Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 95(19): e0061521, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287037

RESUMO

The transition from an immature to a fully infectious mature retrovirus particle is associated with molecular switches that trigger dramatic conformational changes in the structure of the Gag proteins. A dominant maturation switch that stabilizes the immature capsid (CA) lattice is located downstream of the CA protein in many retroviral Gags. The HIV-1 Gag protein contains a stretch of 5 amino acid residues termed the "clasp motif," important for the organization of the hexameric subunits that provide stability to the overall immature HIV-1 shell. Sequence alignment of the CA C-terminal domains (CTDs) of HIV-1 and Mason-Pfizer monkey virus (M-PMV) highlighted a spacer-like domain in M-PMV that may provide a comparable function. The importance of the sequences spanning the CA-nucleocapsid (NC) cleavage has been demonstrated by mutagenesis, but the specific requirements for the clasp motif in several steps of M-PMV particle assembly and maturation have not been determined in detail. In the present study, we report an examination of the role of the clasp motif in the M-PMV life cycle. We generated a series of M-PMV Gag mutants and assayed for assembly of the recombinant proteins in vitro and for the assembly, maturation, release, genomic RNA packaging, and infectivity of the mutant viruses in vivo. The mutants revealed major defects in virion assembly and release in HEK 293T and HeLa cells and even larger defects in infectivity. Our data identify the clasp motif as a fundamental contributor to CA-CTD interactions necessary for efficient retroviral infection. IMPORTANCE The C-terminal domain of the capsid protein of many retroviruses has been shown to be critical for virion assembly and maturation, but the functions of this region of M-PMV are uncertain. We show that a short "clasp" motif in the capsid domain of the M-PMV Gag protein plays a key role in M-PMV virion assembly, genome packaging, and infectivity.


Assuntos
Proteínas do Capsídeo/metabolismo , Produtos do Gene gag/química , Produtos do Gene gag/metabolismo , Vírus dos Macacos de Mason-Pfizer/fisiologia , Vírion/metabolismo , Montagem de Vírus , Motivos de Aminoácidos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Produtos do Gene gag/genética , Genoma Viral , Células HEK293 , Células HeLa , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Domínios Proteicos , RNA Viral/genética , RNA Viral/metabolismo , Empacotamento do Genoma Viral
2.
J Mol Biol ; 433(10): 166923, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33713677

RESUMO

How retroviral Gag proteins recognize the packaging signals (Psi) on their genomic RNA (gRNA) is a key question that we addressed here using Mason-Pfizer monkey virus (MPMV) as a model system by combining band-shift assays and footprinting experiments. Our data show that Pr78Gag selects gRNA against spliced viral RNA by simultaneously binding to two single stranded loops on the MPMV Psi RNA: (1) a large purine loop (ssPurines), and (2) a loop which partially overlaps with a mostly base-paired purine repeat (bpPurines) and extends into a GU-rich binding motif. Importantly, this second Gag binding site is located immediately downstream of the major splice donor (mSD) and is thus absent from the spliced viral RNAs. Identifying elements crucial for MPMV gRNA packaging should help in understanding not only the mechanism of virion assembly by retroviruses, but also facilitate construction of safer retroviral vectors for human gene therapy.


Assuntos
Produtos do Gene gag/química , Guanina/química , Vírus dos Macacos de Mason-Pfizer/química , RNA Viral/química , Uracila/química , Animais , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Viral da Expressão Gênica , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Guanina/metabolismo , Interações Hospedeiro-Patógeno , Vírus dos Macacos de Mason-Pfizer/genética , Vírus dos Macacos de Mason-Pfizer/metabolismo , Conformação de Ácido Nucleico , Papio , Ligação Proteica , Conformação Proteica , Pegadas de Proteínas , RNA Viral/genética , RNA Viral/metabolismo , Transdução de Sinais , Uracila/metabolismo
3.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32796061

RESUMO

Retroviral envelope glycoprotein (Env) is essential for the specific recognition of the host cell and the initial phase of infection. As reported for human immunodeficiency virus (HIV), the recruitment of Env into a retroviral membrane envelope is mediated through its interaction with a Gag polyprotein precursor of structural proteins. This interaction, occurring between the matrix domain (MA) of Gag and the cytoplasmic tail (CT) of the transmembrane domain of Env, takes place at the host cell plasma membrane. To determine whether the MA of Mason-Pfizer monkey virus (M-PMV) also interacts directly with the CT of Env, we mimicked the in vivo conditions in an in vitro experiment by using a CT in its physiological trimeric conformation mediated by the trimerization motif of the GCN4 yeast transcription factor. The MA protein was used at the concentration shifting the equilibrium to its trimeric form. The direct interaction between MA and CT was confirmed by a pulldown assay. Through the combination of nuclear magnetic resonance (NMR) spectroscopy and protein cross-linking followed by mass spectrometry analysis, the residues involved in mutual interactions were determined. NMR has shown that the C terminus of the CT is bound to the C-terminal part of MA. In addition, protein cross-linking confirmed the close proximity of the N-terminal part of CT and the N terminus of MA, which is enabled in vivo by their location at the membrane. These results are in agreement with the previously determined orientation of MA on the membrane and support the already observed mechanisms of M-PMV virus-like particle transport and budding.IMPORTANCE By a combination of nuclear magnetic resonance (NMR) and mass spectroscopy of cross-linked peptides, we show that in contrast to human immunodeficiency virus type 1 (HIV-1), the C-terminal residues of the unstructured cytoplasmic tail of Mason-Pfizer monkey virus (M-PMV) Env interact with the matrix domain (MA). Based on biochemical data and molecular modeling, we propose that individual cytoplasmic tail (CT) monomers of a trimeric complex bind MA molecules belonging to different neighboring trimers, which may stabilize the MA orientation at the membrane by the formation of a membrane-bound net of interlinked Gag and CT trimers. This also corresponds with the concept that the membrane-bound MA of Gag recruits Env through interaction with the full-length CT, while CT truncation during maturation attenuates the interaction to facilitate uncoating. We propose a model suggesting different arrangements of MA-CT complexes between a D-type and C-type retroviruses with short and long CTs, respectively.


Assuntos
Produtos do Gene env/química , Produtos do Gene gag/química , Vírus dos Macacos de Mason-Pfizer/química , Produtos do Gene env/genética , Produtos do Gene gag/genética , Vírus dos Macacos de Mason-Pfizer/genética , Domínios Proteicos
4.
RNA Biol ; 16(5): 612-625, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30773097

RESUMO

The Mason-Pfizer monkey virus (MPMV) genomic RNA (gRNA) packaging signal is a highly-structured element with several stem-loops held together by two phylogenetically conserved long-range interactions (LRIs) between U5 and gag complementary sequences. These LRIs play a critical role in maintaining the structure of the 5´ end of the MPMV gRNA. Thus, one could hypothesize that the overall RNA secondary structure of this region is further architecturally held together by three other stem loops (SL3, Gag SL1, and Gag SL2) comprising of sequences from the distal parts of the 5´untranslated region (5' UTR) to ~ 120 nucleotides into gag, excluding gag sequences involved in forming the U5-Gag LRIs. To provide functional evidence for the biological significance of these stem loops during gRNA encapsidation, these structural motifs were mutated and their effects on MPMV RNA packaging and propagation were tested in a single round trans-complementation assay. The mutant RNA structures were further studied by high throughput SHAPE (hSHAPE) assay. Our results reveal that sequences involved in forming these three stem loops do not play crucial roles at an individual level during MPMV gRNA packaging or propagation. Further structure-function analysis indicates that the U5-Gag LRIs have a more important architectural role in stabilizing the higher order structure of the 5´ UTR than the three stem loops which have a more secondary and perhaps indirect role in stabilizing the overall RNA secondary structure of the region. Our work provides a better understanding of the molecular interactions that take place during MPMV gRNA packaging.


Assuntos
Produtos do Gene gag/genética , Vírus dos Macacos de Mason-Pfizer/fisiologia , RNA Viral/química , RNA Viral/genética , Regiões 5' não Traduzidas , Produtos do Gene gag/química , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Estabilidade de RNA , Montagem de Vírus
5.
Viruses ; 10(10)2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347798

RESUMO

The envelope glycoprotein (Env) plays a crucial role in the retroviral life cycle by mediating primary interactions with the host cell. As described previously and expanded on in this paper, Env mediates the trafficking of immature Mason-Pfizer monkey virus (M-PMV) particles to the plasma membrane (PM). Using a panel of labeled RabGTPases as endosomal markers, we identified Env mostly in Rab7a- and Rab9a-positive endosomes. Based on an analysis of the transport of recombinant fluorescently labeled M-PMV Gag and Env proteins, we propose a putative mechanism of the intracellular trafficking of M-PMV Env and immature particles. According to this model, a portion of Env is targeted from the trans-Golgi network (TGN) to Rab7a-positive endosomes. It is then transported to Rab9a-positive endosomes and back to the TGN. It is at the Rab9a vesicles where the immature particles may anchor to the membranes of the Env-containing vesicles, preventing Env recycling to the TGN. These Gag-associated vesicles are then transported to the plasma membrane.


Assuntos
Produtos do Gene env/metabolismo , Vírus dos Macacos de Mason-Pfizer/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vesículas Transportadoras/virologia , Animais , Membrana Celular/metabolismo , Membrana Celular/virologia , Endossomos/metabolismo , Endossomos/virologia , Produtos do Gene env/genética , Vírus dos Macacos de Mason-Pfizer/genética , Transporte Proteico , Vesículas Transportadoras/metabolismo , Montagem de Vírus
6.
Sci Rep ; 8(1): 11793, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087395

RESUMO

MPMV precursor polypeptide Pr78Gag orchestrates assembly and packaging of genomic RNA (gRNA) into virus particles. Therefore, we have expressed recombinant full-length Pr78Gag either with or without His6-tag in bacterial as well as eukaryotic cultures and purified the recombinant protein from soluble fractions of the bacterial cultures. The recombinant Pr78Gag protein has the intrinsic ability to assemble in vitro to form virus like particles (VLPs). Consistent with this observation, the recombinant protein could form VLPs in both prokaryotes and eukaryotes. VLPs formed in eukaryotic cells by recombinant Pr78Gag with or without His6-tag can encapsidate MPMV transfer vector RNA, suggesting that the inclusion of the His6-tag to the full-length Pr78Gag did not interfere with its expression or biological function. This study demonstrates the expression and purification of a biologically active, recombinant Pr78Gag, which should pave the way to study RNA-protein interactions involved in the MPMV gRNA packaging process.


Assuntos
Expressão Gênica , Produtos do Gene gag/química , Produtos do Gene gag/isolamento & purificação , Vírus dos Macacos de Mason-Pfizer/química , Produtos do Gene gag/biossíntese , Produtos do Gene gag/genética , Células HEK293 , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
7.
Virology ; 521: 108-117, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29906704

RESUMO

Retrovirus assembly is driven mostly by Gag polyprotein oligomerization, which is mediated by inter and intra protein-protein interactions among its capsid (CA) domains. Mason-Pfizer monkey virus (M-PMV) CA contains three cysteines (C82, C193 and C213), where the latter two are highly conserved among most retroviruses. To determine the importance of these cysteines, we introduced mutations of these residues in both bacterial and proviral vectors and studied their impact on the M-PMV life cycle. These studies revealed that the presence of both conserved cysteines of M-PMV CA is necessary for both proper assembly and virus infectivity. Our findings suggest a crucial role of these cysteines in the formation of infectious mature particles.


Assuntos
Proteínas do Capsídeo/genética , Cisteína/genética , Vírus dos Macacos de Mason-Pfizer/genética , Montagem de Vírus , Proteínas do Capsídeo/química , Linhagem Celular , Vetores Genéticos , Células HEK293 , Humanos , Vírus dos Macacos de Mason-Pfizer/fisiologia , Mutação , Provírus/genética , Vírion/fisiologia
8.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29491167

RESUMO

In addition to specific RNA-binding zinc finger domains, the retroviral Gag polyprotein contains clusters of basic amino acid residues that are thought to support Gag-viral genomic RNA (gRNA) interactions. One of these clusters is the basic K16NK18EK20 region, located upstream of the first zinc finger of the Mason-Pfizer monkey virus (M-PMV) nucleocapsid (NC) protein. To investigate the role of this basic region in the M-PMV life cycle, we used a combination of in vivo and in vitro methods to study a series of mutants in which the overall charge of this region was more positive (RNRER), more negative (AEAEA), or neutral (AAAAA). The mutations markedly affected gRNA incorporation and the onset of reverse transcription. The introduction of a more negative charge (AEAEA) significantly reduced the incorporation of M-PMV gRNA into nascent particles. Moreover, the assembly of immature particles of the AEAEA Gag mutant was relocated from the perinuclear region to the plasma membrane. In contrast, an enhancement of the basicity of this region of M-PMV NC (RNRER) caused a substantially more efficient incorporation of gRNA, subsequently resulting in an increase in M-PMV RNRER infectivity. Nevertheless, despite the larger amount of gRNA packaged by the RNRER mutant, the onset of reverse transcription was delayed in comparison to that of the wild type. Our data clearly show the requirement for certain positively charged amino acid residues upstream of the first zinc finger for proper gRNA incorporation, assembly of immature particles, and proceeding of reverse transcription.IMPORTANCE We identified a short sequence within the Gag polyprotein that, together with the zinc finger domains and the previously identified RKK motif, contributes to the packaging of genomic RNA (gRNA) of Mason-Pfizer monkey virus (M-PMV). Importantly, in addition to gRNA incorporation, this basic region (KNKEK) at the N terminus of the nucleocapsid protein is crucial for the onset of reverse transcription. Mutations that change the positive charge of the region to a negative one significantly reduced specific gRNA packaging. The assembly of immature particles of this mutant was reoriented from the perinuclear region to the plasma membrane. On the contrary, an enhancement of the basic character of this region increased both the efficiency of gRNA packaging and the infectivity of the virus. However, the onset of reverse transcription was delayed even in this mutant. In summary, the basic region in M-PMV Gag plays a key role in the packaging of genomic RNA and, consequently, in assembly and reverse transcription.


Assuntos
Produtos do Gene gag/genética , Vírus dos Macacos de Mason-Pfizer/fisiologia , Proteínas do Nucleocapsídeo/genética , Transcrição Reversa/genética , Montagem de Vírus/genética , Sequência de Aminoácidos/genética , Linhagem Celular , Células HEK293 , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Mutação/genética , RNA Viral/genética , Dedos de Zinco/genética
9.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795446

RESUMO

Embryonic carcinoma (EC) cells are malignant counterparts of embryonic stem (ES) cells and serve as useful models for investigating cellular differentiation and human embryogenesis. Though the susceptibility of murine EC cells to retroviral infection has been extensively analyzed, few studies of retrovirus infection of human EC cells have been performed. We tested the susceptibility of human EC cells to transduction by retroviral vectors derived from three different retroviral genera. We show that human EC cells efficiently express reporter genes delivered by vectors based on human immunodeficiency virus type 1 (HIV-1) and Mason-Pfizer monkey virus (M-PMV) but not Moloney murine leukemia virus (MLV). In human EC cells, MLV integration occurs normally, but no viral gene expression is observed. The block to MLV expression of MLV genomes is relieved upon cellular differentiation. The lack of gene expression is correlated with transcriptional silencing of the MLV promoter through the deposition of repressive histone marks as well as DNA methylation. Moreover, depletion of SETDB1, a histone methyltransferase, resulted in a loss of transcriptional silencing and upregulation of MLV gene expression. Finally, we provide evidence showing that the lack of MLV gene expression may be attributed in part to the lack of MLV enhancer function in human EC cells. IMPORTANCE: Human embryonic carcinoma (EC) cells are shown to restrict the expression of murine leukemia virus genomes but not retroviral genomes of the lentiviral or betaretroviral families. The block occurs at the level of transcription and is accompanied by the deposition of repressive histone marks and methylation of the integrated proviral DNA. The host machinery required for silencing in human EC cells is distinct from that in murine EC cell lines: the histone methyltransferase SETDB1 is required, but the widely utilized corepressor TRIM28/Kap1 is not. A transcriptional enhancer element from the Mason-Pfizer monkey virus can override the silencing and promote transcription of chimeric proviral DNAs. The findings reveal novel features of human EC gene regulation not present in their murine counterparts.


Assuntos
Inativação Gênica , Genoma Viral , HIV-1/genética , Células-Tronco Embrionárias Humanas/imunologia , Vírus dos Macacos de Mason-Pfizer/genética , Vírus da Leucemia Murina de Moloney/genética , Células-Tronco Neoplásicas/imunologia , Animais , Diferenciação Celular , Metilação de DNA , Genes Reporter , HIV-1/metabolismo , Histona-Lisina N-Metiltransferase , Histonas/genética , Histonas/imunologia , Especificidade de Hospedeiro , Células-Tronco Embrionárias Humanas/virologia , Humanos , Vírus dos Macacos de Mason-Pfizer/metabolismo , Camundongos , Vírus da Leucemia Murina de Moloney/metabolismo , Células-Tronco Neoplásicas/virologia , Regiões Promotoras Genéticas , Proteínas Metiltransferases/antagonistas & inibidores , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/imunologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Especificidade da Espécie , Transcrição Gênica
10.
Retrovirology ; 11: 94, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25365920

RESUMO

BACKGROUND: Formation of a mature core is a crucial event for infectivity of retroviruses such as Mason-Pfizer monkey virus (M-PMV). The process is triggered by proteolytic cleavage of the polyprotein precursor Gag, which releases matrix, capsid (CA), and nucleocapsid proteins. Once released, CA assembles to form a mature core - a hexameric lattice protein shell that protects retroviral genomic RNA. Subtle conformational changes within CA induce the transition from the immature lattice to the mature lattice. Upon release from the precursor, the initially unstructured N-terminus of CA is refolded to form a ß-hairpin stabilized by a salt bridge between the N-terminal proline and conserved aspartate. Although the crucial role of the ß-hairpin in the mature core assembly has been confirmed, its precise structural function remains poorly understood. RESULTS: Based on a previous NMR analysis of the N-terminal part of M-PMV CA, which suggested the role of additional interactions besides the proline-aspartate salt bridge in stabilization of the ß-hairpin, we introduced a series of mutations into the CA sequence. The effect of the mutations on virus assembly and infectivity was analyzed. In addition, the structural consequences of selected mutations were determined by NMR spectroscopy. We identified a network of interactions critical for proper formation of the M-PMV core. This network involves residue R14, located in the N-terminal ß-hairpin; residue W52 in the loop connecting helices 2 and 3; and residues Q113, Q115, and Y116 in helix 5. CONCLUSION: Combining functional and structural analyses, we identified a network of supportive interactions that stabilize the ß-hairpin in mature M-PMV CA.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus dos Macacos de Mason-Pfizer/metabolismo , Estrutura Secundária de Proteína/genética , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Células HEK293 , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Dados de Sequência Molecular , Mutação/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/genética
11.
Retrovirology ; 11: 73, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25212909

RESUMO

BACKGROUND: All retroviruses synthesize essential proteins via alternatively spliced mRNAs. Retrovirus genera, though, exploit different mechanisms to coordinate the synthesis of proteins from alternatively spliced mRNAs. The best studied of these retroviral, post-transcriptional effectors are the trans-acting Rev protein of lentiviruses and the cis-acting constitutive transport element (CTE) of the betaretrovirus Mason-Pfizer monkey virus (MPMV). How members of the gammaretrovirus genus translate protein from unspliced RNA has not been elucidated. RESULTS: The mechanism by which two gammaretroviruses, XMRV and MLV, synthesize the Gag polyprotein (Pr65Gag) from full-length, unspliced mRNA was investigated here. The yield of Pr65Gag from a gag-only expression plasmid was found to be at least 30-fold less than that from an otherwise isogenic gag-pol expression plasmid. A frameshift mutation disrupting the pol open reading frame within the gag-pol expression plasmid did not decrease Pr65Gag production and 398 silent nucleotide changes engineered into gag rendered Pr65Gag synthesis pol-independent. These results are consistent with pol-encoded RNA acting in cis to promote Pr65Gag translation. Two independently-acting pol fragments were identified by screening 17 pol deletion mutations. To determine the mechanism by which pol promoted Pr65Gag synthesis, gag RNA in total and cytoplasmic fractions was quantitated by northern blot and by RT-PCR. The pol sequences caused, maximally, three-fold increase in total or cytoplasmic gag mRNA. Instead, pol sequences increased gag mRNA association with polyribosomes ~100-fold, a magnitude sufficient to explain the increase in Pr65Gag translation efficiency. The MPMV CTE, an NXF1-binding element, substituted for pol in promoting Pr65Gag synthesis. A pol RNA stem-loop resembling the CTE promoted Pr65Gag synthesis. Over-expression of NXF1 and NXT, host factors that bind to the MPMV CTE, synergized with pol to promote gammaretroviral gag RNA loading onto polysomes and to increase Pr65Gag synthesis. Conversely, Gag polyprotein synthesis was decreased by NXF1 knockdown. Finally, overexpression of SRp20, a shuttling protein that binds to NXF1 and promotes NXF1 binding to RNA, also increased gag RNA loading onto polysomes and increased Pr65Gag synthesis. CONCLUSION: These experiments demonstrate that gammaretroviral pol sequences act in cis to recruit NXF1 and SRp20 to promote polysome loading of gag RNA and, thereby license the synthesis of Pr65Gag from unspliced mRNA.


Assuntos
Gammaretrovirus/genética , Produtos do Gene gag/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Polirribossomos/genética , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Linhagem Celular , Citoplasma/genética , Células HEK293 , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Splicing de RNA/genética , RNA Mensageiro/genética , Deleção de Sequência
12.
J Gen Virol ; 95(Pt 6): 1383-1389, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24659101

RESUMO

We identified breast cancer-associated protein (BCA3) as a novel binding partner of Mason-Pfizer monkey virus (MPMV) protease (PR). The interaction was confirmed by co-immunoprecipitation and immunocolocalization of MPMV PR and BCA3. Full-length but not C-terminally truncated BCA3 was incorporated into MPMV virions. We ruled out the potential role of the G-patch domain, a glycine-rich domain located at the C terminus of MPMV PR, in BCA3 interaction and virion incorporation. Expression of BCA3 did not affect MPMV particle release and proteolytic processing; however, it slightly increased MPMV infectivity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endopeptidases/metabolismo , Vírus dos Macacos de Mason-Pfizer/enzimologia , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Endopeptidases/química , Endopeptidases/genética , Feminino , Células HEK293 , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
13.
Virology ; 449: 109-19, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24418544

RESUMO

The intracellular transport of Mason-Pfizer monkey virus (M-PMV) assembled capsids from the pericentriolar region to the plasma membrane (PM) requires trafficking of envelope glycoprotein (Env) to the assembly site via the recycling endosome. However, it is unclear if Env-containing vesicles play a direct role in trafficking capsids to the PM. Using live cell microscopy, we demonstrate, for the first time, anterograde co-transport of Gag and Env. Nocodazole disruption of microtubules had differential effects on Gag and Env trafficking, with pulse-chase assays showing a delayed release of Env-deficient virions. Particle tracking demonstrated an initial loss of linear movement of GFP-tagged capsids and mCherry-tagged Env, followed by renewed movement of Gag but not Env at 4h post-treatment. Thus, while delayed capsid trafficking can occur in the absence of microtubules, efficient anterograde transport of capsids appears to be mediated by microtubule-associated Env-containing vesicles.


Assuntos
Produtos do Gene env/metabolismo , Produtos do Gene gag/metabolismo , Vírus dos Macacos de Mason-Pfizer/metabolismo , Microtúbulos/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Animais , Membrana Celular/virologia , Chlorocebus aethiops , Produtos do Gene env/genética , Produtos do Gene gag/genética , Macaca mulatta , Vírus dos Macacos de Mason-Pfizer/genética , Microtúbulos/metabolismo , Transporte Proteico , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo
14.
Arch Virol ; 159(4): 677-88, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24132720

RESUMO

Retroviral gag proteins, as well as fragments minimally containing the capsid (CA) and nucleocapsid (NC) subunits of Gag, are able to spontaneously assemble into virus-like particles (VLPs). This occurs in mammalian and bacterial cells as well as in in vitro systems. In every circumstance, nucleic acids are incorporated into the forming particles. Here, we took advantage of an in vitro system for the generation of non-enveloped Mason-Pfizer monkey virus (M-PMV) VLPs derived from a self-assembling CA-NC subunit of Gag. These VLPs were modified through N-terminal extension of CA-NC with short oligopeptides that, after the assembly process, were exposed on the surface of VLPs. The employed N-terminal modifications allowed specific interaction with target cells expressing prostate-specific membrane antigen. Using this system, we were able to incorporate selected siRNA into forming VLPs and deliver it into the cytosol of target cells. In comparison with other viral vectors designed for targeted transgene delivery, this M-PMV VLP system represents the lowest risk of generating virus-associated pathology, as the VLPs do not contain any viral coding sequences and are formed in a cell-free system.


Assuntos
Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Substâncias Macromoleculares/metabolismo , Vírus dos Macacos de Mason-Pfizer/genética , Transdução Genética , Virossomos/genética , Virossomos/metabolismo , Ligação Viral , Linhagem Celular , Humanos , RNA Interferente Pequeno/metabolismo
15.
PLoS One ; 8(12): e83863, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24386297

RESUMO

Immature capsids of the Betaretrovirus, Mason-Pfizer Monkey virus (M-PMV), are assembled in the pericentriolar region of the cell, and are then transported to the plasma membrane for budding. Although several studies, utilizing mutagenesis, biochemistry, and immunofluorescence, have defined the role of some viral and host cells factors involved in these processes, they have the disadvantage of population analysis, rather than analyzing individual capsid movement in real time. In this study, we created an M-PMV vector in which the enhanced green fluorescent protein, eGFP, was fused to the carboxyl-terminus of the M-PMV Gag polyprotein, to create a Gag-GFP fusion that could be visualized in live cells. In order to express this fusion protein in the context of an M-PMV proviral backbone, it was necessary to codon-optimize gag, optimize the Kozak sequence preceding the initiating methionine, and mutate an internal methionine codon to one for alanine (M100A) to prevent internal initiation of translation. Co-expression of this pSARM-Gag-GFP-M100A vector with a WT M-PMV provirus resulted in efficient assembly and release of capsids. Results from fixed-cell immunofluorescence and pulse-chase analyses of wild type and mutant Gag-GFP constructs demonstrated comparable intracellular localization and release of capsids to untagged counterparts. Real-time, live-cell visualization and analysis of the GFP-tagged capsids provided strong evidence for a role for microtubules in the intracellular transport of M-PMV capsids. Thus, this M-PMV Gag-GFP vector is a useful tool for identifying novel virus-cell interactions involved in intracellular M-PMV capsid transport in a dynamic, real-time system.


Assuntos
Capsídeo/metabolismo , Produtos do Gene gag/genética , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Vírus dos Macacos de Mason-Pfizer/genética , Microtúbulos/metabolismo , Proteínas Recombinantes de Fusão/genética , Transporte Biológico , Membrana Celular/metabolismo , Sobrevivência Celular , Corantes Fluorescentes/metabolismo , Produtos do Gene gag/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Cinética , Vírus dos Macacos de Mason-Pfizer/metabolismo , Vírus dos Macacos de Mason-Pfizer/fisiologia , Microtúbulos/virologia , Imagem Molecular , Movimento , Transporte Proteico , Provírus/genética , Provírus/metabolismo , Provírus/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Montagem de Vírus
16.
PLoS Pathog ; 8(10): e1002962, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23055934

RESUMO

Two gammaherpesviruses, Epstein-Barr virus (EBV) (Lymphocryptovirus genus) and Kaposi's sarcoma-associated herpesvirus (KSHV) (Rhadinovirus genus) have been implicated in the etiology of AIDS-associated lymphomas. Homologs of these viruses have been identified in macaques and other non-human primates. In order to assess the association of these viruses with non-human primate disease, archived lymphoma samples were screened for the presence of macaque lymphocryptovirus (LCV) homologs of EBV, and macaque rhadinoviruses belonging to the RV1 lineage of KSHV homologs or the more distant RV2 lineage of Old World primate rhadinoviruses. Viral loads were determined by QPCR and infected cells were identified by immunolabeling for different viral proteins. The lymphomas segregated into three groups. The first group (n = 6) was associated with SIV/SHIV infections, contained high levels of LCV (1-25 genomes/cell) and expressed the B-cell antigens CD20 or BLA.36. A strong EBNA-2 signal was detected in the nuclei of the neoplastic cells in one of the LCV-high lymphomas, indicative of a type III latency stage. None of the lymphomas in this group stained for the LCV viral capsid antigen (VCA) lytic marker. The second group (n = 5) was associated with D-type simian retrovirus-2 (SRV-2) infections, contained high levels of RV2 rhadinovirus (9-790 genomes/cell) and expressed the CD3 T-cell marker. The third group (n = 3) was associated with SIV/SHIV infections, contained high levels of RV2 rhadinovirus (2-260 genomes/cell) and was negative for both CD20 and CD3. In both the CD3-positive and CD3/CD20-negative lymphomas, the neoplastic cells stained strongly for markers of RV2 lytic replication. None of the lymphomas had detectable levels of retroperitoneal fibromatosis herpesvirus (RFHV), the macaque RV1 homolog of KSHV. Our data suggest etiological roles for both lymphocryptoviruses and RV2 rhadinoviruses in the development of simian AIDS-associated lymphomas and indicate that the virus-infected neoplastic lymphoid cells are derived from different lymphocyte lineages and differentiation stages.


Assuntos
Herpesvirus Humano 4 , Herpesvirus Humano 8 , Lymphocryptovirus/isolamento & purificação , Linfoma Relacionado a AIDS/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Animais , Antígenos CD20/biossíntese , Antígenos de Neoplasias/biossíntese , Complexo CD3/biossíntese , Antígenos Nucleares do Vírus Epstein-Barr/biossíntese , Herpesvirus Humano 4/classificação , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/classificação , Herpesvirus Humano 8/genética , Lymphocryptovirus/genética , Macaca , Vírus dos Macacos de Mason-Pfizer/genética , Vírus dos Macacos de Mason-Pfizer/isolamento & purificação , Rhadinovirus/isolamento & purificação , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/isolamento & purificação , Células Tumorais Cultivadas , Carga Viral , Proteínas Virais/biossíntese , Proteínas Virais/genética
17.
J Virol ; 86(4): 1988-98, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22171253

RESUMO

Mason-Pfizer monkey virus (M-PMV), like some other betaretroviruses, encodes a G-patch domain (GPD). This glycine-rich domain, which has been predicted to be an RNA binding module, is invariably localized at the 3' end of the pro gene upstream of the pro-pol ribosomal frameshift sequence of genomic RNAs of betaretroviruses. Following two ribosomal frameshift events and the translation of viral mRNA, the GPD is present in both Gag-Pro and Gag-Pro-Pol polyproteins. During the maturation of the Gag-Pro polyprotein, the GPD transiently remains a C-terminal part of the protease (PR), from which it is then detached by PR itself. The destiny of the Gag-Pro-Pol-encoded GPD remains to be determined. The function of the GPD in the retroviral life cycle is unknown. To elucidate the role of the GPD in the M-PMV replication cycle, alanine-scanning mutational analysis of its most highly conserved residues was performed. A series of individual mutations as well as the deletion of the entire GPD had no effect on M-PMV assembly, polyprotein processing, and RNA incorporation. However, a reduction of the reverse transcriptase (RT) activity, resulting in a drop in M-PMV infectivity, was determined for all GPD mutants. Immunoprecipitation experiments suggested that the GPD is a part of RT and participates in its function. These data indicate that the M-PMV GPD functions as a part of reverse transcriptase rather than protease.


Assuntos
Vírus dos Macacos de Mason-Pfizer/enzimologia , Poliproteínas/química , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/metabolismo , Proteínas Virais/química , Animais , Linhagem Celular , Humanos , Vírus dos Macacos de Mason-Pfizer/química , Vírus dos Macacos de Mason-Pfizer/genética , Poliproteínas/genética , Poliproteínas/metabolismo , Estrutura Terciária de Proteína , DNA Polimerase Dirigida por RNA/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
18.
Nucleic Acids Res ; 39(20): 8952-9, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21803791

RESUMO

-1 Programmed ribosomal frameshifting (PRF) in synthesizing the gag-pro precursor polyprotein of Simian retrovirus type-1 (SRV-1) is stimulated by a classical H-type pseudoknot which forms an extended triple helix involving base-base and base-sugar interactions between loop and stem nucleotides. Recently, we showed that mutation of bases involved in triple helix formation affected frameshifting, again emphasizing the role of the triple helix in -1 PRF. Here, we investigated the efficiency of hairpins of similar base pair composition as the SRV-1 gag-pro pseudoknot. Although not capable of triple helix formation they proved worthy stimulators of frameshifting. Subsequent investigation of ∼30 different hairpin constructs revealed that next to thermodynamic stability, loop size and composition and stem irregularities can influence frameshifting. Interestingly, hairpins carrying the stable GAAA tetraloop were significantly less shifty than other hairpins, including those with a UUCG motif. The data are discussed in relation to natural shifty hairpins.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Proteínas de Fusão gag-pol/genética , RNA Mensageiro/química , RNA Viral/química , Composição de Bases , Pareamento Incorreto de Bases , Células HeLa , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Conformação de Ácido Nucleico
19.
J Virol ; 85(12): 5889-96, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21490096

RESUMO

Natural infection with simian retrovirus (SRV) has long been recognized in rhesus macaques (RMs) and may result in an AIDS-like disease. Importantly, SRV infections persist as a problem in recently imported macaques. Therefore, there is a clear need to control SRV spread in macaque colonies. We developed a recombinant vesicular stomatitis virus (VSV)-SRV vaccine consisting of replication-competent hybrid VSVs that express SRV gag and env in separate vectors. The goal of this study was to assess the immunogenicity and protective efficacy of the VSV-SRV serotype 2 vaccine prime-boost approach in RMs. The VSV-SRV vector (expressing either SRV gag or env) vaccines were intranasally administered in 4 RMs, followed by a boost 1 month after the first vaccination. Four RMs served as controls and received the VSV vector alone. Two months after the boost, all animals were intravenously challenged with SRV-2 and monitored for 90 days. After the SRV-2 challenge, all four controls became infected, and viral loads (VLs) ranged from 10(6) to 10(8) SRV RNA copies/ml of plasma. Two animals in the control group developed simian AIDS within 7 to 8 weeks postinfection and were euthanized. Anemia and weight loss were observed in the remaining controls. During acute infection, severe B-cell depletion and no significant changes in T-cell population were observed in the control group. Control RMs with greater preservation of B cells and lower VLs survived longer. SRV-2 was undetectable in vaccinated animals, which remained healthy, with no clinical or biological signs of infection and preservation of B cells. Our study showed that the VSV-SRV vaccine is a strong approach for preventing clinically relevant type D retrovirus infection and disease in RMs, with protection of 4/4 RMs from SRV infection and prevention of B-cell destruction. B-cell protection was the strongest correlate of the long-term survival of all vaccinated and control RMs.


Assuntos
Linfócitos B/imunologia , Vetores Genéticos/administração & dosagem , Macaca mulatta , Vírus dos Macacos de Mason-Pfizer/imunologia , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vesiculovirus/genética , Animais , Produtos do Gene env/genética , Produtos do Gene env/imunologia , Produtos do Gene env/metabolismo , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Produtos do Gene gag/metabolismo , Imunização , Imunização Secundária , Vírus dos Macacos de Mason-Pfizer/genética , Vírus dos Macacos de Mason-Pfizer/patogenicidade , Vacinas contra a SAIDS/genética , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/mortalidade , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vacinação
20.
Virology ; 413(2): 161-8, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21349567

RESUMO

Immunopathology during early simian retrovirus type 2 (SRV-2) infection is poorly characterized. Here, viral dynamics, immune response and disease progression in transiently- or persistently-infected cynomolgus macaques are assessed. Viral nucleic acids were detected in selected lymphoid tissues of both persistently- and transiently-infected macaques, even after viral clearance from the periphery. Immunohistochemical staining of lymphoid tissues revealed alterations in a number of immune cell populations in both transiently- and persistently-infected macaques. The precise pattern depended upon the infection status of the macaque and the marker studied. Gross immunopathological changes in lymphoid tissues were similar between SRV infection and those observed for other simian retroviruses SIV and STLV, suggesting a common immunopathological response to infection with these agents.


Assuntos
Macaca fascicularis , Vírus dos Macacos de Mason-Pfizer , Doenças dos Macacos/imunologia , Infecções por Retroviridae/veterinária , Infecções Tumorais por Vírus/veterinária , Animais , DNA Viral , Linfonodos/imunologia , Linfonodos/patologia , Linfonodos/virologia , Vírus dos Macacos de Mason-Pfizer/genética , Vírus dos Macacos de Mason-Pfizer/imunologia , Vírus dos Macacos de Mason-Pfizer/isolamento & purificação , Mesentério/patologia , Doenças dos Macacos/patologia , Doenças dos Macacos/virologia , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/patologia , Infecções por Retroviridae/virologia , Baço/imunologia , Baço/patologia , Baço/virologia , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA