RESUMO
The cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a pivotal role in innate immune responses to viral infection and inhibition of autoimmunity. Recent studies have suggested that micronuclei formed by genotoxic stress can activate innate immune signaling via the cGAS-STING pathway. Here, we investigated cGAS localization, activation, and downstream signaling from micronuclei induced by ionizing radiation, replication stress, and chromosome segregation errors. Although cGAS localized to ruptured micronuclei via binding to self-DNA, we failed to observe cGAS activation; cGAMP production; downstream phosphorylation of STING, TBK1, or IRF3; nuclear accumulation of IRF3; or expression of interferon-stimulated genes. Failure to activate the cGAS-STING pathway was observed across primary and immortalized cell lines, which retained the ability to activate the cGAS-STING pathway in response to dsDNA or modified vaccinia virus infection. We provide evidence that micronuclei formed by genotoxic insults contain histone-bound self-DNA, which we show is inhibitory to cGAS activation in cells.
Assuntos
Micronúcleos com Defeito Cromossômico , Nucleotidiltransferases , Transdução de Sinais , Humanos , Células HeLa , Radiação , Replicação do DNA , Dano ao DNA , Fator Regulador 3 de Interferon/metabolismo , Transcrição Gênica , Fatores Reguladores de Interferon/metabolismo , Técnicas de Inativação de Genes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Cinética , Transfecção , Nucleossomos/metabolismo , Morfolinas , Purinas , Hidroxiureia , Linhagem Celular Tumoral , Vaccinia virus/fisiologia , Vacínia/imunologia , Vacínia/metabolismoRESUMO
The extracellular virion (EV) form of Orthopoxviruses is required for cell-to-cell spread and pathogenesis, and is the target of neutralizing antibodies in the protective immune response. EV have a double envelope that contains several unique proteins that are involved in its intracellular envelopment and/or subsequent infectivity. One of these, F13, is involved in both EV formation and infectivity. Here, we report that replacement of vaccinia virus F13L with the molluscum contagiosum virus homolog, MC021L, results in the production of EV particles with significantly increased levels of EV glycoproteins, which correlate with a small plaque phenotype. Using a novel fluorescence-activated virion sorting assay to isolate EV populations based on glycoprotein content we determine that EV containing either higher or lower levels of glycoproteins are less infectious, suggesting that there is an optimal concentration of glycoproteins in the outer envelope that is required for maximal infectivity of EV. This optimal glycoprotein concentration was required for lethality and induction of pathology in a cutaneous model of animal infection, but was not required for induction of a protective immune response. Therefore, our results demonstrate that there is a sensitive balance between glycoprotein incorporation, infectivity, and pathogenesis, and that manipulation of EV glycoprotein levels can produce vaccine vectors in which pathologic side effects are attenuated without a marked diminution in induction of protective immunity.
Assuntos
Glicoproteínas/metabolismo , Vaccinia virus/patogenicidade , Vacínia/metabolismo , Proteínas Virais/metabolismo , Vírion/patogenicidade , Animais , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vaccinia virus/metabolismo , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismoRESUMO
Activation of the cyclic guanosine monophosphate (GMP)-AMP (cGAMP) sensor STING requires its translocation from the endoplasmic reticulum to the Golgi apparatus and subsequent polymerization. Using a genome-wide CRISPR-Cas9 screen to define factors critical for STING activation in cells, we identified proteins critical for biosynthesis of sulfated glycosaminoglycans (sGAGs) in the Golgi apparatus. Binding of sGAGs promoted STING polymerization through luminal, positively charged, polar residues. These residues are evolutionarily conserved, and selective mutation of specific residues inhibited STING activation. Purified or chemically synthesized sGAGs induced STING polymerization and activation of the kinase TBK1. The chain length and O-linked sulfation of sGAGs directly affected the level of STING polymerization and, therefore, its activation. Reducing the expression of Slc35b2 to inhibit GAG sulfation in mice impaired responses to vaccinia virus infection. Thus, sGAGs in the Golgi apparatus are necessary and sufficient to drive STING polymerization, providing a mechanistic understanding of the requirement for endoplasmic reticulum (ER)-to-Golgi apparatus translocation for STING activation.
Assuntos
Glicosaminoglicanos/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/metabolismo , Animais , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Cricetinae , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Camundongos , Polimerização , Transdução de Sinais/fisiologia , Transportadores de Sulfato/metabolismo , Vacínia/metabolismo , Vaccinia virus/patogenicidadeRESUMO
Metabolism is a crucial frontier of host-virus interaction as viruses rely on their host cells to provide nutrients and energy for propagation. Vaccinia virus (VACV) is the prototype poxvirus. It makes intensive demands for energy and macromolecules in order to build hundreds and thousands of viral particles in a single cell within hours of infection. Our comprehensive metabolic profiling reveals profound reprogramming of cellular metabolism by VACV infection, including increased levels of the intermediates of the tri-carboxylic acid (TCA) cycle independent of glutaminolysis. By investigating the level of citrate, the first metabolite of the TCA cycle, we demonstrate that the elevation of citrate depends on VACV-encoded viral growth factor (VGF), a viral homolog of cellular epidermal growth factor. Further, the upregulation of citrate is dependent on STAT3 signaling, which is activated non-canonically at the serine727 upon VACV infection. The STAT3 activation is dependent on VGF, and VGF-dependent EGFR and MAPK signaling. Together, our study reveals a novel mechanism by which VACV manipulates cellular metabolism through a specific viral factor and by selectively activating a series of cellular signaling pathways.
Assuntos
Citratos/metabolismo , Ciclo do Ácido Cítrico , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fator de Transcrição STAT3/metabolismo , Vaccinia virus/fisiologia , Vacínia/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Fibroblastos/virologia , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Sistema de Sinalização das MAP Quinases , Metaboloma , Fosforilação , Fator de Transcrição STAT3/genética , Transdução de Sinais , Vacínia/virologiaRESUMO
Mammary carcinoma, including triple-negative breast carcinomas (TNBC) are tumor-types for which human and canine pathologies are closely related at the molecular level. The efficacy of an oncolytic vaccinia virus (VV) was compared in low-passage primary carcinoma cells from TNBC versus non-TNBC. Non-TNBC cells were 28 fold more sensitive to VV than TNBC cells in which VV replication is impaired. Single-cell RNA-seq performed on two different TNBC cell samples, infected or not with VV, highlighted three distinct populations: naïve cells, bystander cells, defined as cells exposed to the virus but not infected and infected cells. The transcriptomes of these three populations showed striking variations in the modulation of pathways regulated by cytokines and growth factors. We hypothesized that the pool of genes expressed in the bystander populations was enriched in antiviral genes. Bioinformatic analysis suggested that the reduced activity of the virus was associated with a higher mesenchymal status of the cells. In addition, we demonstrated experimentally that high expression of one gene, DDIT4, is detrimental to VV production. Considering that DDIT4 is associated with a poor prognosis in various cancers including TNBC, our data highlight DDIT4 as a candidate resistance marker for oncolytic poxvirus therapy. This information could be used to design new generations of oncolytic poxviruses. Beyond the field of gene therapy, this study demonstrates that single-cell transcriptomics can be used to identify cellular factors influencing viral replication.
Assuntos
Neoplasias Mamárias Animais/metabolismo , Terapia Viral Oncolítica/métodos , Fatores de Transcrição/metabolismo , Transcriptoma , Vaccinia virus/genética , Vacínia/metabolismo , Replicação Viral , Animais , Biologia Computacional , Cães , Feminino , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/terapia , Neoplasias Mamárias Animais/virologia , Análise de Célula Única , Fatores de Transcrição/genética , Vacínia/genética , Vacínia/virologiaRESUMO
A variety of strains of vaccinia virus (VACV) have been used as recombinant vaccine vectors with the aim of inducing robust CD8+ T cell immunity. While much of the pioneering work was done with virulent strains, such as Western Reserve (WR), attenuated strains such as modified vaccinia virus Ankara (MVA) are more realistic vectors for clinical use. To unify this literature, side-by-side comparisons of virus strains are required. Here, we compare the form of antigen that supports optimal CD8+ T cell responses for VACV strains WR and MVA using equivalent constructs. We found that for multiple antigens, minimal antigenic constructs (epitope minigenes) that prime CD8+ T cells via the direct presentation pathway elicited optimal responses from both vectors, which was surprising because this finding contradicts the prevailing view in the literature for MVA. We then went on to explore the discrepancy between current and published data for MVA, finding evidence that the expression locus and in some cases the presence of the viral thymidine kinase may influence the ability of this strain to prime optimal responses from antigens that require direct presentation. This extends our knowledge of the design parameters for VACV vectored vaccines, especially those based on MVA.IMPORTANCE Recombinant vaccines based on vaccinia virus and particularly attenuated strains such as MVA are in human clinical trials, but due to the complexity of these large vectors much remains to be understood about the design parameters that alter their immunogenicity. Previous work had found that MVA vectors should be designed to express stable protein in order to induce robust immunity by CD8+ (cytotoxic) T cells. Here, we found that the primacy of stable antigen is not generalizable to all designs of MVA and may depend where a foreign antigen is inserted into the MVA genome. This unexpected finding suggests that there is an interaction between genome location and the best form of antigen for optimal T cell priming in MVA and thus possibly other vaccine vectors. It also highlights that our understanding of antigen presentation by even the best studied of vaccine vectors remains incomplete.
Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Fragmentos de Peptídeos/imunologia , Timidina Quinase/metabolismo , Vaccinia virus/imunologia , Vacínia/imunologia , Vacinas Virais/imunologia , Animais , Antígenos Virais/genética , Linfócitos T CD8-Positivos/metabolismo , Feminino , Genoma Viral , Imunização , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/genética , Ovalbumina/imunologia , Timidina Quinase/genética , Vacínia/metabolismo , Vacínia/virologia , Vaccinia virus/classificação , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologiaRESUMO
Interferons (IFNs) represent an important host defense against viruses. Type I IFNs induce JAK-STAT signaling and expression of IFN-stimulated genes (ISGs), which mediate antiviral activity. Histone deacetylases (HDACs) perform multiple functions in regulating gene expression and some class I HDACs and the class IV HDAC, HDAC11, influence type I IFN signaling. Here, HDAC4, a class II HDAC, is shown to promote type I IFN signaling and coprecipitate with STAT2. Pharmacological inhibition of class II HDAC activity, or knockout of HDAC4 from HEK-293T and HeLa cells, caused a defective response to IFN-α. This defect in HDAC4-/- cells was rescued by reintroduction of HDAC4 or catalytically inactive HDAC4, but not HDAC1 or HDAC5. ChIP analysis showed HDAC4 was recruited to ISG promoters following IFN stimulation and was needed for binding of STAT2 to these promoters. The biological importance of HDAC4 as a virus restriction factor was illustrated by the observations that (i) the replication and spread of vaccinia virus (VACV) and herpes simplex virus type 1 (HSV-1) were enhanced in HDAC4-/- cells and inhibited by overexpression of HDAC4; and (ii) HDAC4 is targeted for proteasomal degradation during VACV infection by VACV protein C6, a multifunctional IFN antagonist that coprecipitates with HDAC4 and is necessary and sufficient for HDAC4 degradation.
Assuntos
Vírus de DNA/metabolismo , Histona Desacetilases/metabolismo , Interferon Tipo I/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Vaccinia virus/metabolismo , Vacínia/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Herpesvirus Humano 1/metabolismo , Humanos , Vacínia/virologia , Replicação Viral/fisiologiaRESUMO
In this article we report that the M2 protein encoded by the vaccinia virus is secreted as a homo-oligomer by infected cells and binds two central costimulation molecules, CD80 (B7-1) and CD86 (B7-2). These interactions block the ligation of the two B7 proteins to both soluble CD28 and soluble cytotoxic T-lymphocyte associated protein 4 (CTLA4) but favor the binding of soluble PD-L1 to soluble CD80. M2L gene orthologues are found in several other poxviruses, and the B7-CD28/CTLA4 blocking activity has been identified for several culture supernatants of orthopoxvirus-infected cells and for a recombinant myxoma virus M2 protein homolog (i.e., Gp120-like protein, or Gp120LP). Overall, these data indicate that the M2 poxvirus family of proteins may be involved in immunosuppressive activities broader than the NF-κB inhibition already reported (R. Gedey, X. L. Jin, O. Hinthong, and J. L. Shisler, J Virol 80:8676-8685, 2006, https://doi.org/10.1128/JVI.00935-06). A Copenhagen vaccinia virus with a deletion of the nonessential M2L locus was generated and compared with its parental virus. This M2L-deleted vaccinia virus, unlike the parental virus, does not generate interference with the B7-CD28/CTLA4/PD-L1 interactions. Moreover, this deletion did not affect any key features of the virus (in vitro replication, oncolytic activities in vitro and in vivo, and intratumoral expression of a transgene in an immunocompetent murine model). Altogether, these first results suggest that the M2 protein has the potential to be used as a new immunosuppressive biotherapeutic and that the M2L-deleted vaccinia virus represents an attractive new oncolytic platform with an improved immunological profile.IMPORTANCE The vaccinia virus harbors in its genome several genes dedicated to the inhibition of the host immune response. Among them, M2L was reported to inhibit the intracellular NF-κB pathway. We report here several new putative immunosuppressive activities of M2 protein. M2 protein is secreted and binds cornerstone costimulatory molecules (CD80/CD86). M2 binding to CD80/CD86 blocks their interaction with soluble CD28/CTLA4 but also favors the soluble PD-L1-CD80 association. These findings open the way for new investigations deciphering the immune system effects of soluble M2 protein. Moreover, a vaccinia virus with a deletion of its M2L has been generated and characterized as a new oncolytic platform. The replication and oncolytic activities of the M2L-deleted vaccinia virus are indistinguishable from those of the parental virus. More investigations are needed to characterize in detail the immune response triggered against both the tumor and the virus by this M2-defective vaccinia virus.
Assuntos
Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Vaccinia virus/metabolismo , Animais , Antígenos CD/metabolismo , Antígeno B7-1/genética , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Antígenos CD28/metabolismo , Antígeno CTLA-4/metabolismo , Moléculas de Adesão Celular , Linhagem Celular , Embrião de Galinha , Humanos , Imunoconjugados , Interleucina-2/metabolismo , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos , NF-kappa B/metabolismo , Vacínia/genética , Vacínia/metabolismo , Vaccinia virus/genética , Proteínas Virais/metabolismoRESUMO
Cell motility is essential for viral dissemination1. Vaccinia virus (VACV), a close relative of smallpox virus, is thought to exploit cell motility as a means to enhance the spread of infection1. A single viral protein, F11L, contributes to this by blocking RhoA signalling to facilitate cell retraction2. However, F11L alone is not sufficient for VACV-induced cell motility, indicating that additional viral factors must be involved. Here, we show that the VACV epidermal growth factor homologue, VGF, promotes infected cell motility and the spread of viral infection. We found that VGF secreted from early infected cells is cleaved by ADAM10, after which it acts largely in a paracrine manner to direct cell motility at the leading edge of infection. Real-time tracking of cells infected in the presence of EGFR, MAPK, FAK and ADAM10 inhibitors or with VGF-deleted and F11-deleted viruses revealed defects in radial velocity and directional migration efficiency, leading to impaired cell-to-cell spread of infection. Furthermore, intravital imaging showed that virus spread and lesion formation are attenuated in the absence of VGF. Our results demonstrate how poxviruses hijack epidermal growth factor receptor-induced cell motility to promote rapid and efficient spread of infection in vitro and in vivo.
Assuntos
Movimento Celular , Interações Hospedeiro-Patógeno , Peptídeos/metabolismo , Transdução de Sinais , Vaccinia virus/fisiologia , Vacínia/virologia , Proteína ADAM10/antagonistas & inibidores , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Efeito Citopatogênico Viral/genética , Inibidores Enzimáticos/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Deleção de Genes , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Peptídeos/deficiência , Peptídeos/genética , Transdução de Sinais/efeitos dos fármacos , Vacínia/metabolismo , Vacínia/patologia , Vaccinia virus/genética , Vaccinia virus/crescimento & desenvolvimento , Vaccinia virus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Entry is the first and critical step of viral infection, while the entry mechanisms of many viruses are still unclear due to the lack of efficient technology. In this report, by taking advantage of the single-virion fluorescence tracking technique and simultaneous dual-labeling methods for viruses we developed, the entry pathway of vaccinia virus from tiantan strain (VACV-TT) was studied in real-time. By combining with the technologies of virology and cell biology, we found that VACV-TT moved toward the Vero cell body along the filopodia induced by the virions interaction, and then, they were internalized through macropinocytosis, which was an actin-, ATP-dependent but clathrin-, caveolin-independent endocytosis. These results are of significant importance for VACV-TT-based vaccine vectors and oncolytic virus study.
Assuntos
Pinocitose , Vaccinia virus/fisiologia , Vacínia/virologia , Internalização do Vírus , Actinas/metabolismo , Animais , Caveolinas/metabolismo , Chlorocebus aethiops , Clatrina/metabolismo , Pseudópodes/metabolismo , Vacínia/metabolismo , Células VeroRESUMO
The interferon (IFN)-stimulated gene 15 (ISG15) encodes one of the most abundant proteins induced by interferon, and its expression is associated with antiviral immunity. To identify protein components implicated in IFN and ISG15 signaling, we compared the proteomes of ISG15-/- and ISG15+/+ bone marrow derived macrophages (BMDM) after vaccinia virus (VACV) infection. The results of this analysis revealed that mitochondrial dysfunction and oxidative phosphorylation (OXPHOS) were pathways altered in ISG15-/- BMDM treated with IFN. Mitochondrial respiration, Adenosine triphosphate (ATP) and reactive oxygen species (ROS) production was higher in ISG15+/+ BMDM than in ISG15-/- BMDM following IFN treatment, indicating the involvement of ISG15-dependent mechanisms. An additional consequence of ISG15 depletion was a significant change in macrophage polarization. Although infected ISG15-/- macrophages showed a robust proinflammatory cytokine expression pattern typical of an M1 phenotype, a clear blockade of nitric oxide (NO) production and arginase-1 activation was detected. Accordingly, following IFN treatment, NO release was higher in ISG15+/+ macrophages than in ISG15-/- macrophages concomitant with a decrease in viral titer. Thus, ISG15-/- macrophages were permissive for VACV replication following IFN treatment. In conclusion, our results demonstrate that ISG15 governs the dynamic functionality of mitochondria, specifically, OXPHOS and mitophagy, broadening its physiological role as an antiviral agent.
Assuntos
Citocinas/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Vaccinia virus/metabolismo , Vacínia/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Citocinas/genética , Ativação Enzimática/genética , Macrófagos/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Óxido Nítrico/metabolismo , Fosforilação Oxidativa , Ubiquitinas/genética , Ubiquitinas/metabolismo , Vacínia/genéticaRESUMO
Identification of viral-host interacting proteins will contribute to understanding of how poxvirus exploits the host cellular machinery. The vaccinia virus gene K7R encodes a conserved protein K7 in most orthopoxviruses. To gain insight into the biology of K7, we investigated the cellular interactome of K7 by GST pulldown coupled with mass spectrometry. The top categories of identified proteins contained components of trafficking machineries. We selected key components of three transport machineries including coatomer, retromer, and CHEVI to further confirm their binding abilities to K7. Di-lysine motif of K7 is required for its interaction with coatomer, while C terminal leucines in K7 are critical for association of retromer. Our study uncovers the viral-host interactome of vaccinia K7 and reveals three host transport machineries as binding partners of K7, which might have important roles in poxvirus' life cycles.
Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Ligação Proteica/fisiologia , Vaccinia virus/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Vacínia/metabolismo , Vacínia/virologiaRESUMO
In this study, the effect of active infection with vaccinia virus Western Reserve (VACV WR) on expression of C-type lectin domain family 2 (CLEC2D), a ligand of the human NK cell inhibitory receptor NKR-P1, was examined. As predicted, VACV infection led to a loss of CLEC2D mRNA in 221 cells, a B cell lymphoma line. Surprisingly, VACV infection of 221 cells caused a dramatic increase in cell surface staining for one CLEC2D-specific antibody, 4C7. There were no changes in other antibodies specific for CLEC2D and no indication that NK cells with NKR-P1A were inhibited, suggesting 4C7 detects a non-CLEC2D molecule following infection. The rapid increase in 4C7 signal requires virus attachment and is disrupted by UV treatment, but does not depend on new transcription or translation of either cellular or viral proteins. 4C7 does react with intracellular compartments, suggesting the molecule that is detected at the surface following infection is derived from an intracellular store. The phenomenon extends beyond lymphoid cells: it was observed in the non-human primate cell line Cos-7, but not with myxoma, a poxvirus distinct from VACV. To our knowledge, this is the first report of VACV or any poxvirus leading to rapid externalization of a host molecule. Among the VACV strains tested, the phenomenon was restricted to VACV WR and IHD-W, suggesting it has a virulence-, as opposed to a replication-related, function.
Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Lectinas Tipo C/genética , Receptores de Superfície Celular/genética , Vaccinia virus/fisiologia , Vacínia/genética , Vacínia/virologia , Sequência de Aminoácidos , Linhagem Celular , Células Cultivadas , Interações Hospedeiro-Patógeno/imunologia , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Subfamília B de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Vacínia/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ligação ViralRESUMO
The vaccinia virus (VACV) K1 protein inhibits dsRNA-dependent protein kinase (PKR) activation. A consequence of this function is that K1 inhibits PKR-induced NF-κB activation during VACV infection. However, transient expression of K1 also inhibits Toll-like receptor (TLR)-induced NF-κB activation. This suggests that K1 has a second NF-κB inhibitory mechanism that is PKR-independent. This possibility was explored by expressing K1 independently of infection and stimulating NF-κB under conditions that minimized or excluded PKR activation. K1 inhibited both TNF- and phorbol 12-myristate 13-acetate (PMA)-induced NF-κB activation, as detected by transcription of synthetic (e.g. luciferase) and natural (e.g. CXCL8) genes controlled by NF-κB. K1 also inhibited NF-κB activity in PKRkd cells, cells that have greatly decreased amounts of PKR. K1 no longer prevented IκBα degradation or NF-κB nuclear translocation in the absence of PKR, suggesting that K1 acted on a nuclear event. Indeed, K1 was present in the nucleus and cytoplasm of stimulated and unstimulated cells. K1 inhibited acetylation of the RelA (p65) subunit of NF-κB, a nuclear event known to be required for NF-κB activation. Moreover, p65-CBP (CREB-binding protein) interactions were blocked in the presence of K1. However, K1 did not preclude NF-κB binding to oligonucleotides containing κB-binding sites. The current interpretation of these data is that NF-κB-promoter interactions still occur in the presence of K1, but NF-κB cannot properly trigger transcriptional activation because K1 antagonizes acetylation of RelA. Thus, in comparison to all known VACV NF-κB inhibitory proteins, K1 acts at one of the most downstream events of NF-κB activation.
Assuntos
NF-kappa B/metabolismo , Vaccinia virus/metabolismo , Vacínia/metabolismo , Proteínas Virais/metabolismo , Acetilação , Repetição de Anquirina , Humanos , NF-kappa B/genética , Ligação Proteica , Transdução de Sinais , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Vacínia/genética , Vacínia/virologia , Vaccinia virus/genética , Proteínas Virais/química , Proteínas Virais/genéticaRESUMO
Subversion of host cell apoptotic responses is a prominent feature of viral immune evasion strategies to prevent premature clearance of infected cells. Numerous poxviruses encode structural and functional homologs of the Bcl-2 family of proteins, and vaccinia virus harbors antiapoptotic F1L that potently inhibits the mitochondrial apoptotic checkpoint. Recently F1L has been assigned a caspase-9 inhibitory function attributed to an N-terminal α helical region of F1L spanning residues 1-15 (1) preceding the domain-swapped Bcl-2-like domains. Using a reconstituted caspase inhibition assay in yeast we found that unlike AcP35, a well characterized caspase-9 inhibitor from the insect virus Autographa californica multiple nucleopolyhedrovirus, F1L does not prevent caspase-9-mediated yeast cell death. Furthermore, we found that deletion of the F1L N-terminal region does not impede F1L antiapoptotic activity in the context of a viral infection. Solution analysis of the F1L N-terminal regions using small angle x-ray scattering indicates that the region of F1L spanning residues 1-50 located N-terminally from the Bcl-2 fold is an intrinsically unstructured region. We conclude that the N terminus of F1L is not involved in apoptosis inhibition and may act as a regulatory element in other signaling pathways in a manner reminiscent of other unstructured regulatory elements commonly found in mammalian prosurvival Bcl-2 members including Bcl-xL and Mcl-1.
Assuntos
Apoptose , Vaccinia virus/química , Vacínia/virologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Conformação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Vacínia/metabolismo , Vaccinia virus/fisiologia , Difração de Raios XRESUMO
Cyclic GMP-AMP synthase (cGAS) senses cytosolic DNA during viral infection and catalyzes synthesis of the dinucleotide cGAMP, which activates the adaptor STING to initiate antiviral responses. Here we found that deficiency in the carboxypeptidase CCP5 or CCP6 led to susceptibility to DNA viruses. CCP5 and CCP6 were required for activation of the transcription factor IRF3 and interferons. Polyglutamylation of cGAS by the enzyme TTLL6 impeded its DNA-binding ability, whereas TTLL4-mediated monoglutamylation of cGAS blocked its synthase activity. Conversely, CCP6 removed the polyglutamylation of cGAS, whereas CCP5 hydrolyzed the monoglutamylation of cGAS, which together led to the activation of cGAS. Therefore, glutamylation and deglutamylation of cGAS tightly modulate immune responses to infection with DNA viruses.
Assuntos
Carboxipeptidases/genética , Infecções por Vírus de DNA/metabolismo , DNA Viral/imunologia , Nucleotidiltransferases/metabolismo , Peptídeo Sintases/metabolismo , Animais , Citosol , Vírus de DNA/genética , Imunofluorescência , Herpes Simples/metabolismo , Imunoprecipitação , Fator Regulador 3 de Interferon/imunologia , Interferons/imunologia , Camundongos , Camundongos Knockout , Nucleotídeos Cíclicos/biossíntese , Nucleotidiltransferases/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simplexvirus/genética , Vacínia/metabolismo , Vaccinia virus/genéticaRESUMO
Vaccinia virus (VACV) is the prototypic orthopoxvirus and the vaccine used to eradicate smallpox. Here we show that VACV strain Western Reserve protein 169 is a cytoplasmic polypeptide expressed early during infection that is excluded from virus factories and inhibits the initiation of cap-dependent and cap-independent translation. Ectopic expression of protein 169 causes the accumulation of 80S ribosomes, a reduction of polysomes, and inhibition of protein expression deriving from activation of multiple innate immune signaling pathways. A virus lacking 169 (vΔ169) replicates and spreads normally in cell culture but is more virulent than parental and revertant control viruses in intranasal and intradermal murine models of infection. Intranasal infection by vΔ169 caused increased pro-inflammatory cytokines and chemokines, infiltration of pulmonary leukocytes, and lung weight. These alterations in innate immunity resulted in a stronger CD8+ T-cell memory response and better protection against virus challenge. This work illustrates how inhibition of host protein synthesis can be a strategy for virus suppression of innate and adaptive immunity.
Assuntos
Imunidade Adaptativa , Interações Hospedeiro-Patógeno , Imunidade Inata , Iniciação Traducional da Cadeia Peptídica , Vaccinia virus/fisiologia , Vacínia/virologia , Proteínas Virais/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/virologia , Linhagem Celular , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Humanos , Memória Imunológica , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Vacínia/imunologia , Vacínia/metabolismo , Vacínia/patologia , Vaccinia virus/imunologia , Vaccinia virus/patogenicidade , Proteínas Virais/genética , VirulênciaRESUMO
Dicer is the key component in the miRNA pathway. Degradation of Dicer protein is facilitated during vaccinia virus (VV) infection. A C-terminal cleaved product of Dicer protein was detected in the presence of MG132 during VV infection. Thus, it is possible that Dicer protein is cleaved by a viral protease followed by proteasome degradation of the cleaved product. There is a potential I7 protease cleavage site in the C-terminus of Dicer protein. Indeed, reduction of Dicer protein was detected when Dicer was co-expressed with I7 protease but not with an I7 protease mutant protein lack of the protease activity. Mutation of the potential I7 cleavage site in the C-terminus of Dicer protein resisted its degradation during VV infection. Furthermore, Dicer protein was reduced dramatically by recombinant VV vI7Li after the induction of I7 protease. If VV could facilitate the degradation of Dicer protein, the process of miRNA should be affected by VV infection. Indeed, accumulation of precursor miR122 was detected after VV infection or I7 protease expression. Reduction of miR122 would result in the suppression of HCV sub-genomic RNA replication, and, in turn, the amount of viral proteins. As expected, significant reduction of HCVNS5A protein was detected after VV infection and I7 protease expression. Therefore, our results suggest that VV could cleave Dicer protein through I7 protease to facilitate Dicer degradation, and in turn, suppress the processing of miRNAs. Effect of Dicer protein on VV replication was also studied. Exogenous expression of Dicer protein suppresses VV replication slightly while knockdown of Dicer protein does not affect VV replication significantly.
Assuntos
RNA Helicases DEAD-box/metabolismo , MicroRNAs/genética , Ribonuclease III/metabolismo , Vaccinia virus/genética , Vacínia/virologia , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Western Blotting , Citocinese/genética , RNA Helicases DEAD-box/genética , Humanos , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonuclease III/genética , Células Tumorais Cultivadas , Vacínia/genética , Vacínia/metabolismo , Proteínas do Core Viral/genética , Proteínas não Estruturais Virais/genéticaRESUMO
Modified vaccinia virus Ankara (MVA) is an attenuated poxvirus that has been engineered as a vaccine against infectious agents and cancers. Our goal is to understand how MVA modulates innate immunity in dendritic cells (DCs), which can provide insights to vaccine design. In this study, using murine bone marrow-derived dendritic cells, we assessed type I interferon (IFN) gene induction and protein secretion in response to MVA infection. We report that MVA infection elicits the production of type I IFN in murine conventional dendritic cells (cDCs), but not in plasmacytoid dendritic cells (pDCs). Transcription factors IRF3 (IFN regulatory factor 3) and IRF7, and the positive feedback loop mediated by IFNAR1 (IFN alpha/beta receptor 1), are required for the induction. MVA induction of type I IFN is fully dependent on STING (stimulator of IFN genes) and the newly discovered cytosolic DNA sensor cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase). MVA infection of cDCs triggers phosphorylation of TBK1 (Tank-binding kinase 1) and IRF3, which is abolished in the absence of cGAS and STING. Furthermore, intravenous delivery of MVA induces type I IFN in wild-type mice, but not in mice lacking STING or IRF3. Treatment of cDCs with inhibitors of endosomal and lysosomal acidification or the lysosomal enzyme Cathepsin B attenuated MVA-induced type I IFN production, indicating that lysosomal enzymatic processing of virions is important for MVA sensing. Taken together, our results demonstrate a critical role of the cGAS/STING-mediated cytosolic DNA-sensing pathway for type I IFN induction in cDCs by MVA. We present evidence that vaccinia virulence factors E3 and N1 inhibit the activation of IRF3 and the induction of IFNB gene in MVA-infected cDCs.
Assuntos
Células da Medula Óssea/metabolismo , Células Dendríticas/metabolismo , Interferon beta/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Vaccinia virus/metabolismo , Vacínia/metabolismo , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/virologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Endossomos/genética , Endossomos/imunologia , Endossomos/metabolismo , Feminino , Imunidade Inata/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Interferon beta/imunologia , Lisossomos/genética , Lisossomos/imunologia , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Fosforilação/genética , Fosforilação/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/metabolismo , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Receptor de Interferon alfa e beta/metabolismo , Vacínia/genética , Vacínia/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismoRESUMO
UNLABELLED: Human monocytic and professional antigen-presenting cells have been reported only to exhibit abortive infections with vaccinia virus (VACV). We found that monocyte-derived macrophages (MDMs), including granulocyte macrophage colony-stimulating factor (GM-CSF)-polarized M1 and macrophage colony-stimulating factor (M-CSF)-polarized M2, but not human AB serum-derived cells, were permissive to VACV replication. The titers of infectious virions in both cell-free supernatants and cellular lysates of infected M1 and M2 markedly increased in a time-dependent manner. The majority of virions produced in permissive MDMs were extracellular enveloped virions (EEV), a secreted form of VACV associated with long-range virus dissemination, and were mainly found in the culture supernatant. Infected MDMs formed VACV factories, actin tails, virion-associated branching structures, and cell linkages, indicating that MDMs are able to initiate de novo synthesis of viral DNA and promote virus release. VACV replication was sensitive to inhibitors against the Akt and Erk1/2 pathways that can be activated by VACV infection and M-CSF stimulation. Classical activation of MDMs by lipopolysaccharide (LPS) plus gamma interferon (IFN-γ) stimulation caused no effect on VACV replication, while alternative activation of MDMs by interleukin-10 (IL-10) or LPS-plus-IL-1ß treatment significantly decreased VACV production. The IL-10-mediated suppression of VACV replication was largely due to Stat3 activation, as a Stat3 inhibitor restored virus production to levels observed without IL-10 stimulation. In conclusion, our data demonstrate that primary human macrophages are permissive to VACV replication. After infection, these cells produce EEV for long-range dissemination and also form structures associated with virions which may contribute to cell-cell spread. IMPORTANCE: Our results provide critical information to the burgeoning fields of cancer-killing (oncolytic) virus therapy with vaccinia virus (VACV). One type of macrophage (M2) is considered a common presence in tumors and is associated with poor prognosis. Our results demonstrate a preference for VACV replication in M2 macrophages and could assist in designing treatments and engineering poxviruses with special considerations for their effect on M2 macrophage-containing tumors. Additionally, this work highlights the importance of macrophages in the field of vaccine development using poxviruses as vectors. The understanding of the dynamics of poxvirus-infected foci is central in understanding the effectiveness of the immune response to poxvirus-mediated vaccine vectors. Monocytic cells have been found to be an important part of VACV skin lesions in mice in controlling the infection as well as mediating virus transport out of infected foci.