírus da Varíola Bovina/genética , Genes Virais , Filogenia , Animais , Linhagem Celular , Chlorocebus aethiops , Análise por Conglomerados , Varíola Bovina/virologia , Vírus da Varíola Bovina/isolamento & purificação , Evolução Molecular , Humanos , Corpos de Inclusão Viral/ultraestrutura , Fases de Leitura Aberta , Fenótipo , Polimorfismo de Fragmento de Restrição , Células Vero
14.
PLoS One ; 8(2): e55808, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23457480

RESUMO

The last years, cowpox infections are being increasingly reported through Eurasia. Cowpox viruses (CPXVs) have been reported to have different genotypes and may be subdivided in at least five genetically distinct monophyletic clusters. However, little is known about their in vitro and in vivo features. In this report, five genetically diverse CPXVs, including one reference strain (CPXV strain Brighton) and four clinical isolates from human and animal cases, were compared with regard to growth in cells, pathogenicity in mice and inhibition by antivirals. While all CPXVs replicated similarly in vitro and showed comparable antiviral susceptibility, marked discrepancies were seen in vivo, including differences in virulence with recorded mortality rates of 0%, 20% and 100%. The four CPXV clinical isolates appeared less pathogenic than two reference strains, CPXV Brighton and vaccinia virus Western-Reserve. Disease severity seemed to correlate with high viral DNA loads in several organs, virus titers in lung tissues and levels of IL-6 cytokine in the sera. Our study highlighted that the species CPXV consists of viruses that not only differ considerably in their genotypes but also in their in vivo phenotypes, indicating that CPXVs should not be longer classified as a single species. Lung virus titers and IL-6 cytokine level in mice may be used as biomarkers for predicting disease severity. We further demonstrated the potential benefit of cidofovir, CMX001 and ST-246 use as antiviral therapy.


Assuntos
Antivirais/uso terapêutico , Vírus da Varíola Bovina/efeitos dos fármacos , Vírus da Varíola Bovina/fisiologia , Varíola Bovina/tratamento farmacológico , Varíola Bovina/virologia , Pulmão/virologia , Animais , Linhagem Celular , Varíola Bovina/sangue , Varíola Bovina/patologia , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/patogenicidade , Feminino , Humanos , Interleucina-6/sangue , Pulmão/patologia , Camundongos , Filogenia , Fator de Necrose Tumoral alfa/sangue
15.
Mol Immunol ; 55(2): 139-42, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23141382

RESUMO

Following primary infection, herpesviruses persist for life in their hosts, even when vigorous anti-viral immunity has been induced. Failure of the host immune system to eliminate infected cells is facilitated by highly effective immune evasion strategies acquired by these herpesviruses during millions of years of co-evolution with their hosts. Here, we review the mechanisms of action of viral gene products that lead to cytotoxic T cell evasion through interference with the function of the transporter associated with antigen processing, TAP. The viral TAP inhibitors impede transport of peptides from the cytosol into the ER lumen, thereby preventing peptide loading onto MHC class I complexes. Recent insights have revealed a pattern of functional convergent evolution. In every herpesvirus subfamily, inhibitors of TAP function have been identified that are, surprisingly, unrelated in genome location, structure, and mechanism of action. Recently, cowpox virus has also been found to encode a TAP inhibitor. Expanding our knowledge on how viruses perturb antigen presentation, in particular by targeting TAP, not only provides information on viral pathogenesis, but also reveals novel aspects of the cellular processes corrupted by these viruses, notably the translocation of peptides by the ATP-binding cassette (ABC) transporter TAP. As the various TAP inhibitors are anticipated to impede discrete conformational transitions it is expected that crystal structures of TAP-inhibitor complexes will reveal valuable structural information on the actual mechanism of peptide translocation by TAP. Viral TAP inhibitors are also used for various (clinical) applications, for example, as effective tools in antigen presentation studies and as immunomodulators in immunotherapy for cancer, heterologous vaccination, and transplant protection.


Assuntos
Apresentação de Antígeno , Herpesviridae/imunologia , Herpesviridae/patogenicidade , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/imunologia , Vírus da Varíola Bovina/metabolismo , Herpesviridae/genética , Herpesviridae/metabolismo , Humanos , Evasão da Resposta Imune , Linfócitos T Citotóxicos/imunologia , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
16.
J Infect ; 63(5): 391-3, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21723880
17.
Mol Biol (Mosk) ; 44(6): 1054-63, 2010.
Artigo em Russo | MEDLINE | ID: mdl-21290827

RESUMO

Orthopoxviruses bear in their genomes several genes coding for homologous secreted proteins able to bind tumor necrosis factor. Different species of the genus possess different sets of these tumor necrosis factor-binding proteins. Viriola virus encodes the only one of them named CrmB. Despite sharing high sequence identity, CrmB proteins belonging to distinct orthopoxviral species were shown to significantly differ by their physico-chemical and biological properties. We modeled spatial structures of tumor necrosis factor receptor domains of variola and cowpox virus CrmB proteins bound to either murine, or human or mutated human tumor necrosis factor. In the sequence of last the arginine residue at position 31 is substituted with glutamine that is characteristic for murine tumor necrosis factor. Theoretical analysis of modeled ligand-receptor complexes revealed that the least stable should be the complex of cowpox virus CrmB with human tumor necrosis factor, and that arginine to glutamine substitution at position 31 should significantly stabilize binding of corresponding human tumor necrosis factor mutant to cowpox virus CrmB. Experimental evaluation of recombinant variola and cowpox virus CrmB efficiencies in inhibiting cytotoxic effect of all these tumor necrosis factors have approved our predictions.


Assuntos
Vírus da Varíola Bovina/metabolismo , Modelos Moleculares , Receptores do Fator de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/metabolismo , Vírus da Varíola/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Arginina/genética , Vírus da Varíola Bovina/genética , Glutamina/genética , Humanos , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/genética , Fatores de Necrose Tumoral/química , Vírus da Varíola/genética , Proteínas Virais/química , Proteínas Virais/genética
18.
Arch Virol ; 154(8): 1293-302, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19585075

RESUMO

Cowpox virus (CPXV), a member of the genus Orthopoxvirus (OPV), has reservoirs in small mammals and may cause disease in humans, felidae and other animals. In this study we compared CPXVs isolated from humans and cats in Fennoscandia by restriction enzyme and DNA sequence analysis. The HindIII restriction profiles clearly distinguished geographically distinct CPXV isolates, whereas only minor differences were found between the profiles of geographically linked isolates. The complete gene sequences encoding the cytokine response modifier B, the hemagglutinin and the Chinese hamster ovary host range protein were determined for the same isolates and included in phylogenetic analysis. By including representative OPV sequences from GenBank, detailed comparative analyses were performed showing pronounced heterogeneity among CPXVs compared to members of other OPV species. However, a close relationship between the Norwegian (3 of 4 isolates) and Swedish isolates was detected, whereas the isolate from Finland was more closely related to a Russian isolate for all three genes compared. We infer that the investigated CPXVs have distinct evolutionary histories in different rodent lineages.


Assuntos
Gatos/virologia , Vírus da Varíola Bovina/classificação , Varíola Bovina/veterinária , Animais , Células CHO/virologia , Varíola Bovina/virologia , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/isolamento & purificação , Cricetinae , Cricetulus , Dinamarca , Finlândia , Genes Virais , Variação Genética , Hemaglutininas Virais/genética , Humanos , Dados de Sequência Molecular , Noruega , Filogenia , Receptores do Fator de Necrose Tumoral/genética , Suécia , Proteínas Virais/genética
19.
Virol J ; 6: 55, 2009 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-19435511

RESUMO

BACKGROUND: Poxvirus-vectored vaccines against infectious diseases and cancer are currently under development. We hypothesized that the extensive use of poxvirus-vectored vaccine in future might result in co-infection and recombination between the vaccine virus and naturally occurring poxviruses, resulting in hybrid viruses with unpredictable characteristics. Previously, we confirmed that co-infecting in vitro a Modified vaccinia virus Ankara (MVA) strain engineered to express influenza virus haemagglutinin (HA) and nucleoprotein (NP) genes with a naturally occurring cowpox virus (CPXV-NOH1) resulted in recombinant progeny viruses (H Hansen, MI Okeke, Ø Nilssen, T Traavik, Vaccine 23: 499-506, 2004). In this study we analyzed the biological properties of parental and progeny hybrid viruses. RESULTS: Five CPXV/MVA progeny viruses were isolated based on plaque phenotype and the expression of influenza virus HA protein. Progeny hybrid viruses displayed in vitro cell line tropism of CPXV-NOH1, but not that of MVA. The HA transgene or its expression was lost on serial passage of transgenic viruses and the speed at which HA expression was lost varied with cell lines. The HA transgene in the progeny viruses or its expression was stable in African Green Monkey derived Vero cells but became unstable in rat derived IEC-6 cells. Hybrid viruses lacking the HA transgene have higher levels of virus multiplication in mammalian cell lines and produced more enveloped virions than the transgene positive progenitor virus strain. Analysis of the subcellular localization of the transgenic HA protein showed that neither virus strain nor cell line have effect on the subcellular targets of the HA protein. The influenza virus HA protein was targeted to enveloped virions, plasma membrane, Golgi apparatus and cytoplasmic vesicles. CONCLUSION: Our results suggest that homologous recombination between poxvirus-vectored vaccine and naturally circulating poxviruses, genetic instability of the transgene, accumulation of non-transgene expressing vectors or hybrid virus progenies, as well as cell line/type specific selection against the transgene are potential complications that may result if poxvirus vectored vaccines are extensively used in animals and man.


Assuntos
Vacinas contra Influenza/genética , Orthomyxoviridae/genética , Recombinação Genética , Vaccinia virus/genética , Replicação Viral , Animais , Linhagem Celular , Chlorocebus aethiops , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/fisiologia , Instabilidade Genômica , Humanos , Ratos , Vaccinia virus/fisiologia
20.
J Virol ; 83(13): 6883-99, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19386722

RESUMO

Viral manipulation of the transduction pathways associated with key cellular functions such as actin remodeling, microtubule stabilization, and survival may favor a productive viral infection. Here we show that consistent with the vaccinia virus (VACV) and cowpox virus (CPXV) requirement for cytoskeleton alterations early during the infection cycle, PBK/Akt was phosphorylated at S473 [Akt(S473-P)], a modification associated with the mammalian target of rapamycin complex 2 (mTORC2), which was paralleled by phosphorylation at T308 [Akt(T308-P)] by PI3K/PDK1, which is required for host survival. Notably, while VACV stimulated Akt(S473-P/T308-P) at early (1 h postinfection [p.i.]) and late (24 h p.i.) times during the infective cycle, CPXV stimulated Akt at early times only. Pharmacological and genetic inhibition of PI3K (LY294002) or Akt (Akt-X and a dominant-negative form of Akt-K179M) resulted in a significant decline in virus yield (from 80% to >/=90%). This decline was secondary to the inhibition of late viral gene expression, which in turn led to an arrest of virion morphogenesis at the immature-virion stage of the viral growth cycle. Furthermore, the cleavage of both caspase-3 and poly(ADP-ribose) polymerase and terminal deoxynucleotidyl transferase-mediated deoxyuridine nick end labeling assays confirmed that permissive, spontaneously immortalized cells such as A31 cells and mouse embryonic fibroblasts (MEFs) underwent apoptosis upon orthopoxvirus infection plus LY294002 treatment. Thus, in A31 cells and MEFs, early viral receptor-mediated signals transmitted via the PI3K/Akt pathway are required and precede the expression of viral antiapoptotic genes. Additionally, the inhibition of these signals resulted in the apoptosis of the infected cells and a significant decline in viral titers.


Assuntos
Vírus da Varíola Bovina/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vaccinia virus/fisiologia , Replicação Viral , Animais , Apoptose , Caspase 3/metabolismo , Linhagem Celular , Cromonas/farmacologia , Varíola Bovina/metabolismo , Vírus da Varíola Bovina/efeitos dos fármacos , Vírus da Varíola Bovina/genética , Regulação Viral da Expressão Gênica , Camundongos , Morfolinas/farmacologia , Fosforilação , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais , Vacínia/metabolismo , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA