Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 438
Filtrar
1.
Nat Commun ; 15(1): 8509, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353964

RESUMO

Tobacco mosaic virus (TMV) is extremely pathogenic and resistant to stress There are great needs to develop methods to reduce the virus in the environment and induce plant immunity simultaneously. Here, we report a multifunctional nano-protectant to reduce the virus in the environment and induce plant immunity simultaneously. The star polycation (SPc) nanocarrier can act as an active ingredient to interact with virus coat protein via electrostatic interaction, which reduces the proportion of TMV particles to 2.9% and leads to a reduction of the amount of virus in the environment by half. SPc can act as an adjuvant to spontaneously assemble with an immune inducer lentinan (LNT) through hydrogen bonding into nanoscale (142 nm diameter) LNT/SPc complex, which improves the physicochemical property of LNT for better wetting performance on leaves and cellular uptake, and further activates plant immune responses. Finally, the LNT/SPc complex displays preventive and curative effects on TMV disease, reducing TMV-GFP relative expression by 26% in the laboratory and achieving 82% control efficacy in the field We hope the strategy reported here would be useful for control of crop virus disease.


Assuntos
Nicotiana , Doenças das Plantas , Imunidade Vegetal , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Vírus do Mosaico do Tabaco/imunologia , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/imunologia , Imunidade Vegetal/efeitos dos fármacos , Nicotiana/virologia , Nicotiana/imunologia , Nanoestruturas/química , Lentinano/farmacologia , Folhas de Planta/virologia , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo
2.
J Agric Food Chem ; 72(39): 21877-21891, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39295137

RESUMO

seco-pregnane C21 steroids exhibit high antiviral activity against the tobacco mosaic virus (TMV). However, the structural modification of seco-pregnane C21 steroids and the structure-activity relationship (SAR) of the modified compounds remain unevaluated. Hence, the present study investigated how variations in the original skeletons of natural seco-pregnane C21 steroids affect their antiviral activity. A series of glaucogenin C and A derivatives were designed and synthesized for the first time, and their anti-TMV activity was evaluated. Bioassay results showed that most of the newly designed derivatives exhibited good to excellent antiviral activity; among these derivatives, 5g, 5j, and 5l with higher antiviral activity than that of ningnanmycin emerged as new antiviral candidates. Reverse transcription-polymerase chain reaction and Western blotting assay revealed reduced levels of TMV coat protein (TMV-CP) gene transcription and TMV-CP protein expression, which confirmed the antiviral activity of these derivatives. These compounds also downregulated the expression of NtHsp70-1 and NtHsp70-061. Computational simulations indicated that 5l displayed strong van der Waals energy and electrostatic with the TMV coat protein, affording a lower binding energy (ΔGbind = -56.2 kcal/mol) compared with Ribavirin (ΔGbind = -47.6 kcal/mol). The SAR of these compounds was also evaluated, which demonstrated for the first time that substitutions at C-3 and double bonds of C-5/C-6 and C-13/C-18 are crucial for maintaining high anti-TMV activity.


Assuntos
Antivirais , Desenho de Fármacos , Pregnanos , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Relação Estrutura-Atividade , Pregnanos/química , Pregnanos/farmacologia , Pregnanos/síntese química , Estrutura Molecular , Doenças das Plantas/virologia , Esteroides/química , Esteroides/farmacologia , Esteroides/síntese química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Simulação de Acoplamento Molecular
3.
J Agric Food Chem ; 72(38): 20783-20793, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39267339

RESUMO

Cytidine has a broad range of applications in the pharmaceutical field as an intermediate of antitumor or antiviral agent. Here, a series of new cytidine peptide compounds were synthesized using cytidine and Boc group-protected amino acids and analyzed for their antiviral activities against tobacco mosaic virus (TMV). Among these compounds, the structure of an effective antiviral cytidine peptide SN11 was characterized by 1H NMR, 13C NMR, and high-resolution mass spectrometer. The compound SN11 has a molecular formula of C15H22N6O8 and is named 2-amino-N-(2- ((1- (3,4-dihydroxy-5-(hydroxymethyl) tetrahydrofuran-2-yl) -2-oxo-1,2-dihydropyrimidin-4-yl) amino) -2-oxyethyl) amino). The protection, inactivation, and curation activities of SN11 at a concentration of 500 µg/mL against TMV in Nicotiana glutinosa were 82.6%, 84.2%, and 72.8%, respectively. SN11 also effectively suppressed the systemic transportation of a recombinant TMV carrying GFP reporter gene (p35S-30B:GFP) in Nicotiana benthamiana by reducing viral accumulation to 71.3% in the upper uninoculated leaves and inhibited the systemic infection of TMV in Nicotiana tabacum plants. Furthermore, the results of RNA-seq showed that compound SN11 induced differential expression of genes involved in the biogenesis and function of ribosome, plant hormone signal transduction, plant pathogen interaction, and chromatin. These results validate the antiviral mechanisms of the cytidine peptide compound and provide a theoretical basis for their potential application in the management of plant virus diseases.


Assuntos
Antivirais , Citidina , Nicotiana , Peptídeos , Doenças das Plantas , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Citidina/farmacologia , Citidina/análogos & derivados , Citidina/química , Nicotiana/virologia , Nicotiana/química , Nicotiana/genética , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/síntese química , Doenças das Plantas/virologia
4.
Molecules ; 29(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39202955

RESUMO

This study used the DNA of Bacillus amyloliquefaciens Ba168 as a template to amplify the flagellin BP8-2 gene and ligate it into the fusion expression vector pCAMBIA1300-35S-EGFP after digestion for the construction of the expression vector pCAMBIA1300-EGFP-BP8-2. Next, using Nicotiana benthamiana as receptor material, transient expression was carried out under the mediation of Agrobacterium tumefaciens C58C1. Finally, the transient expression and subcellular localisation of flagellin BP8-2 protein were analysed using the imaging of co-transformed GFP under laser confocal microscopy. The results showed that flagellin BP8-2 was localised in the cell membrane and nucleus, and the RT-PCR results showed that the BP8-2 gene could be stably expressed in tobacco leaf cells. Furthermore, there was stronger antiviral activity against tobacco mosaic virus (TMV) infection in Nicotiana glutinosa than in BP8-2 and ningnanmycin, with an inhibitory effect of 75.91%, protective effect of 77.45%, and curative effect of 68.15%. TMV movement and coat protein expression were suppressed, and there was a high expression of PR-1a, PAL, and NPR1 in BP8-2-treated tobacco leaf. These results suggest that flagellin BP8-2 inhibits TMV by inducing resistance. Moreover, BP8-2 has low toxicity and is easily biodegradable and eco-friendly. These results further enrich our understanding of the antiviral mechanisms of proteins and provide alternatives for controlling viral diseases in agriculture.


Assuntos
Antivirais , Flagelina , Vetores Genéticos , Nicotiana , Vírus do Mosaico do Tabaco , Flagelina/farmacologia , Flagelina/metabolismo , Flagelina/genética , Nicotiana/virologia , Nicotiana/genética , Nicotiana/metabolismo , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Antivirais/farmacologia , Folhas de Planta/virologia , Folhas de Planta/metabolismo , Doenças das Plantas/virologia , Doenças das Plantas/genética
5.
Bioorg Chem ; 151: 107708, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39133973

RESUMO

Pesticides play an important role in the development of agriculture, as they can prevent and control crop diseases and pests, improve crop yield and quality. However, the abuse and improper use of pesticides can lead to negative impacts such as environmental pollution and pest resistance issues. There is an urgent need to develop green, safe, and efficient pesticides. In this work, natural product arecoline was selected as parent structure, a series of arecoline derivatives were designed, synthesized, and systematically investigated antiviral activities against tobacco mosaic virus (TMV). These compounds were found to have good to excellent anti-TMV activities for the first time. The antiviral activities of 4a, 4 h, 4 l, 4p, 6a, 6c, and 6f are higher than that of ningnanmycin. Compounds 4 h (EC50 value 146 µg/mL) and 4p (EC50 value 161 µg/mL) with simple structures and excellent activities emerged as new antiviral candidates. We chose 4 h to further investigate the antiviral mechanism, which revealed that it can cause virus fragmentation by acting on the viral coat protein (CP). We further validated this result through molecular docking. These compounds also displayed broad-spectrum fungicidal activities against 8 plant pathogenic fungi. This work lays the theoretical foundation for the application of arecoline derivatives in the agricultural field.


Assuntos
Antivirais , Arecolina , Desenho de Fármacos , Oxidiazóis , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Oxidiazóis/química , Oxidiazóis/farmacologia , Oxidiazóis/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Arecolina/farmacologia , Arecolina/síntese química , Arecolina/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
6.
J Agric Food Chem ; 72(33): 18423-18433, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39106460

RESUMO

Natural products are a valuable resource for the discovery of novel crop protection agents. A series of γ-butyrolactone derivatives, derived from the simplification of podophyllotoxin's structure, were synthesized and assessed for their efficacy against tobacco mosaic virus (TMV). Several derivatives exhibited notable antiviral properties, with compound 3g demonstrating the most potent in vivo anti-TMV activity. At 500 µg/mL, compound 3g achieved an inactivation effect of 87.8%, a protective effect of 71.7%, and a curative effect of 67.7%, surpassing the effectiveness of the commercial plant virucides ningnanmycin and ribavirin. Notably, the syn-diastereomer (syn-3g) exhibited superior antiviral activity compared to the anti-diastereomer (anti-3g). Mechanistic studies revealed that syn-3g could bind to the TMV coat protein and interfere with the self-assembly process of TMV particles. These findings indicate that compound 3g, with its simple chemical structure, could be a potential candidate for the development of novel antiviral agents for crop protection.


Assuntos
4-Butirolactona , Antivirais , Podofilotoxina , Vírus do Mosaico do Tabaco , Podofilotoxina/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , Antivirais/síntese química , Antivirais/farmacologia , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Montagem de Vírus/efeitos dos fármacos , Proteínas do Capsídeo/metabolismo , Proteção de Cultivos , Cristalografia por Raios X , Relação Estrutura-Atividade , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo , Nicotiana/virologia , Simulação de Acoplamento Molecular
7.
J Agric Food Chem ; 72(26): 14610-14619, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38896477

RESUMO

A series of ferulic acid dimers were designed, synthesized, and evaluated for anti-TMV activity. Biological assays demonstrated that compounds A6, E3, and E5 displayed excellent inactivating against tobacco mosaic virus (TMV) with EC50 values of 62.8, 94.4, and 85.2 µg mL-1, respectively, which were superior to that of ningnanmycin (108.1 µg mL-1). Microscale thermophoresis indicated that compounds A6, E3, and E5 showed strong binding capacity to TMV coat protein with binding affinity values of 1.862, 3.439, and 2.926 µM, respectively. Molecular docking and molecular dynamics simulation revealed that compound A6 could firmly bind to the TMV coat protein through hydrogen and hydrophobic bonds. Transmission electron microscopy and self-assembly experiments indicated that compound A6 obviously destroyed the integrity of the TMV particles and blocked the virus from infecting the host. This study revealed that A6 can be used as a promising leading structure for the development of antiviral agents by inhibiting TMV self-assembly.


Assuntos
Antivirais , Ácidos Cumáricos , Simulação de Acoplamento Molecular , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Doenças das Plantas/virologia , Montagem de Vírus/efeitos dos fármacos , Dimerização , Simulação de Dinâmica Molecular
8.
J Agric Food Chem ; 72(20): 11351-11359, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38720167

RESUMO

Tobacco mosaic virus (TMV), as one of the most traditional and extensive biological stresses, poses a serious threat to plant growth and development. In this work, a series of 1-phenyl/tertbutyl-5-amino-4-pyrazole oxadiazole and arylhydrazone derivatives was synthesized. Bioassay evaluation demonstrated that the title compounds (P1-P18) without a "thioether bond" lost their anti-TMV activity, while some of the ring-opening arylhydrazone compounds exhibited superior in vivo activity against TMV in tobacco. The EC50 value of title compound T8 for curative activity was 139 µg/mL, similar to that of ningnanmycin (NNM) (EC50 = 152 µg/mL). Safety analysis revealed that compound T8 had no adverse effects on plant growth or seed germination at a concentration of 250 µg/mL. Morphological observation revealed that compound T8 could restore the leaf tissue of a TMV-stressed host and the leaf stomatal aperture to normal. A mechanism study further revealed that compound T8 not only restored the photosynthetic and growth ability of the damaged host to normal levels but also enhanced catalase (CAT) activity and reduced the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the damaged host, thereby reducing the oxidation damage to the host. TMV-green fluorescent protein (GFP) experiments further demonstrated that compound T8 not only slowed the transmission speed of TMV in the host but also inhibited its reproduction. All of the experimental results demonstrated that compound T8 could reduce the oxidative damage caused by TMV stress and regulate the photosynthetic ability of the host, achieving the ability to repair damage, to make the plant grow normally.


Assuntos
Antivirais , Hidrazonas , Nicotiana , Oxidiazóis , Doenças das Plantas , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Vírus do Mosaico do Tabaco/fisiologia , Oxidiazóis/química , Oxidiazóis/farmacologia , Hidrazonas/farmacologia , Hidrazonas/química , Hidrazonas/síntese química , Nicotiana/virologia , Nicotiana/efeitos dos fármacos , Doenças das Plantas/virologia , Antivirais/farmacologia , Antivirais/síntese química , Antivirais/química , Desenho de Fármacos , Relação Estrutura-Atividade , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Estrutura Molecular
9.
Bioorg Chem ; 147: 107415, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701597

RESUMO

The tobacco mosaic virus coat protein (TMV-CP) is indispensable for the virus's replication, movement and transmission, as well as for the host plant's immune system to recognize it. It constitutes the outermost layer of the virus particle, and serves as an essential component of the virus structure. TMV-CP is essential for initiating and extending viral assembly, playing a crucial role in the self-assembly process of Tobacco Mosaic Virus (TMV). This research employed TMV-CP as a primary target for virtual screening, from which a library of 43,417 compounds was sourced and SH-05 was chosen as the lead compound. Consequently, a series of α-amide phosphate derivatives were designed and synthesized, exhibiting remarkable anti-TMV efficacy. The synthesized compounds were found to be beneficial in treating TMV, with compound 3g displaying a slightly better curative effect than Ningnanmycin (NNM) (EC50 = 304.54 µg/mL) at an EC50 of 291.9 µg/mL. Additionally, 3g exhibited comparable inactivation activity (EC50 = 63.2 µg/mL) to NNM (EC50 = 67.5 µg/mL) and similar protective activity (EC50 = 228.9 µg/mL) to NNM (EC50 = 219.7 µg/mL). Microscale thermal analysis revealed that the binding of 3g (Kd = 4.5 ± 1.9 µM) to TMV-CP showed the same level with NNM (Kd = 5.5 ± 2.6 µM). Results from transmission electron microscopy indicated that 3g could disrupt the structure of TMV virus particles. The toxicity prediction indicated that 3g was low toxicity. Molecular docking showed that 3g interacted with TMV-CP through hydrogen bond, attractive charge interaction and π-Cation interaction. This research provided a novel α-amide phosphate structure target TMV-CP, which may help the discovery of new anti-TMV agents in the future.


Assuntos
Antivirais , Proteínas do Capsídeo , Fosfatos , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Fosfatos/química , Fosfatos/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Proteínas do Capsídeo/antagonistas & inibidores , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Simulação de Acoplamento Molecular
10.
Sci Rep ; 12(1): 2935, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190609

RESUMO

Based on the broad-spectrum biological activities of echinopsine and acylhydrazones, a series of echinopsine derivatives containing acylhydrazone moieties have been designed, synthesized and their biological activities were evaluated for the first time. The bioassay results indicated that most of the compounds showed moderate to good antiviral activities against tobacco mosaic virus (TMV), among which echinopsine (I) (inactivation activity, 49.5 ± 4.4%; curative activity, 46.1 ± 1.5%; protection activity, 42.6 ± 2.3%) and its derivatives 1 (inactivation activity, 44.9 ± 4.6%; curative activity, 39.8 ± 2.6%; protection activity, 47.3 ± 4.3%), 3 (inactivation activity, 47.9 ± 0.9%; curative activity, 43.7 ± 3.1%; protection activity, 44.6 ± 3.3%), 7 (inactivation activity, 46.2 ± 1.6%; curative activity, 45.0 ± 3.7%; protection activity, 41.7 ± 0.9%) showed higher anti-TMV activity in vivo at 500 mg/L than commercial ribavirin (inactivation activity, 38.9 ± 1.4%; curative activity, 39.2 ± 1.8%; protection activity, 36.4 ± 3.4%). Some compounds exhibited insecticidal activities against Plutella xylostella, Mythimna separate and Spodoptera frugiperda. Especially, compounds 7 and 27 displayed excellent insecticidal activities against Plutella xylostell (mortality 67 ± 6% and 53 ± 6%) even at 0.1 mg/L. Additionally, most echinopsine derivatives exhibited high fungicidal activities against Physalospora piricola and Sclerotinia sclerotiorum.


Assuntos
Desenho de Fármacos/métodos , Hidrazonas/química , Quinolonas/síntese química , Quinolonas/farmacologia , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Animais , Antifúngicos , Antivirais , Ascomicetos/efeitos dos fármacos , Granulovirus/efeitos dos fármacos , Inseticidas , Quinolonas/química , Spodoptera/efeitos dos fármacos
11.
J Antibiot (Tokyo) ; 75(2): 117-121, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34845337

RESUMO

A new compound classified as one new azaphilone derivative, nigirpexin E (1), was obtained from the soil-derived fungus Trichoderma afroharzianum LTR-2, together with seven known compounds (2-8). The structures of 1-8 were determined by their HRESIMS, optical rotation, and NMR spectroscopic data. The absolute configuration of nigirpexin E (1) was determined on the basis of comparisons of experimental and theoretically calculated ECD spectra. Compound 3 was firstly isolated from Trichoderma. Bioactivities of the isolated compounds were assayed their anti-tobacco mosaic virus (anti-TMV) activities. The results showed that compound 1 exhibited significant inactivation effect against TMV with an inhibition rate of 67.25% (0.5 mg ml-1), which was higher than that of positive control ribavirin (56.74%). This is the first report of the anti-TMV activity of azaphilone derivatives.


Assuntos
Antivirais/farmacologia , Hypocreales/química , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Benzopiranos , Dicroísmo Circular , Fermentação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Pigmentos Biológicos , Ribavirina/farmacologia , Microbiologia do Solo
12.
J Nat Prod ; 84(11): 2937-2944, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34730370

RESUMO

Phrymarolin II, a furofuran lignan isolated from Phryma leptostachya L., features a 3,7-dioxabicyclo[3.3.0]octane skeleton. Herein, we report an alternative total synthesis of (±)-phrymarolin II (2), which was performed in 9 steps from commercially available sesamol. The key steps of the synthesis included a zinc-mediated Barbier-type allylation and a copper-catalyzed anomeric O-arylation. Our total synthesis allowed the synthesis of analogues of (±)-phrymarolin II. Most derivatives displayed good to excellent in vivo activity against tobacco mosaic virus (TMV). (±)-Phrymarolin II (2) and compounds (±)-31d and (±)-31g exhibited similar or higher activity than commercial ningnanmycin, which indicated that phrymarolin lignans are a promising new class of plant virus inhibitors.


Assuntos
Antivirais/síntese química , Lignanas/síntese química , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Antivirais/farmacologia , Benzodioxóis , Lignanas/farmacologia
13.
Sci Rep ; 11(1): 16509, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389790

RESUMO

Plant diseases caused by plant viruses and pathogens seriously affect crop yield and quality, and it is very difficult to control them. The discovery of new leads based on natural products is an important way to innovate pesticides. Based on the resveratrol is a kind of natural phytoalexin, but it cannot be used as candidate for the development of new drug due to its poor druggability. The phenolic hydroxyl groups in the resveratrol structure are easily destroyed by oxidation, in order to improve its stability, ester formation is the most commonly used modification method in drug design. Their structures were characterized by 1H NMR, 13C NMR and HRMS. The activity against tobacco mosaic virus (TMV) of these ester derivatives has been tested for the first time. The bioassay results showed part of the target compounds exhibited good to excellent in vivo activities against TMV. The optimum compounds III-2 (inhibitory rates of 50, 53, and 59% at 500 µg/mL for inactivation, curative, and protection activities in vivo, respectively), III-4 (inhibitory rates of 57, 59, and 51% at 500 µg/mL, respectively), and II-5 (inhibitory rates of 54, 52, and 51% at 500 µg/mL, respectively) displayed higher activity than commercial plant virucide ribavirin (inhibitory rates of 38, 37, and 40% at 500 µg/mL, respectively). Compounds I-9 and I-10 also showed excellent activities. The systematic study provides strong evidence that these simple resveratrol derivatives could become potential TMV inhibitors. The novel concise structure provides another new template for antiviral studies.


Assuntos
Antifúngicos/farmacologia , Antivirais/farmacologia , Resveratrol/farmacologia , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Inseticidas/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia , Doenças das Plantas/virologia , Resveratrol/análogos & derivados
14.
Bioorg Chem ; 115: 105248, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34392177

RESUMO

A series of new ferulic acid derivatives bearing an oxadiazole ether was synthesized by introducing a structure of oxadiazole into trans-ferulic acid via an ether linkage. The synthesized target compounds were evaluated in vivo for their anti-TMV (tobacco mosaic virus) activity, which indicated that some synthesized compounds displayed strong activity for controlling TMV. For protective activity, compounds 6f and 6h had the most activities of 65% and 69.8% at 500 mg L-1, respectively. Compounds 6a, 6b, 6e, 6f and 6h showed > 60% curative activities at 500 mg L-1. Preliminary proteomics analysis showed that compound 6h could regulate the phenylpropanoid biosynthesis pathway and chloroplast function. These results indicated that synthesized novel ferulic acid derivatives could be used for controlling TMV.


Assuntos
Antivirais/farmacologia , Ácidos Cafeicos/farmacologia , Éteres/farmacologia , Oxidiazóis/farmacologia , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Ácidos Cafeicos/síntese química , Ácidos Cafeicos/química , Relação Dose-Resposta a Droga , Éteres/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxidiazóis/química , Relação Estrutura-Atividade
15.
Chembiochem ; 22(13): 2292-2299, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33890383

RESUMO

Understanding the role of H2 S in host defense mechanisms against RNA viruses may provide opportunities for the development of antivirals to combat viral infections. Here, we have developed a green-emitting fluorogenic probe, which exhibits a large fluorescence response at 520 nm (>560-fold) when treated with 100 µM H2 S for 1 h. It is highly selective for H2 S over biothiols (>400-fold F/F0 ) and has a detection limit of 12.9 nM. We demonstrate the application of the probe for endogenous H2 S detection in vivo for the understanding of its roles in antiviral host defense. Such virus-induced H2 S inhibits viral replication by reducing gene expression of RNA-dependent RNA polymerase (RdRp) and coat protein (CP). Additionally, a H2 S donor GYY4137 showed significantly antiviral activity as ribavirin, a broad-spectrum drug against RNA viruses. Furtherly, we propose a possible molecular mechanism for the TMV-induced H2 S biogenesis. This work provides a proof-of-principle in support of further studies identifying endogenous H2 S and its donors as potential antivirals toward RNA viruses.


Assuntos
Antivirais/análise , Corantes Fluorescentes/química , Sulfeto de Hidrogênio/análise , Vírus do Mosaico do Tabaco/metabolismo , Antivirais/farmacologia , Corantes Fluorescentes/metabolismo , Sulfeto de Hidrogênio/farmacologia , Testes de Sensibilidade Microbiana , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
16.
Molecules ; 26(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450940

RESUMO

Based on the structure of the natural product cysteine, a series of thiazolidine-4-carboxylic acids were designed and synthesized. All target compounds bearing thiazolidine-4-carboxylic acid were characterized by 1H-NMR, 13C-NMR, and HRMS techniques. The antiviral and antifungal activities of cysteine and its derivatives were evaluated in vitro and in vivo. The results of anti-TMV activity revealed that all compounds exhibited moderate to excellent activities against tobacco mosaic virus (TMV) at the concentration of 500 µg/mL. The compounds cysteine (1), 3-4, 7, 10, 13, 20, 23, and 24 displayed higher anti-TMV activities than the commercial plant virucide ribavirin (inhibitory rate: 40, 40, and 38% at 500 µg/mL for inactivation, curative, and protection activity in vivo, respectively), especially compound 3 (inhibitory rate: 51%, 47%, and 49% at 500 µg/mL for inactivation, curative, and protection activity in vivo, respectively) with excellent antiviral activity emerged as a new antiviral candidate. Antiviral mechanism research by TEM exhibited that compound 3 could inhibit virus assembly by aggregated the 20S protein disk. Molecular docking results revealed that compound 3 with higher antiviral activities than that of compound 24 did show stronger interaction with TMV CP. Further fungicidal activity tests against 14 kinds of phytopathogenic fungi revealed that these cysteine derivatives displayed broad-spectrum fungicidal activities. Compound 16 exhibited higher antifungal activities against Cercospora arachidicola Hori and Alternaria solani than commercial fungicides carbendazim and chlorothalonil, which emerged as a new candidate for fungicidal research.


Assuntos
Alternaria/efeitos dos fármacos , Antifúngicos/farmacologia , Antivirais/farmacologia , Ascomicetos/efeitos dos fármacos , Cisteína/farmacologia , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Antifúngicos/síntese química , Antifúngicos/química , Antivirais/síntese química , Antivirais/química , Cisteína/síntese química , Cisteína/química , Descoberta de Drogas , Testes de Sensibilidade Microbiana , Estrutura Molecular
17.
J Agric Food Chem ; 69(4): 1224-1233, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33480687

RESUMO

To further study the structure-activity relationship of gossypol, hemigossypol (1) and its derivatives (2-23) were successfully designed via structure simplification and chemically synthesized. The anti-tobacco mosaic virus (TMV), fungicidal, and insecticidal activities of them were tested systematically. Most of these derivatives exhibited excellent anti-TMV activity. Furthermore, these compounds also exhibited broad-spectrum fungicidal activities against 14 kinds of phytopathogenic fungi. In particular, hemigossypol acid lactone (7) was stable in the air. In terms of biological activity, it not only showed anti-TMV activity (inhibitory rates of 70.3, 65.4 and 72.4% at 500 µg/mL for inactivation, curative, and protection activity in vivo, respectively) comparable to ningnanmycin but also exhibited higher insecticidal activity against mosquito larvae (60%/0.25 mg/kg) than the commercial species rotenone. None of hemigossypol and the tested derivatives showed antitumor activities.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antivirais/síntese química , Antivirais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/farmacologia , Inseticidas/síntese química , Inseticidas/farmacologia , Animais , Antineoplásicos/química , Antivirais/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Culicidae/efeitos dos fármacos , Culicidae/crescimento & desenvolvimento , Desenho de Fármacos , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Fungicidas Industriais/química , Gossipol/química , Gossipol/farmacologia , Humanos , Inseticidas/química , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Relação Estrutura-Atividade , Vírus do Mosaico do Tabaco/efeitos dos fármacos
18.
Molecules ; 25(23)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276431

RESUMO

Phytochemistry investigations on Ailanthus altissima (Mill.) Swingle, a Simaroubaceae plant that is recognized as a traditional herbal medicine, have afforded various natural products, among which C20 quassinoid is the most attractive for their significant and diverse pharmacological and biological activities. Our continuous study has led to the isolation of two novel quassinoid glycosides, named chuglycosides J and K, together with fourteen known lignans from the samara of A. altissima. The new structures were elucidated based on comprehensive spectra data analysis. All of the compounds were evaluated for their anti-tobacco mosaic virus activity, among which chuglycosides J and K exhibited inhibitory effects against the virus multiplication with half maximal inhibitory concentration (IC50) values of 56.21 ± 1.86 and 137.74 ± 3.57 µM, respectively.


Assuntos
Ailanthus/química , Antivirais/farmacologia , Glicosídeos/farmacologia , Nicotiana/efeitos dos fármacos , Extratos Vegetais/farmacologia , Quassinas/química , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Lignanas/farmacologia , Casca de Planta/química , Nicotiana/virologia
19.
J Agric Food Chem ; 68(50): 15015-15026, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33285067

RESUMO

The discovery of novel, effective, and botanical pesticides is one of the main strategies for modern plant protection and insect pest control. During the search for novel botanical pesticides from natural sources, the seeds of Sophora tonkinensis were systematically investigated to obtain 11 new matrine-type alkaloids (1-11), including one novel matrine-type alkaloid featuring an unprecedented 5/6/6/6 tetracyclic skeleton (1), along with 16 known compounds (12-27). Their structures were elucidated by comprehensive spectroscopic data analysis (IR, UV, NMR, and HRESIMS), ECD calculations, and single-crystal X-ray diffraction. The anti-tobacco mosaic virus (TMV) activity and insecticidal activities against Aphis fabae and Tetranychus urticae of the compounds were also respectively screened using the half-leaf method and spray method. Biological tests indicated that compounds 2, 4, 6, and 26 displayed significant anti-TMV biological activities compared with the positive control ningnanmycin. Compounds 7, 17, and 26 presented moderate activities against A. fabae with LC50 values of 38.29, 18.63, and 23.74 mg/L, respectively. Moreover, compounds 13 and 26 exhibited weak activities against T. urticae.


Assuntos
Alcaloides/farmacologia , Antivirais/farmacologia , Inseticidas/farmacologia , Extratos Vegetais/farmacologia , Quinolizidinas/farmacologia , Sophora/química , Alcaloides/química , Animais , Antivirais/química , Insetos/efeitos dos fármacos , Insetos/crescimento & desenvolvimento , Inseticidas/química , Extratos Vegetais/química , Quinolizidinas/química , Sementes/química , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento
20.
PLoS One ; 15(11): e0242887, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33237955

RESUMO

Natural elicitors derived from pathogenic microorganisms represent an ecologic strategy to achieve resistance in plants against diseases. Glucosylceramides (GlcCer) are classified as neutral glycosphingolipids. GlcCer were isolated and purified from Fusarium oxysporum mycelium. F. oxysporum is a plant pathogenic fungus, abundant in soil and causing severe losses in economically important crops such as corn, tobacco, banana, cotton and passion fruit. In this study we evaluate the capacity of GlcCer in inducing resistance in N. tabacum cv Xanthi plants against Tobacco mosaic virus (TMV). Spraying tobacco plants with GlcCer before virus infection reduced the incidence of necrotic lesions caused by TMV. In addition, plants already infected with the virus showed a reduction in hypersensitive response (HR) lesions after GlcCer treatment, suggesting an antiviral effect of GlcCer. Our investigations showed that GlcCer stimulates the early accumulation of H2O2 and superoxide radicals. In addition, the expression of PR-1 (pathogenesis-related 1, with suggested antifungal action), PR-2 (ß-1,3-glucanase), PR-3 (Chitinase), PR-5 (Osmotin), PAL (Phenylalanine ammonia-lyase), LOX (Lipoxygenase) and POX (Peroxidase) genes was highly induced after treatment of tobacco plants with GlcCer and induction levels remained high throughout a period of 6 to 120 hours. Our experiments demonstrate that GlcCer induces resistance in tobacco plants against infection by TMV.


Assuntos
Antivirais/farmacologia , Fusarium/química , Doenças das Plantas/prevenção & controle , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Antivirais/química , Glucosilceramidas , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/virologia , Superóxidos/química , Nicotiana/efeitos dos fármacos , Nicotiana/virologia , Vírus do Mosaico do Tabaco/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA