Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Exp Parasitol ; 246: 108459, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36596336

RESUMO

Cutaneous leishmaniasis (CL) is one of the most important infectious parasitic diseases in the world caused by the Leishmania parasite. In recent decades, the presence of a virus from the Totiviridae family has been proven in some Leishmania species. Although the existence of LRV2 in the Old world Leishmania species has been confirmed, almost no studies have been done to determine the potential impact of LRV2 on the immunopathogenicity of the Leishmania parasite. In this preliminary study, we measured the expression of target genes, including Glycoprotein 63 (gp63), Heat Shock Protein 70 (hsp70), Cysteine Protease b (cpb), Interleukin 1 beta (IL-1ß), IL8 and IL-12 in LRV2 positive Leishmania major strain (LRV2+L. major) and LRV2 negative L. major strain (LRV2-L. major). We exposed THP-1, a human leukemia monocytic cell line, to promastigotes of both strains. After the initial infection, RNA was extracted at different time points, and the relative gene expression was determined using a real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Findings showed that the presence of LRV2 in L. major was able to increase the expression of gp63, hsp70, and cpb genes; also, we observed lower levels of expression in cytokine genes of IL-1ß, IL-8, IL-12 in the presence of LRV2+, which are critical factors in the host's immune response against leishmaniasis. These changes could suggest that the presence of LRV2 in L. major parasite may change the outcome of the disease and increase the probability of Leishmania survival; nevertheless, further studies are needed to confirm our results.


Assuntos
Leishmania major , Leishmaniose Cutânea , Vírus de RNA , Humanos , Citocinas/genética , Expressão Gênica , Interleucina-12/genética , Leishmania major/genética , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/microbiologia , Macrófagos/microbiologia , Vírus de RNA/patogenicidade , Fatores de Virulência/genética
2.
J Virol ; 95(21): e0121621, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34379517

RESUMO

Retinoic acid-inducible gene I-like receptors (RLRs) are important cytosolic pattern recognition receptors (PRRs) that sense viral RNA before mounting a response leading to the activation of type I IFNs. Several viral infections induce epithelial-mesenchymal transition (EMT), even as its significance remains unclear. Here, we show that EMT or an EMT-like process is a general response to viral infections. Our studies identify a previously unknown mechanism of regulation of an important EMT-transcription factor (EMT-TF) Snail during RNA viral infections and describe its possible implication. RNA viral infections, poly(I·C) transfection, and ectopic expression of RLR components induced Snail levels, indicating that RLR pathway could regulate its expression. Detailed examination using mitochondrial antiviral signaling protein knockout (MAVS-KO) cells established that MAVS is essential in this regulation. We identified two interferon-stimulated response elements (ISREs) in the SNAI1 promoter region and demonstrated that they are important in its transcriptional activation by phosphorylated IRF3. Increasing the levels of Snail activated RLR pathway and dramatically limited replication of the RNA viruses dengue virus, Japanese encephalitis virus (JEV), and vesicular stomatitis virus, pointing to their antiviral functions. Knockdown of Snail resulted in a considerable increase in the JEV titer, validating its antiviral functions. Finally, transforming growth factor ß-mediated IFNB activation was dependent on Snail levels, confirming its important role in type I IFN activation. Thus, EMT-TF Snail is transcriptionally coregulated with type I IFN by RLRs and, in turn, promotes the RLR pathway, further strengthening the antiviral state in the cell. Our work identified an interesting mechanism of regulation of Snail that demonstrates potential coregulation of multiple innate antiviral pathways triggered by RLRs. Identification of antiviral functions of Snail also provides an opportunity to expand the sphere of RLR signaling. IMPORTANCE RLRs sense viral genomic RNA or the double-stranded RNA intermediates and trigger the activation of type I IFNs. Snail transcription factor, commonly associated with epithelial-mesenchymal transition (EMT), has been reported to facilitate EMT in several viral infections. Many of these reports are based on oncoviruses, leading to the speculation that EMT induced during infection is an important factor in the oncogenesis triggered by these infections. However, our studies reveal that EMT or EMT-like processes during viral infections have important functions in antiviral response. We have characterized a new mechanism of transcriptional regulation of Snail by IRF3 through interferon-stimulated response elements in their promoters, and this finding could have importance in nonviral contexts as well. We also identify that EMT-TF Snail promotes antiviral status of the infected cells through the RLR pathway. This study characterizes a new regulatory mechanism of activation of Snail and establishes its unidentified function in antiviral response.


Assuntos
Proteína DEAD-box 58/genética , Regulação da Expressão Gênica , Vírus de RNA/patogenicidade , Receptores Imunológicos/genética , Receptores de Reconhecimento de Padrão/genética , Fatores de Transcrição da Família Snail/genética , Células A549 , Animais , Chlorocebus aethiops , Transição Epitelial-Mesenquimal/genética , Feminino , Expressão Gênica , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Células MCF-7 , Masculino , Camundongos Endogâmicos BALB C , Transdução de Sinais , Células Vero
3.
Mol Biol Rep ; 48(5): 4677-4686, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34036480

RESUMO

The interaction between viruses with the nucleolus is already a well-defined field of study in plant virology. This interaction is not restricted to those viruses that replicate in the nucleus, in fact, RNA viruses that replicate exclusively in the cytoplasm express proteins that localize in the nucleolus. Some positive single stranded RNA viruses from animals and plants have been reported to interact with the main nucleolar protein, Fibrillarin. Among nucleolar proteins, Fibrillarin is an essential protein that has been conserved in sequence and function throughout evolution. Fibrillarin is a methyltransferase protein with more than 100 methylation sites in the pre-ribosomal RNA, involved in multiple cellular processes, including initiation of transcription, oncogenesis, and apoptosis, among others. Recently, it was found that AtFib2 shows a ribonuclease activity. In plant viruses, Fibrillarin is involved in long-distance movement and cell-to-cell movement, being two highly different processes. The mechanism that Fibrillarin performs is still unknown. However, and despite belonging to very different viral families, the majority comply with the following. (1) They are positive single stranded RNA viruses; (2) encode different types of viral proteins that partially localize in the nucleolus; (3) interacts with Fibrillarin exporting it to the cytoplasm; (4) the viral protein-Fibrillarin interaction forms an RNP complex with the viral RNA and; (5) Fibrillarin depletion affects the infective cycle of the virus. Here we review the relationship of those plant viruses with Fibrillarin interaction, with special focus on the molecular processes of the virus to sequester Fibrillarin to complete its infective cycle.


Assuntos
Proteínas Cromossômicas não Histona/genética , Metiltransferases/genética , Vírus de Plantas/genética , Nucléolo Celular/genética , Nucléolo Celular/virologia , Citoplasma/virologia , Vírus de RNA/genética , Vírus de RNA/patogenicidade , RNA Viral/genética , Proteínas Virais/genética
4.
Signal Transduct Target Ther ; 6(1): 90, 2021 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-33640899

RESUMO

Sensing of pathogenic nucleic acids by pattern recognition receptors (PRR) not only initiates anti-microbe defense but causes inflammatory and autoimmune diseases. E3 ubiquitin ligase(s) critical in innate response need to be further identified. Here we report that the tripartite motif-containing E3 ubiquitin ligase TRIM41 is required to innate antiviral response through facilitating pathogenic nucleic acids-triggered signaling pathway. TRIM41 deficiency impairs the production of inflammatory cytokines and type I interferons in macrophages after transfection with nucleic acid-mimics and infection with both DNA and RNA viruses. In vivo, TRIM41 deficiency leads to impaired innate response against viruses. Mechanistically, TRIM41 directly interacts with BCL10 (B cell lymphoma 10), a core component of CARD proteins-BCL10 - MALT1 (CBM) complex, and modifies the Lys63-linked polyubiquitylation of BCL10, which, in turn, hubs NEMO for activation of NF-κB and TANK-binding kinase 1 (TBK1) - interferon regulatory factor 3 (IRF3) pathways. Our study suggests that TRIM41 is the potential universal E3 ubiquitin ligase responsible for Lys63 linkage of BCL10 during innate antiviral response, adding new insight into the molecular mechanism for the control of innate antiviral response.


Assuntos
Proteína 10 de Linfoma CCL de Células B/genética , Quinase I-kappa B/genética , Ubiquitina-Proteína Ligases/genética , Viroses/genética , Vírus de DNA/genética , Vírus de DNA/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Ácidos Nucleicos/genética , Ácidos Nucleicos/imunologia , Proteínas Serina-Treonina Quinases/genética , Vírus de RNA/genética , Vírus de RNA/patogenicidade , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Viroses/imunologia , Viroses/virologia
5.
Clin Immunol ; 226: 108699, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33639276

RESUMO

RNA editing is a fundamental biological process with 2 major forms, namely adenosine-to-inosine (A-to-I, recognized as A-to-G) and cytosine-to-uracil (C-to-U) deamination, mediated by ADAR and APOBEC enzyme families, respectively. A-to-I RNA editing has been shown to directly affect the genome/transcriptome of RNA viruses with significant repercussions for viral protein synthesis, proliferation and infectivity, while it also affects recognition of double-stranded RNAs by cytosolic receptors controlling the host innate immune response. Recent evidence suggests that RNA editing may be present in SARS-CoV-2 genome/transcriptome. The majority of mapped mutations in SARS-CoV-2 genome are A-to-G/U-to-C(opposite strand) and C-to-U/G-to-A(opposite strand) substitutions comprising potential ADAR-/APOBEC-mediated deamination events. A single nucleotide substitution can have dramatic effects on SARS-CoV-2 infectivity as shown by the D614G(A-to-G) substitution in the spike protein. Future studies utilizing serial sampling from patients with COVID-19 are warranted to delineate whether RNA editing affects viral replication and/or the host immune response to SARS-CoV-2.


Assuntos
Desaminases APOBEC/metabolismo , Adenosina Desaminase/metabolismo , COVID-19/imunologia , Imunidade Inata , Edição de RNA , Vírus de RNA/genética , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/genética , Desaminases APOBEC/genética , Adenosina Desaminase/genética , COVID-19/enzimologia , COVID-19/virologia , Humanos , Mutação , Vírus de RNA/patogenicidade , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/genética , SARS-CoV-2/metabolismo
6.
Biochim Biophys Acta Gen Subj ; 1865(3): 129839, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33412226

RESUMO

Mitochondria are multi-functioning organelles that participate in a wide range of biologic processes from energy metabolism to cellular suicide. Mitochondria are also involved in the cellular innate immune response against microorganisms or environmental irritants, particularly in mammals. Mitochondrial-mediated innate immunity is achieved by the activation of two discrete signaling pathways, the NLR family pyrin domain-containing 3 inflammasomes and the retinoic acid-inducible gene I-like receptor pathway. In both pathways, a mitochondrial outer membrane adaptor protein, called mitochondrial antiviral signaling MAVS, and mitochondria-derived components play a key role in signal transduction. In this review, we discuss current insights regarding the fundamental phenomena of mitochondrial-related innate immune responses, and review the specific roles of various mitochondrial subcompartments in fine-tuning innate immune signaling events. We propose that specific targeting of mitochondrial functions is a potential therapeutic approach for the management of infectious diseases and autoinflammatory disorders with an excessive immune response.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Mitocôndrias/imunologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/imunologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Inflamassomos , MicroRNAs/genética , MicroRNAs/imunologia , Mitocôndrias/genética , Mitocôndrias/virologia , Membranas Mitocondriais/imunologia , Membranas Mitocondriais/virologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/patologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Vírus de RNA/patogenicidade , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Transdução de Sinais
7.
J Gen Virol ; 102(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33215984

RESUMO

Beet soil-borne virus (BSBV) is a sugar beet pomovirus frequently associated with Beet necrotic yellow veins virus, the causal agent of the rhizomania disease. BSBV has been detected in most of the major beet-growing regions worldwide, yet its impact on this crop remains unclear. With the aim to understand the life cycle of this virus and clarify its putative pathogenicity, agroinfectious clones have been engineered for each segment of its tripartite genome. The biological properties of these clones were then studied on different plant species. Local infection was obtained on agroinfiltrated leaves of Beta macrocarpa. On leaves of Nicotiana benthamiana, similar results were obtained, but only when heterologous viral suppressors of RNA silencing were co-expressed or in a transgenic line down regulated for both dicer-like protein 2 and 4. On sugar beet, local infection following agroinoculation was obtained on cotyledons, but not on other tested plant parts. Nevertheless, leaf symptoms were observed on this host via sap inoculation. Likewise, roots were efficiently mechanically infected, highlighting low frequency of root necrosis and constriction, and enabling the demonstration of transmission by the vector Polymyxa betae. Altogether, the entire viral cycle was reproduced, validating the constructed agroclones as efficient inoculation tools, paving the way for further studies on BSBV and its related pathosystem.


Assuntos
Nicotiana/virologia , Vírus de Plantas/isolamento & purificação , Interferência de RNA , Vírus de RNA/patogenicidade , Doenças das Plantas/virologia , Folhas de Planta/virologia , Vírus de Plantas/genética , Vírus de RNA/genética
8.
Lancet Infect Dis ; 20(5): 598-606, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32087775

RESUMO

BACKGROUND: Norovirus and rotavirus are the dominant pathogens causing acute gastroenteritis in children. To quantify their natural disease burden and transmission, we prospectively monitored households in an endemic setting in the Netherlands, a high-income country that does not have a rotavirus vaccination programme. METHODS: We did a prospective, household survey-based cohort study in the Netherlands. Randomly selected households from the Dutch Population Register were invited to participate if they had at least three household members, including a child younger than 2 years. A member of each household was asked to record the gastrointestinal symptoms of all household members every day for 10 consecutie weeks using an interactive smartphone application. Real-time detection of acute gastroenteritis onset on the basis of entered symptoms activated requests for the case and one other household member to complete disease questionnaires and provide stool samples. Stool samples were analysed by real-time PCR for norovirus, rotavirus, adenovirus 40/41, and astrovirus. We calculated the per-pathogen proportion of households with at least one secondary acute gastroenteritis episode (epidemiologically but not microbiologically linked), the probability of a secondary episode in household members at risk (secondary attack rate), and the microbiologically confirmed symptomatic and asymptomatic transmission rates. FINDINGS: During two seasons (January to March) in 2016 and 2017, 30 660 households were invited to participate, of which 604 households including 2298 individuals were enrolled. 697 acute gastroenteritis episodes were detected in 358 households, with samples obtained from 609 (87%) of 697 episodes. Norovirus (150 [25%] of 609 cases) and rotavirus (91 [15%] cases) were most frequently detected. Astrovirus was detected in 50 (8%) samples and adenovirus 40/41 in 24 (4%) samples. Overall disease severity was higher in patients with rotavirus-positive acute gastroenteritis than those with norovirus-positive acute gastroenteritis. Norovirus led to higher disease burden in adults than did rotavirus. Following an index case, a secondary acute gastroenteritis episode occurred in 34 (35%) of 96 households for norovirus and 26 (46%) of 56 households for rotavirus. Secondary attack rates were 15% (37 of 244 participants) for norovirus and 28% (33 of 120 participants) for rotavirus and asymptomatic transmission rates were 51% (52 of 102 household members) for norovirus and 22% (12 of 55 household members) for rotavirus. The microbiologically confirmed symptomatic transmission rate for norovirus was 10% (25 of 254 household members) and 18% for rotavirus (21 of 119 household members). INTERPRETATION: In households with young family members in a setting without rotavirus vaccination, norovirus is the dominant acute gastroenteritis pathogen, but rotavirus is associated with more severe disease. There was substantial within-household transmission, both symptomatic and asymptomatic. The study provides key quantities on transmission, which can inform vaccine policy decisions and act as a baseline for impact evaluations in high-income settings. FUNDING: The Netherlands Organisation for Health Research and Development (grant 91616158).


Assuntos
Infecções por Enterovirus/transmissão , Gastroenterite/virologia , Infecções por Rotavirus/transmissão , Adenoviridae/patogenicidade , Adolescente , Criança , Pré-Escolar , Diarreia/virologia , Infecções por Enterovirus/virologia , Fezes/virologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Países Baixos , Norovirus/patogenicidade , Estudos Prospectivos , Vírus de RNA/patogenicidade , Rotavirus/patogenicidade , Infecções por Rotavirus/virologia
9.
Virology ; 542: 28-33, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31957663

RESUMO

Horizontal pollen transmission by the raspberry bushy dwarf virus 1b deletion mutant (RBΔ1bstop), which is defective in virus virulence, was significantly decreased compared to wild-type raspberry bushy dwarf virus (wtRBDV). We assessed accumulation of viral genomic (g) RNAs in pollen grains from RBΔ1bstop-infected plants and found that the pollen grains had less viral gRNA than those from wtRBDV-infected plants. In addition, pollen grains from 1b-expressing transgenic plants (1b-plants) infected with RBΔ1bstop were more efficient in horizontal virus transmission to healthy plants after pollination than pollen from RBΔ1bstop-infected wild type plants. Moreover, viral gRNA accumulation in pollen grains from RBΔ1bstop-infected 1b-plants was higher than in pollen from RBΔ1bstop-infected wild type plants. We suggest that 1b increases the amount of viral gRNAs released from elongating pollen grains.


Assuntos
Genes Virais , Doenças das Plantas/virologia , Vírus de Plantas/genética , Pólen/virologia , Rubus/virologia , Transmissão de Doença Infecciosa , Hibridização In Situ , Mutação , Vírus de Plantas/patogenicidade , Plantas Geneticamente Modificadas , Polinização , Vírus de RNA/genética , Vírus de RNA/patogenicidade , RNA Viral/genética , RNA Viral/metabolismo , Rubus/fisiologia , Nicotiana/genética , Nicotiana/fisiologia , Nicotiana/virologia
10.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396899

RESUMO

Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins' functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.


Assuntos
Processamento de Proteína Pós-Traducional , Infecções por Vírus de RNA/enzimologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/metabolismo , Vírus de RNA/patogenicidade , Proteínas Virais/metabolismo , Acetilação , Vírus Chikungunya/metabolismo , Coronavirus/metabolismo , Coronavirus/patogenicidade , Efeito Citopatogênico Viral , Glicosilação , HIV/metabolismo , HIV/patogenicidade , Interações entre Hospedeiro e Microrganismos , Humanos , Fosforilação , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/metabolismo , Vírus de RNA/imunologia , Ubiquitinação , Replicação Viral/fisiologia , Zika virus/metabolismo , Zika virus/patogenicidade
11.
Plant J ; 101(2): 384-400, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562664

RESUMO

Endocytosis and endosomal trafficking play essential roles in diverse biological processes including responses to pathogen attack. It is well established that animal viruses enter host cells through receptor-mediated endocytosis for infection. However, the role of endocytosis in plant virus infection still largely remains unknown. Plant dynamin-related proteins 1 (DRP1) and 2 (DRP2) are the large, multidomain GTPases that participate together in endocytosis. Recently, we have discovered that DRP2 is co-opted by Turnip mosaic virus (TuMV) for infection in plants. We report here that DRP1 is also required for TuMV infection. We show that overexpression of DRP1 from Arabidopsis thaliana (AtDRP1A) promotes TuMV infection, and AtDRP1A interacts with several viral proteins including VPg and cylindrical inclusion (CI), which are the essential components of the virus replication complex (VRC). AtDRP1A colocalizes with the VRC in TuMV-infected cells. Transient expression of a dominant negative (DN) mutant of DRP1A disrupts DRP1-dependent endocytosis and supresses TuMV replication. As adaptor protein (AP) complexes mediate cargo selection for endocytosis, we further investigated the requirement of AP in TuMV infection. Our data suggest that the medium unit of the AP2 complex (AP2ß) is responsible for recognizing the viral proteins as cargoes for endocytosis, and knockout of AP2ß impairs intracellular endosomal trafficking of VPg and CI and inhibits TuMV replication. Collectively, our results demonstrate that DRP1 and AP2ß are two proviral host factors of TuMV and shed light into the involvement of endocytosis and endosomal trafficking in plant virus infection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Dinaminas/metabolismo , Vírus de Plantas/metabolismo , Vírus de RNA/metabolismo , Proteínas Virais/metabolismo , Proteínas de Arabidopsis/genética , Dinaminas/genética , Endocitose , Endossomos , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas , Vírus de Plantas/patogenicidade , Plantas Geneticamente Modificadas , Potyvirus , Domínios e Motivos de Interação entre Proteínas , Vírus de RNA/patogenicidade , Nicotiana/genética , Replicação Viral/fisiologia
12.
Cell Death Dis ; 10(12): 946, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827077

RESUMO

Retinoic acid-inducible gene I (RIG-I) is a pattern recognition receptor and is involved in the innate immune response against RNA viruses infection. Here, we demonstrate that the Ras-GTPase-activating protein SH3-domain-binding protein 1 (G3BP1) serves as a positive regulator of the RIG-I-mediated signaling pathway. G3BP1-deficient cells inhibited RNA virus-triggered induction of downstream antiviral genes. Furthermore, we found that G3BP1 inhibited the replication of Sendai virus and vesicular stomatitis virus, indicating a positive regulation of G3BP1 to cellular antiviral responses. Mechanistically, G3BP1 formed a complex with RNF125 and RIG-I, leading to decreased RNF125 via its auto-ubiquitination; thus, promoting expression of RIG-I. Overall, the results suggest a novel mechanism for G3BP1 in the positive regulation of antiviral signaling mediated by RIG-I.


Assuntos
Proteína DEAD-box 58/genética , DNA Helicases/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Infecções por Vírus de RNA/genética , Ubiquitina-Proteína Ligases/genética , Proteína DEAD-box 58/imunologia , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Vírus de RNA/imunologia , Vírus de RNA/patogenicidade , Receptores Imunológicos , Receptores de Reconhecimento de Padrão/genética , Transdução de Sinais , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação/genética , Ubiquitinação/imunologia , Replicação Viral/genética
13.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31118262

RESUMO

Schlafen 11 (Slfn11) is an interferon-stimulated gene that controls the synthesis of proteins by regulating tRNA abundance. Likely through this mechanism, Slfn11 has previously been shown to impair human immunodeficiency virus type 1 (HIV-1) infection and the expression of codon-biased open reading frames. Because replication of positive-sense single-stranded RNA [(+)ssRNA] viruses requires the immediate translation of the incoming viral genome, whereas negative-sense single-stranded RNA [(-)ssRNA] viruses carry at infection an RNA replicase that makes multiple translation-competent copies of the incoming viral genome, we reasoned that (+)ssRNA viruses will be more sensitive to the effect of Slfn11 on protein synthesis than (-)ssRNA viruses. To evaluate this hypothesis, we tested the effects of Slfn11 on the replication of a panel of ssRNA viruses in the human glioblastoma cell line A172, which naturally expresses Slfn11. Depletion of Slfn11 significantly increased the replication of (+)ssRNA viruses from the Flavivirus genus, including West Nile virus (WNV), dengue virus (DENV), and Zika virus (ZIKV), but had no significant effect on the replication of the (-)ssRNA viruses vesicular stomatitis virus (VSV) (Rhabdoviridae family) and Rift Valley fever virus (RVFV) (Phenuiviridae family). Quantification of the ratio of genome-containing viral particles to PFU indicated that Slfn11 impairs WNV infectivity. Intriguingly, Slfn11 prevented WNV-induced downregulation of a subset of tRNAs implicated in the translation of 11.8% of the viral polyprotein. Low-abundance tRNAs might promote optimal protein folding and enhance viral infectivity, as previously reported. In summary, this study demonstrates that Slfn11 restricts flavivirus replication by impairing viral infectivity.IMPORTANCE We provide evidence that the cellular protein Schlafen 11 (Slfn11) impairs replication of flaviviruses, including West Nile virus (WNV), dengue virus (DENV), and Zika virus (ZIKV). However, replication of single-stranded negative RNA viruses was not affected. Specifically, Slfn11 decreases the infectivity of WNV potentially by preventing virus-induced modifications of the host tRNA repertoire that could lead to enhanced viral protein folding. Furthermore, we demonstrate that Slfn11 is not the limiting factor of this novel broad antiviral pathway.


Assuntos
Infecções por Flavivirus/metabolismo , Flavivirus/fisiologia , Interações Hospedeiro-Patógeno/genética , Proteínas Nucleares/metabolismo , Replicação Viral , Linhagem Celular , Flavivirus/patogenicidade , Infecções por Flavivirus/virologia , Expressão Gênica , Técnicas de Silenciamento de Genes , Genoma Viral , Humanos , Interferon Tipo I/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Vírus de RNA/patogenicidade , Vírus de RNA/fisiologia , RNA de Transferência/genética , RNA de Transferência/metabolismo
14.
Viruses ; 11(4)2019 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31013994

RESUMO

To date, two plant genes encoding RNA-dependent RNA polymerases (RdRs) that play major roles in the defense against RNA viruses have been identified: (i) RdR1, which is responsible for the viral small RNAs (vsRNAs) found in virus-infected plants, and, (ii) RdR6, which acts as a surrogate in the absence of RdR1. In this study, the role of RdR6 in the defense against viroid infection was examined by knock-down of RdR6 followed by potato spindle tuber viroid (PSTVd) infection. The suppression of RdR6 expression increased the plant's growth, as was illustrated by the plant's increased height. PSTVd infection of RdR6 compromised plants resulted in an approximately three-fold increase in the accumulation of viroid RNA as compared to that seen in control plants. Additionally, RNA gel blot assay revealed an increase in the number of viroids derived small RNAs in RdR6 suppressed plants as compared to control plants. These data provide a direct correlation between RdR6 and viroid accumulation and indicate the role of RDR6 in the plant's susceptibility to viroid infection.


Assuntos
Nicotiana/virologia , Vírus de Plantas/fisiologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Viroides/fisiologia , Técnicas de Silenciamento de Genes , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Interferência de RNA , Vírus de RNA/patogenicidade , RNA Viral/análise , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Nicotiana/genética
15.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30723139

RESUMO

The triennial International Double-Stranded RNA Virus Symposium, this year organized by J. Matthijnssens, J. S. L. Parker, P. Danthi, and P. Van Damme in Belgium, gathered over 200 scientists to discuss novel observations and hypotheses in the field. The keynote lecture on functional interactions of bacteria and viruses in the gut microbiome was presented by Julie Pfeiffer. Workshops were held on viral diversity, molecular epidemiology, molecular virology, immunity and pathogenesis, virus structure, the viral use and abuse of cellular pathways, and applied double-stranded RNA (dsRNA) virology. The establishment of a plasmid only-based reverse genetics system for rotaviruses by several Japanese research groups in 2017 has now been reproduced by various other research groups and was discussed in detail. The visualization of dsRNA virus replication steps in living cells received much attention. Mechanisms of the cellular innate immune response to virus infection and of viral pathogenesis were explored. Knowledge of the gut microbiome's influence on specific immune responses has increased rapidly, also due to the availability of relevant animal models of virus infection. The method of cryo-electron microscopic (cryo-EM) tomography has elucidated various asymmetric structures in viral particles. The use of orthoreoviruses for oncolytic virotherapy was critically assessed. The application of llama-derived single chain nanobodies for passive immunotherapy was considered attractive. In a satellite symposium the introduction, impact and further developments of rotavirus vaccines were reviewed. The Jean Cohen Lecturer of this meeting was Harry B. Greenberg, who presented aspects of his research on rotaviruses over a period of more than 40 years. He was also interviewed at the meeting by Vincent Racaniello for the 513th session of This Week in Virology.


Assuntos
Vírus de RNA/genética , Vírus de RNA/metabolismo , RNA de Cadeia Dupla/genética , Animais , Bélgica , Genoma Viral/genética , Humanos , Vírus de RNA/patogenicidade , RNA Viral/metabolismo , Rotavirus/genética , Vírion/genética , Replicação Viral/genética
16.
Viruses ; 11(1)2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646581

RESUMO

RNA viruses that contain single-stranded RNA genomes of positive sense make up the largest group of pathogens infecting honey bees. Sacbrood virus (SBV) is one of the most widely distributed honey bee viruses and infects the larvae of honey bees, resulting in failure to pupate and death. Among all of the viruses infecting honey bees, SBV has the greatest number of complete genomes isolated from both European honey bees Apis mellifera and Asian honey bees A. cerana worldwide. To enhance our understanding of the evolution and pathogenicity of SBV, in this study, we present the first report of whole genome sequences of two U.S. strains of SBV. The complete genome sequences of the two U.S. SBV strains were deposited in GenBank under accession numbers: MG545286.1 and MG545287.1. Both SBV strains show the typical genomic features of the Iflaviridae family. The phylogenetic analysis of the single polyprotein coding region of the U.S. strains, and other GenBank SBV submissions revealed that SBV strains split into two distinct lineages, possibly reflecting host affiliation. The phylogenetic analysis based on the 5'UTR revealed a monophyletic clade with the deep parts of the tree occupied by SBV strains from both A. cerane and A. mellifera, and the tips of branches of the tree occupied by SBV strains from A. mellifera. The study of the cold stress on the pathogenesis of the SBV infection showed that cold stress could have profound effects on sacbrood disease severity manifested by increased mortality of infected larvae. This result suggests that the high prevalence of sacbrood disease in early spring may be due to the fluctuating temperatures during the season. This study will contribute to a better understanding of the evolution and pathogenesis of SBV infection in honey bees, and have important epidemiological relevance.


Assuntos
Abelhas/virologia , Genoma Viral , Vírus de Insetos/genética , Filogenia , Vírus de RNA/patogenicidade , Animais , Resposta ao Choque Frio , Variação Genética , Vírus de Insetos/patogenicidade , Infecções por Vírus de RNA , Vírus de RNA/genética , Estados Unidos , Sequenciamento Completo do Genoma
17.
Arch Immunol Ther Exp (Warsz) ; 67(1): 41-48, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30196473

RESUMO

Nuclear factor (NF)-κB is a major regulator of antiviral response. Viral pathogens exploit NF-κB activation pathways to avoid cellular mechanisms that eliminate the infection. Canonical (classical) NF-κB signaling, which regulates innate immune response, cell survival and inflammation, is often manipulated by viral pathogens that can counteract antiviral response. Oncogenic viruses can modulate not only canonical, but also non-canonical (alternative) NF-κB activation pathways. The non-canonical NF-κB signaling is responsible for adaptive immunity and plays a role in lymphoid organogenesis, B cell development, as well as bone metabolism. Thus, non-canonical NF-κB activation has been linked to lymphoid malignancies. However, some data strongly suggest that the non-canonical NF-κB activation pathway may also function in innate immunity and is modulated by certain non-oncogenic viruses. Collectively, these findings show the importance of studying the impact of different groups of viral pathogens on alternative NF-κB activation. This mini-review focuses on the influence of non-oncogenic viruses on the components of non-canonical NF-κB signaling.


Assuntos
Vírus de DNA/patogenicidade , NF-kappa B/metabolismo , Vírus de RNA/patogenicidade , Viroses/virologia , Imunidade Adaptativa , Animais , Vírus de DNA/imunologia , Vírus de DNA/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , NF-kappa B/imunologia , Vírus de RNA/imunologia , Vírus de RNA/metabolismo , Transdução de Sinais , Viroses/imunologia , Viroses/metabolismo
18.
J Pediatric Infect Dis Soc ; 8(5): 414-421, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30184153

RESUMO

BACKGROUND: The rotavirus disease burden has declined substantially since rotavirus vaccine was introduced in the United States in 2006. The aim of this study was to determine the viral etiology of acute gastroenteritis (AGE) in US children aged <2 years. METHODS: The New Vaccine Surveillance Network (NVSN) of geographically diverse US sites conducts active pediatric population-based surveillance in hospitals and emergency departments. Stool samples were collected from children aged <2 years with symptoms of AGE (n = 330) and age-matched healthy controls (HCs) (n = 272) between January and December 2012. Samples were tested by real-time reverse-transcriptase polymerase chain reaction assays {adenovirus (type 40 and 41), norovirus, parechovirus A, enterovirus, sapovirus, and astrovirus} and an enzyme immunoassay (rotavirus). All samples that tested positive were genotyped. RESULTS: Detection rates of pathogens in children with AGE versus those of HCs were, respectively, 23.0% versus 6.6% for norovirus (P < .01), 23.0% versus 16.0% for adenovirus (P = .08), 11.0% versus 16.0% for parechovirus A (P = .09), 11.0% versus 9.0% for enterovirus (P = .34), 7.0% versus 3.0% for sapovirus (P = .07), 3.0% versus 0.3% for astrovirus (P = .01), and 3.0% versus 0.4% for rotavirus (P = .01). A high prevalence of adenovirus was detected at 1 surveillance site (49.0% for children with AGE and 43.0% for HCs). Norovirus GII.4 New Orleans was the most frequently detected (33.0%) norovirus genotype. Codetection of >1 virus was more common in children with AGE (16.0%) than in HCs (10.0%) (P = .03). CONCLUSIONS: Norovirus, astrovirus, sapovirus, and rotavirus were detected significantly more in children with AGE than in HCs, and norovirus was the leading AGE-causing pathogen in US children aged <2 years during the year 2012.


Assuntos
Gastroenterite/epidemiologia , Gastroenterite/virologia , Vírus de RNA/patogenicidade , Vacinas contra Rotavirus/administração & dosagem , Doença Aguda , Distribuição por Idade , Estudos de Casos e Controles , Fezes/virologia , Técnicas de Genotipagem , Humanos , Técnicas Imunoenzimáticas , Lactente , Recém-Nascido , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo , Estados Unidos/epidemiologia
19.
Nat Commun ; 9(1): 1606, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29686409

RESUMO

The recognition of pathogen-derived ligands by pattern recognition receptors activates the innate immune response, but the potential interaction of quorum-sensing (QS) signaling molecules with host anti-viral defenses remains largely unknown. Here we show that the Vibrio vulnificus QS molecule cyclo(Phe-Pro) (cFP) inhibits interferon (IFN)-ß production by interfering with retinoic-acid-inducible gene-I (RIG-I) activation. Binding of cFP to the RIG-I 2CARD domain induces a conformational change in RIG-I, preventing the TRIM25-mediated ubiquitination to abrogate IFN production. cFP enhances susceptibility to hepatitis C virus (HCV), as well as Sendai and influenza viruses, each known to be sensed by RIG-I but did not affect the melanoma-differentiation-associated gene 5 (MDA5)-recognition of norovirus. Our results reveal an inter-kingdom network between bacteria, viruses and host that dysregulates host innate responses via a microbial quorum-sensing molecule modulating the response to viral infection.


Assuntos
Proteína DEAD-box 58/metabolismo , Dipeptídeos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/efeitos dos fármacos , Peptídeos Cíclicos/imunologia , Percepção de Quorum/imunologia , Animais , Linhagem Celular Tumoral , Proteína DEAD-box 58/imunologia , Modelos Animais de Doenças , Células HEK293 , Hepatócitos , Humanos , Interferon beta/imunologia , Interferon beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Cultura Primária de Células , Células RAW 264.7 , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/microbiologia , Vírus de RNA/imunologia , Vírus de RNA/patogenicidade , Receptores Imunológicos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Superinfecção/imunologia , Superinfecção/microbiologia , Vibrioses/imunologia , Vibrioses/microbiologia , Vibrio vulnificus/imunologia
20.
Plant Biotechnol J ; 16(8): 1415-1423, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29327438

RESUMO

Recently, CRISPR-Cas (clustered, regularly interspaced short palindromic repeats-CRISPR-associated proteins) system has been used to produce plants resistant to DNA virus infections. However, there is no RNA virus control method in plants that uses CRISPR-Cas system to target the viral genome directly. Here, we reprogrammed the CRISPR-Cas9 system from Francisella novicida to confer molecular immunity against RNA viruses in Nicotiana benthamiana and Arabidopsis plants. Plants expressing FnCas9 and sgRNA specific for the cucumber mosaic virus (CMV) or tobacco mosaic virus (TMV) exhibited significantly attenuated virus infection symptoms and reduced viral RNA accumulation. Furthermore, in the transgenic virus-targeting plants, the resistance was inheritable and the progenies showed significantly less virus accumulation. These data reveal that the CRISPR/Cas9 system can be used to produce plant that stable resistant to RNA viruses, thereby broadening the use of such technology for virus control in agricultural field.


Assuntos
Francisella/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/virologia , Vírus de RNA/patogenicidade , Sistemas CRISPR-Cas , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Vírus de RNA/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA