Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Viruses ; 14(6)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746792

RESUMO

Alfalfa is an important perennial forage crop in Idaho supporting dairy and cattle industries that is typically grown in the same field for as many as 4 years. Alfalfa stands of different ages were subjected to screening for viruses using high-throughput sequencing and RT-PCR. The two most common viruses found were alfalfa mosaic virus and bean leafroll virus, along with Medicago sativa amalgavirus, two alphapartitiviruses, and one deltapartitivirus. Additionally, a new flavi-like virus with an unusual genome organization was discovered, dubbed Snake River alfalfa virus (SRAV). The 11,745 nt, positive-sense (+) RNA genome of SRAV encodes a single 3835 aa polyprotein with only two identifiable conserved domains, an RNA-dependent RNA polymerase (RdRP) and a predicted serine protease. Notably, unlike all +RNA virus genomes in the similar size range, the SRAV polyprotein contained no predicted helicase domain. In the RdRP phylogeny, SRAV was placed inside the flavi-like lineage as a sister clade to a branch consisting of hepaci-, and pegiviruses. To the best of our knowledge, SRAV is the first flavi-like virus identified in a plant host. Although commonly detected in alfalfa crops in southern Idaho, SRAV sequences were also amplified from thrips feeding in alfalfa stands in the area, suggesting a possible role of Frankliniella occidentalis in virus transmission.


Assuntos
Vírus de RNA , Vírus não Classificados , Animais , Bovinos , Produtos Agrícolas/genética , Vírus de DNA/genética , Medicago sativa , Poliproteínas , RNA , Vírus de RNA/genética , RNA Polimerase Dependente de RNA , Rios , Vírus não Classificados/genética
2.
Viruses ; 14(5)2022 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-35632742

RESUMO

Recurrent respiratory papillomatosis (RRP), caused by laryngeal infection with low-risk human papillomaviruses, has devastating effects on vocal communication and quality of life. Factors in RRP onset, other than viral presence in the airway, are poorly understood. RRP research has been stalled by limited preclinical models. The only known papillomavirus able to infect laboratory mice, Mus musculus papillomavirus (MmuPV1), induces disease in a variety of tissues. We hypothesized that MmuPV1 could infect the larynx as a foundation for a preclinical model of RRP. We further hypothesized that epithelial injury would enhance the ability of MmuPV1 to cause laryngeal disease, because injury is a potential factor in RRP and promotes MmuPV1 infection in other tissues. In this report, we infected larynges of NOD scid gamma mice with MmuPV1 with and without vocal fold abrasion and measured infection and disease pathogenesis over 12 weeks. Laryngeal disease incidence and severity increased earlier in mice that underwent injury in addition to infection. However, laryngeal disease emerged in all infected mice by week 12, with or without injury. Secondary laryngeal infections and disease arose in nude mice after MmuPV1 skin infections, confirming that experimentally induced injury is dispensable for laryngeal MmuPV1 infection and disease in immunocompromised mice. Unlike RRP, lesions were relatively flat dysplasias and they could progress to cancer. Similar to RRP, MmuPV1 transcript was detected in all laryngeal disease and in clinically normal larynges. MmuPV1 capsid protein was largely absent from the larynx, but productive infection arose in a case of squamous metaplasia at the level of the cricoid cartilage. Similar to RRP, disease spread beyond the larynx to the trachea and bronchi. This first report of laryngeal MmuPV1 infection provides a foundation for a preclinical model of RRP.


Assuntos
Doenças da Laringe , Laringe , Vírus não Classificados , Animais , Camundongos , Camundongos Nus , Camundongos SCID , Papillomaviridae/genética , Papillomaviridae/metabolismo , Infecções por Papillomavirus , Qualidade de Vida , Infecções Respiratórias
3.
Viruses ; 14(5)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35632798

RESUMO

Laryngeal infection with low-risk human papillomaviruses can cause recurrent respiratory papillomatosis (RRP), a disease with severe effects on vocal fold epithelium resulting in impaired voice function and communication. RRP research has been stymied by limited preclinical models. We recently reported a murine model of laryngeal MmuPV1 infection and disease in immunodeficient mice. In the current study, we compare quantitative and qualitative measures of epithelial proliferation, apoptosis, differentiation, and barrier between mice with MmuPV1-induced disease of the larynx and surrounding tissues and equal numbers of uninfected controls. Findings supported our hypothesis that laryngeal MmuPV1 infection recapitulates many features of RRP. Like RRP, MmuPV1 increased proliferation in infected vocal fold epithelium, expanded the basal compartment of cells, decreased differentiated cells, and altered cell-cell junctions and basement membrane. Effects of MmuPV1 on apoptosis were equivocal, as with RRP. Barrier markers resembled human neoplastic disease in severe MmuPV1-induced disease. We conclude that MmuPV1 infection of the mouse larynx provides a useful, if imperfect, preclinical model for RRP that will facilitate further study and treatment development for this intractable and devastating disease.


Assuntos
Infecções por Papillomavirus , Vírus não Classificados , Animais , Epitélio , Camundongos , Papillomaviridae , Infecções Respiratórias , Prega Vocal
4.
Viruses ; 14(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35458475

RESUMO

A pseudorabies virus (PRV) novel virulent variant outbreak occurred in China in 2011. However, little is known about PRV prevention and treatment. Huaier polysaccharide has been used to treat some solid cancers, although its antiviral activity has not been reported. Our study confirmed that the polysaccharide can effectively inhibit infection of PRV XJ5 in PK15 cells. It acted in a dose-dependent manner when blocking virus adsorption and entry into PK15 cells. Moreover, it suppressed PRV replication in PK15 cells. In addition, the results suggest that Huaier polysaccharide plays a role in treating PRV XJ5 infection by directly inactivating PRV XJ5. In conclusion, Huaier polysaccharide might be a novel therapeutic agent for preventing and controlling PRV infection.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Vírus não Classificados , Adsorção , Animais , Linhagem Celular , Misturas Complexas , Polissacarídeos/farmacologia , Trametes
5.
Viruses ; 14(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458519

RESUMO

Human alpha herpesviruses herpes simplex virus (HSV-1) and varicella zoster virus (VZV) establish latency in various cranial nerve ganglia and often reactivate in response to stress-associated immune system dysregulation. Reactivation of Epstein Barr virus (EBV), VZV, HSV-1, and cytomegalovirus (CMV) is typically asymptomatic during spaceflight, though live/infectious virus has been recovered and the shedding rate increases with mission duration. The risk of clinical disease, therefore, may increase for astronauts assigned to extended missions (>180 days). Here, we report, for the first time, a case of HSV-1 skin rash (dermatitis) occurring during long-duration spaceflight. The astronaut reported persistent dermatitis during flight, which was treated onboard with oral antihistamines and topical/oral steroids. No HSV-1 DNA was detected in 6-month pre-mission saliva samples, but on flight day 82, a saliva and rash swab both yielded 4.8 copies/ng DNA and 5.3 × 104 copies/ng DNA, respectively. Post-mission saliva samples continued to have a high infectious HSV-1 load (1.67 × 107 copies/ng DNA). HSV-1 from both rash and saliva samples had 99.9% genotype homology. Additional physiological monitoring, including stress biomarkers (cortisol, dehydroepiandrosterone (DHEA), and salivary amylase), immune markers (adaptive regulatory and inflammatory plasma cytokines), and biochemical profile markers, including vitamin/mineral status and bone metabolism, are also presented for this case. These data highlight an atypical presentation of HSV-1 during spaceflight and underscore the importance of viral screening during clinical evaluations of in-flight dermatitis to determine viral etiology and guide treatment.


Assuntos
Dermatite , Infecções por Vírus Epstein-Barr , Exantema , Herpes Simples , Infecções por Herpesviridae , Herpesvirus Humano 1 , Voo Espacial , Vírus não Classificados , Vírus , Biomarcadores , DNA Viral/análise , Herpes Simples/etiologia , Herpesvirus Humano 3/fisiologia , Herpesvirus Humano 4 , Humanos , Ativação Viral
6.
Virus Res ; 314: 198756, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35364119

RESUMO

Papillomaviruses (PV) have a wide distribution of hosts, among which human papillomavirus (HPV) has been recognized as the major cause of cervical cancer. HPV is characterized by its high genetic variability with more than 200 genotypes identified, and numerous variants exist within the same genotype. Though phylogenetic incongruence between early gene and late gene of PVs was observed, the recombination in HPV was not taken seriously until the last two decades. The first report of evidence on HPV recombination was published in 2006, in which only intertypic ancient recombination events were identified. Since then, several publications on recombination in HPV provided evidence for intertypic as well as intratypic recombination. Recombination may create challenges on HPV genotyping and vaccination that could cause a great impact in screening and prevention of cervical cancer. Here, we review the literature on recombination and summarize the reasons underlying the difficulties for detecting recombination in HPV. In addition, we analyze the potential consequences of HPV recombination and make further prospects for clinical practice in the future.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Vírus não Classificados , Feminino , Genótipo , Humanos , Papillomaviridae/genética , Vacinas contra Papillomavirus/genética , Filogenia , Recombinação Genética
7.
Arch Virol ; 167(5): 1257-1268, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35353206

RESUMO

OBJECTIVE: In this study, we investigated the occurrence of papillomavirus (PV) infection in non-human primates (NHPs) in northeastern Argentina. We also explored their evolutionary history and evaluated the co-speciation hypothesis in the context of primate evolution. METHODS: We obtained DNA samples from 57 individuals belonging to wild and captive populations of Alouatta caraya, Sapajus nigritus, and Sapajus cay. We assessed PV infection by PCR amplification with the CUT primer system and sequencing of 337 bp (112 amino acids) of the L1 gene. The viral sequences were analyzed by phylogenetic and Bayesian coalescence methods to estimate the time to the most common recent ancestor (tMRCA) using BEAST, v1.4.8 software. We evaluated viral/host tree congruence with TreeMap v3.0. RESULTS: We identified two novel putative PV sequences of the genus Gammapapillomavirus in Sapajus spp. and Alouatta caraya (SPV1 and AcPV1, respectively). The tMRCA of SPV1 was estimated to be 11,941,682 years before present (ybp), and that of AcPV1 was 46,638,071 ybp, both before the coalescence times of their hosts (6.4 million years ago [MYA] and 6.8 MYA, respectively). Based on the comparison of primate and viral phylogenies, we found that the PV tree was no more congruent with the host tree than a random tree would be (P > 0.05), thus allowing us to reject the model of virus-host coevolution. CONCLUSION: This study presents the first evidence of PV infection in platyrrhine species from Argentina, expands the range of described hosts for these viruses, and suggests new scenarios for their origin and dispersal.


Assuntos
Alouatta , Sapajus , Vírus não Classificados , Animais , Argentina/epidemiologia , Teorema de Bayes , Papillomaviridae/genética , Filogenia , Platirrinos
8.
Viruses ; 14(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35336934

RESUMO

Rigvir® is a cell-adapted, oncolytic virotherapy enterovirus, which derives from an echovirus 7 (E7) isolate. While it is claimed that Rigvir® causes cytolytic infection in several cancer cell lines, there is little molecular evidence for its oncolytic and oncotropic potential. Previously, we genome-sequenced Rigvir® and five echovirus 7 isolates, and those sequences are further analyzed in this paper. A phylogenetic analysis of the full-length data suggested that Rigvir® was most distant from the other E7 isolates used in this study, placing Rigvir® in its own clade at the root of the phylogeny. Rigvir® contained nine unique mutations in the viral capsid proteins VP1-VP4 across the whole data set, with a structural analysis showing six of the mutations concerning residues with surface exposure on the cytoplasmic side of the viral capsid. One of these mutations, E/Q/N162G, was located in the region that forms the contact interface between decay-accelerating factor (DAF) and E7. Rigvir® and five other isolates were also subjected to cell infectivity assays performed on eight different cell lines. The used cell lines contained both cancer and non-cancer cell lines for observing Rigvir®'s claimed properties of being both oncolytic and oncotropic. Infectivity assays showed that Rigvir® had no discernable difference in the viruses' oncolytic effect when compared to the Wallace prototype or the four other E7 isolates. Rigvir® was also seen infecting non-cancer cell lines, bringing its claimed effect of being oncotropic into question. Thus, we conclude that Rigvir®'s claim of being an effective treatment against multiple different cancers is not warranted under the evidence presented here. Bioinformatic analyses do not reveal a clear mechanism that could elucidate Rigvir®'s function at a molecular level, and cell infectivity tests do not show a discernable difference in either the oncolytic or oncotropic effect between Rigvir® and other clinical E7 isolates used in the study.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Vírus não Classificados , Vírus de DNA , Enterovirus Humano B/genética , Humanos , Neoplasias/terapia , Vírus Oncolíticos/genética , Filogenia
9.
Viruses ; 14(3)2022 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-35337001

RESUMO

Mycoviruses are widely distributed across fungi, including the yeasts of the Saccharomycotina subphylum. This manuscript reports the first double-stranded RNA (dsRNA) virus isolated from Pichia membranifaciens. This novel virus has been named Pichia membranifaciens virus L-A (PmV-L-A) and is a member of the Totiviridae. PmV-L-A is 4579 bp in length, with RNA secondary structures similar to the packaging, replication, and frameshift signals of totiviruses that infect Saccharomycotina yeasts. PmV-L-A was found to be part of a monophyletic group within the I-A totiviruses, implying a shared ancestry between mycoviruses isolated from the Pichiaceae and Saccharomycetaceae yeasts. Energy-minimized AlphaFold2 molecular models of the PmV-L-A Gag protein revealed structural conservation with the Gag protein of Saccharomyces cerevisiae virus L-A (ScV-L-A). The predicted tertiary structure of the PmV-L-A Pol and other homologs provided a possible mechanism for totivirus RNA replication due to structural similarities with the RNA-dependent RNA polymerases of mammalian dsRNA viruses. Insights into the structure, function, and evolution of totiviruses gained from yeasts are essential because of their emerging role in animal disease and their parallels with mammalian viruses.


Assuntos
Micovírus , Totivirus , Vírus não Classificados , Vírus de DNA/genética , Micovírus/genética , Produtos do Gene gag/metabolismo , Pichia/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Saccharomyces cerevisiae/genética , Totivirus/genética , Totivirus/metabolismo , Vírus não Classificados/genética
10.
Viruses ; 13(10)2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34696452

RESUMO

Human papillomavirus (HPV) is a significant health burden and leading cause of virus-induced cancers. However, studies have been hampered due to restricted tropism that makes production and purification of high titer virus problematic. This issue has been overcome by developing alternative HPV production methods such as virus-like particles (VLPs), which are devoid of a native viral genome. Structural studies have been limited in resolution due to the heterogeneity, fragility, and stability of the VLP capsids. The mouse papillomavirus (MmuPV1) presented here has provided the opportunity to study a native papillomavirus in the context of a common laboratory animal. Using cryo EM to solve the structure of MmuPV1, we achieved 3.3 Å resolution with a local symmetry refinement method that defined smaller, symmetry related subparticles. The resulting high-resolution structure allowed us to build the MmuPV1 asymmetric unit for the first time and identify putative L2 density. We also used our program ISECC to quantify capsid flexibility, which revealed that capsomers move as rigid bodies connected by flexible linkers. The MmuPV1 flexibility was comparable to that of a HPV VLP previously characterized. The resulting MmuPV1 structure is a promising step forward in the study of papillomavirus and will provide a framework for continuing biochemical, genetic, and biophysical research for papillomaviruses.


Assuntos
Capsídeo/química , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Papillomaviridae/ultraestrutura , Animais , Proteínas do Capsídeo , Genoma Viral , Camundongos , Modelos Moleculares , Proteínas Oncogênicas Virais , Papillomaviridae/genética , Infecções por Papillomavirus/virologia , Vírus não Classificados/classificação , Vírus não Classificados/genética
11.
J Gen Virol ; 102(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33891535

RESUMO

RNA-remodelling proteins, including RNA helicases and chaperones, function to remodel structured RNAs and/or RNA-protein interactions and play indispensable roles in viral life cycles. Guaico Culex virus (GCXV) is the first uncovered animal-infected multicomponent virus with segmented positive-sense genomic RNAs. GCXV belongs to the Jingmenvirus group, a diverse clade of segmented viruses that are related to the prototypically unsegmented Flavivirus. However, little is known about the exact functions of the GCXV-encoded proteins. Here, we show that the putative non-structural protein (NSP) 2 on segment 2 of GCXV functions as an RNA helicase that unwinds RNA helix bidirectionally in an adenosine triphosphate (ATP)-dependent manner, and an RNA chaperone that remodels structured RNAs and facilitates RNA strand annealing independently of ATP. Together, our findings are the first demonstration of RNA-remodelling activity encoded by Jingmenvirus and highlight the functional significance of NSP2 in the GCXV life cycle.


Assuntos
Culex/virologia , RNA Helicases/genética , Proteínas não Estruturais Virais/genética , Vírus não Classificados/genética , Animais , Chaperonas Moleculares/genética , Dobramento de Proteína , RNA Viral/metabolismo , Replicação Viral
12.
Arch Virol ; 166(1): 287-290, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33044625

RESUMO

We have determined the complete genomic sequence of a potyvirus from Achyranthes bidentata in Zhejiang, China, using reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) PCR. The genomic RNA is 9482 nucleotides (nt) long excluding the 3'-terminal poly(A) tail and encodes a putative large polyprotein with 3073 amino acids (aa). It has 75.4-53.5% nt sequence identity and 84.0-49.1% polyprotein sequence identity to other potyviruses and is probably a distantly related isolate of the same species as the recently reported achyranthes virus A isolate from South Korea (AcVA-SK). This is the first report of the occurrence of a potyvirus infecting A. bidentata in China.


Assuntos
Achyranthes/virologia , Genoma Viral/genética , Potyvirus/genética , China , DNA Complementar/genética , Genômica/métodos , Filogenia , Doenças das Plantas/virologia , Poliproteínas/genética , RNA Viral/genética , República da Coreia , Análise de Sequência de DNA/métodos , Vírus não Classificados/genética , Sequenciamento Completo do Genoma/métodos
13.
Virus Res ; 295: 198204, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33157165

RESUMO

Human immunodeficiency virus (HIV) and human T-lymphotropic virus type I (HTLV-I) are two retroviruses that attack the immune cells and impair their functions. Both HIV and HTLV-I can be transmitted between individuals through direct contact with certain body fluids from infected individuals. Therefore, a person can be co-infected with both viruses. HIV causes acquired immunodeficiency syndrome, while HTLV-I is the causative agent for adult T-cell leukemia and HTLV-I-associated myelopathy/tropical spastic paraparesis. Several mathematical models have been developed in the literature to describe the within-host dynamics of HIV and HTLV-I mono-infections. However, modeling a within-host dynamics of HIV/HTLV-I co-infection has not been involved. In the present paper, we are concerned to formulate and analyze a new HIV/HTLV co-infection model under the effect of Cytotoxic T lymphocytes (CTLs) immune response. The model describes the interaction between susceptible CD4+T cells, silent HIV-infected cells, active HIV-infected cells, silent HTLV-infected cells, Tax-expressing HTLV-infected cells, free HIV particles, HIV-specific CTLs and HTLV-specific CTLs. The HIV can spread by two routes of transmission, virus-to-cell and cell-to-cell. On the other side, HTLV-I has two modes of transmission, (i) horizontal transmission via direct cell-to-cell contact, and (ii) vertical transmission through mitotic division of Tax-expressing HTLV-infected cells. The well-posedness of the model is established by showing that the solutions of the model are nonnegative and bounded. We define a set of threshold parameters which govern the existence and stability of all equilibria of the model. We explore the global asymptotic stability of all equilibria by utilizing Lyapunov function and LaSalle's invariance principle. We have presented numerical simulations to justify the applicability and effectiveness of the theoretical results. In addition, we evaluate the effect of HTLV-I infection on the HIV dynamics and vice versa.


Assuntos
Coinfecção , Infecções por HIV , Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Paraparesia Espástica Tropical , Vírus não Classificados , Adulto , Vírus de DNA , Infecções por HIV/complicações , Infecções por HTLV-I/complicações , Humanos , Linfócitos T Citotóxicos
14.
Viruses ; 12(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003637

RESUMO

Potassium ion (K+) channels have been observed in diverse viruses that infect eukaryotic marine and freshwater algae. However, experimental evidence for functional K+ channels among these alga-infecting viruses has thus far been restricted to members of the family Phycodnaviridae, which are large, double-stranded DNA viruses within the phylum Nucleocytoviricota. Recent sequencing projects revealed that alga-infecting members of Mimiviridae, another family within this phylum, may also contain genes encoding K+ channels. Here we examine the structural features and the functional properties of putative K+ channels from four cultivated members of Mimiviridae. While all four proteins contain variations of the conserved selectivity filter sequence of K+ channels, structural prediction algorithms suggest that only two of them have the required number and position of two transmembrane domains that are present in all K+ channels. After in vitro translation and reconstitution of the four proteins in planar lipid bilayers, we confirmed that one of them, a 79 amino acid protein from the virus Tetraselmis virus 1 (TetV-1), forms a functional ion channel with a distinct selectivity for K+ over Na+ and a sensitivity to Ba2+. Thus, virus-encoded K+ channels are not limited to Phycodnaviridae but also occur in the members of Mimiviridae. The large sequence diversity among the viral K+ channels implies multiple events of lateral gene transfer.


Assuntos
Mimiviridae/fisiologia , Canais de Potássio/fisiologia , Potássio/metabolismo , Vírus não Classificados/fisiologia , Sequência de Aminoácidos , Evolução Molecular , Genoma Viral , Canais Iônicos , Bicamadas Lipídicas , Mimiviridae/genética , Phycodnaviridae/genética , Filogenia , Canais de Potássio/classificação , Canais de Potássio/genética , Alinhamento de Sequência , Análise de Sequência , Sódio/metabolismo , Canais de Sódio , Vírus não Classificados/genética
15.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996429

RESUMO

Microbes trapped in permanently frozen paleosoils (permafrost) are the focus of increasing research in the context of global warming. Our previous investigations led to the discovery and reactivation of two Acanthamoeba-infecting giant viruses, Mollivirus sibericum and Pithovirus sibericum, from a 30,000-year old permafrost layer. While several modern pithovirus strains have since been isolated, no contemporary mollivirus relative was found. We now describe Mollivirus kamchatka, a close relative to M. sibericum, isolated from surface soil sampled on the bank of the Kronotsky River in Kamchatka, Russian Federation. This discovery confirms that molliviruses have not gone extinct and are at least present in a distant subarctic continental location. This modern isolate exhibits a nucleocytoplasmic replication cycle identical to that of M. sibericum Its spherical particle (0.6 µm in diameter) encloses a 648-kb GC-rich double-stranded DNA genome coding for 480 proteins, of which 61% are unique to these two molliviruses. The 461 homologous proteins are highly conserved (92% identical residues, on average), despite the presumed stasis of M. sibericum for the last 30,000 years. Selection pressure analyses show that most of these proteins contribute to virus fitness. The comparison of these first two molliviruses clarify their evolutionary relationship with the pandoraviruses, supporting their provisional classification in a distinct family, the Molliviridae, pending the eventual discovery of intermediary missing links better demonstrating their common ancestry.IMPORTANCE Virology has long been viewed through the prism of human, cattle, or plant diseases, leading to a largely incomplete picture of the viral world. The serendipitous discovery of the first giant virus visible under a light microscope (i.e., >0.3 µm in diameter), mimivirus, opened a new era of environmental virology, now incorporating protozoan-infecting viruses. Planet-wide isolation studies and metagenome analyses have shown the presence of giant viruses in most terrestrial and aquatic environments, including upper Pleistocene frozen soils. Those systematic surveys have led authors to propose several new distinct families, including the Mimiviridae, Marseilleviridae, Faustoviridae, Pandoraviridae, and Pithoviridae We now propose to introduce one additional family, the Molliviridae, following the description of M. kamchatka, the first modern relative of M. sibericum, previously isolated from 30,000-year-old arctic permafrost.


Assuntos
Vírus Gigantes/classificação , Vírus Gigantes/genética , Vírus Gigantes/isolamento & purificação , Filogenia , Acanthamoeba/virologia , Vírus de DNA/classificação , Vírus de DNA/genética , Genoma Viral , Genômica , Vírus Gigantes/ultraestrutura , Mimiviridae/classificação , Mimiviridae/genética , Federação Russa , Microbiologia do Solo , Vírion/genética , Vírion/ultraestrutura , Vírus não Classificados/classificação , Vírus não Classificados/genética , Vírus não Classificados/isolamento & purificação
16.
J Gen Virol ; 101(1): 105-111, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31769392

RESUMO

A novel picorna-like virus, provisionally named Aphis glycines virus 1 (ApGlV1) was discovered by high-throughput sequencing of soybean total RNAs and detected in suction trap-collected Aphis glycines. The ApGlV1 genome contains two large ORFs organized similar to those of dicipiviruses in the Picornaviridae where ORFs 1 and 2 encode structural and nonstructural proteins, respectively. Both ORFs are preceded by internal ribosome entry site (IRES) elements. The 5' IRES was more active in dual luciferase activity assays than the IRES in the intergenic region. The ApGlV1 genome was predicted to encode a serine protease instead of a cysteine protease and showed very low aa sequence identities to recognized members of the Picornavirales. In phylogenetic analyses based on capsid protein and RNA-dependent RNA polymerase sequences, ApGlV1 consistently clustered with a group of unclassified bicistronic picorna-like viruses discovered from arthropods and plants that may represent a novel family in the order Picornavirales.


Assuntos
Sítios Internos de Entrada Ribossomal/genética , Picornaviridae/genética , Vírus não Classificados/genética , Genoma Viral/genética , Fases de Leitura Aberta/genética , Vírus de RNA/genética , RNA Viral/genética , Proteínas Virais/genética
17.
Emerg Microbes Infect ; 8(1): 1205-1218, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31409221

RESUMO

The in silico analyses of 109 replication-competent genomic DNA sequences isolated from cow milk and its products (97 in the bovine meat and milk factors 2 group - BMMF2, and additional 4 in BMMF1) seems to place these in a specific class of infectious agents spanning between bacterial plasmid and circular ssDNA viruses. Satellite-type small plasmids with partial homology to larger genomes, were also isolated in both groups. A member of the BMMF1 group H1MBS.1 was recovered in a distinctly modified form from colon tissue by laser microdissection. Although the evolutionary origin is unknown, it draws the attention to the existence of a hitherto unrecognized, broad spectrum of potential pathogens. Indirect hints to the origin and structure of our isolates, as well as to their replicative behaviour, result from parallels drawn to the Hepatitis deltavirus genome structure and replication.


Assuntos
Neoplasias do Colo/virologia , Vírus de DNA/isolamento & purificação , Laticínios/virologia , Leite/virologia , Soro/virologia , Vírus não Classificados/isolamento & purificação , Animais , Bovinos , Vírus de DNA/genética , Humanos , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Vírus não Classificados/genética
18.
J Virol ; 93(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31019058

RESUMO

Viruses depend on cells to replicate and can cause considerable damage to their hosts. However, hosts have developed a plethora of antiviral mechanisms to counterattack or prevent viral replication and to maintain homeostasis. Advantageous features are constantly being selected, affecting host-virus interactions and constituting a harsh race for supremacy in nature. Here, we describe a new antiviral mechanism unveiled by the interaction between a giant virus and its amoebal host. Faustovirus mariensis infects Vermamoeba vermiformis, a free-living amoeba, and induces cell lysis to disseminate into the environment. Once infected, the cells release a soluble factor that triggers the encystment of neighbor cells, preventing their infection. Remarkably, infected cells stimulated by the factor encyst and trap the viruses and viral factories inside cyst walls, which are no longer viable and cannot excyst. This unprecedented mechanism illustrates that a plethora of antiviral strategies remains to be discovered in nature.IMPORTANCE Understanding how viruses of microbes interact with its hosts is not only important from a basic scientific point of view but also for a better comprehension of the evolution of life. Studies involving large and giant viruses have revealed original and outstanding mechanisms concerning virus-host relationships. Here, we report a mechanism developed by Vermamoeba vermiformis, a free-living amoeba, to reduce Faustovirus mariensis dissemination. Once infected, V. vermiformis cells release a factor that induces the encystment of neighbor cells, preventing infection of further cells and/or trapping the viruses and viral factories inside the cyst walls. This phenomenon reinforces the need for more studies regarding large/giant viruses and their hosts.


Assuntos
Amebozoários/virologia , Vírus Gigantes/fisiologia , Replicação Viral/fisiologia , Vírus não Classificados/fisiologia
19.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30996095

RESUMO

Cellular membranes ensure functional compartmentalization by dynamic fusion-fission remodeling and are often targeted by viruses during entry, replication, assembly, and egress. Nucleocytoplasmic large DNA viruses (NCLDVs) can recruit host-derived open membrane precursors to form their inner viral membrane. Using complementary three-dimensional (3D)-electron microscopy techniques, including focused-ion beam scanning electron microscopy and electron tomography, we show that the giant Mollivirus sibericum utilizes the same strategy but also displays unique features. Indeed, assembly is specifically triggered by an open cisterna with a flat pole in its center and open curling ends that grow by recruitment of vesicles never reported for NCLDVs. These vesicles, abundant in the viral factory (VF), are initially closed but open once in close proximity to the open curling ends of the growing viral membrane. The flat pole appears to play a central role during the entire virus assembly process. While additional capsid layers are assembled from it, it also shapes the growing cisterna into immature crescent-like virions and is located opposite to the membrane elongation and closure sites, thereby providing virions with a polarity. In the VF, DNA-associated filaments are abundant, and DNA is packed within virions prior to particle closure. Altogether, our results highlight the complexity of the interaction between giant viruses and their host. Mollivirus assembly relies on the general strategy of vesicle recruitment, opening, and shaping by capsid layers similar to all NCLDVs studied until now. However, the specific features of its assembly suggest that the molecular mechanisms for cellular membrane remodeling and persistence are unique.IMPORTANCE Since the first giant virus Mimivirus was identified, other giant representatives are isolated regularly around the world and appear to be unique in several aspects. They belong to at least four viral families, and the ways they interact with their hosts remain poorly understood. We focused on Mollivirus sibericum, the sole representative of "Molliviridae," which was isolated from a 30,000-year-old permafrost sample and exhibits spherical virions of complex composition. In particular, we show that (i) assembly is initiated by a unique structure containing a flat pole positioned at the center of an open cisterna, (ii) core packing involves another cisterna-like element seemingly pushing core proteins into particles being assembled, and (iii) specific filamentous structures contain the viral genome before packaging. Altogether, our findings increase our understanding of how complex giant viruses interact with their host and provide the foundation for future studies to elucidate the molecular mechanisms of Mollivirus assembly.


Assuntos
Vírion/fisiologia , Montagem de Vírus/fisiologia , Vírus não Classificados/fisiologia , Acanthamoeba castellanii/citologia , Acanthamoeba castellanii/virologia , Capsídeo/metabolismo , Vírus de DNA/genética , Vírus de DNA/fisiologia , Tomografia com Microscopia Eletrônica , Genoma Viral , Vírus Gigantes/genética , Vírus Gigantes/fisiologia , Interações Hospedeiro-Patógeno , Imageamento Tridimensional , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Mimiviridae/genética , Vírion/genética , Vírion/ultraestrutura , Replicação Viral , Vírus não Classificados/ultraestrutura
20.
Nucleic Acids Res ; 44(5): 2362-77, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26783202

RESUMO

Halastavi árva virus (HalV) has a positive-sense RNA genome, with an 827 nt-long 5' UTR and an intergenic region separating two open reading frames. Whereas the encoded proteins are most homologous to Dicistrovirus polyproteins, its 5' UTR is distinct. Here, we report that the HalV 5' UTR comprises small stem-loop domains separated by long single-stranded areas and a large A-rich unstructured region surrounding the initiation codon AUG828, and possesses cross-kingdom internal ribosome entry site (IRES) activity. In contrast to most viral IRESs, it does not depend on structural integrity and specific interaction of a structured element with a translational component, and is instead determined by the unstructured region flanking AUG828. eIF2, eIF3, eIF1 and eIF1A promote efficient 48S initiation complex formation at AUG828, which is reduced ∼5-fold on omission of eIF1 and eIF1A. Initiation involves direct attachment of 43S preinitiation complexes within a short window at or immediately downstream of AUG828. 40S and eIF3 are sufficient for initial binding. After attachment, 43S complexes undergo retrograde scanning, strongly dependent on eIF1 and eIF1A. eIF4A/eIF4G stimulated initiation only at low temperatures or on mutants, in which areas surrounding AUG828 had been replaced by heterologous sequences. However, they strongly promoted initiation at AUG872, yielding a proline-rich oligopeptide.


Assuntos
Genoma Viral , Iniciação Traducional da Cadeia Peptídica , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Ribossomos/metabolismo , Proteínas Virais/biossíntese , Vírus não Classificados/metabolismo , Regiões 5' não Traduzidas , Animais , Sistema Livre de Células , Clonagem Molecular , Códon de Iniciação/química , Códon de Iniciação/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Expressão Gênica , Conformação de Ácido Nucleico , Fases de Leitura Aberta , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA Viral/química , RNA Viral/genética , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reticulócitos/química , Ribossomos/química , Spodoptera/química , Proteínas Virais/genética , Vírus não Classificados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA