Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 776
Filtrar
1.
Cell Rep ; 37(5): 109894, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731604

RESUMO

Legionella pneumophila grows intracellularly within a replication vacuole via action of Icm/Dot-secreted proteins. One such protein, SdhA, maintains the integrity of the vacuolar membrane, thereby preventing cytoplasmic degradation of bacteria. We show here that SdhA binds and blocks the action of OCRL (OculoCerebroRenal syndrome of Lowe), an inositol 5-phosphatase pivotal for controlling endosomal dynamics. OCRL depletion results in enhanced vacuole integrity and intracellular growth of a sdhA mutant, consistent with OCRL participating in vacuole disruption. Overexpressed SdhA alters OCRL function, enlarging endosomes, driving endosomal accumulation of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and interfering with endosomal trafficking. SdhA interrupts Rab guanosine triphosphatase (GTPase)-OCRL interactions by binding to the OCRL ASPM-SPD2-Hydin (ASH) domain, without directly altering OCRL 5-phosphatase activity. The Legionella vacuole encompassing the sdhA mutant accumulates OCRL and endosomal antigen EEA1 (Early Endosome Antigen 1), consistent with SdhA blocking accumulation of OCRL-containing endosomal vesicles. Therefore, SdhA hijacking of OCRL is associated with blocking trafficking events that disrupt the pathogen vacuole.


Assuntos
Proteínas de Bactérias/metabolismo , Endossomos/enzimologia , Flavoproteínas/metabolismo , Legionella pneumophila/metabolismo , Doença dos Legionários/enzimologia , Macrófagos/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Vacúolos/enzimologia , Animais , Proteínas de Bactérias/genética , Células COS , Chlorocebus aethiops , Endocitose , Endossomos/genética , Endossomos/microbiologia , Evolução Molecular , Feminino , Flavoproteínas/genética , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Legionella pneumophila/genética , Legionella pneumophila/crescimento & desenvolvimento , Doença dos Legionários/microbiologia , Macrófagos/microbiologia , Camundongos , Mutação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/genética , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Células U937 , Vacúolos/genética , Vacúolos/microbiologia , Proteínas rab de Ligação ao GTP/metabolismo
3.
Int J Biol Macromol ; 171: 343-357, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33421469

RESUMO

Lactoferrin (Lf) is a bioactive milk-derived protein with remarkable wide-spectrum antifungal activity. To deepen our understanding of the molecular mechanisms underlying Lf cytotoxicity, the role of plasma membrane ergosterol- and sphingolipid-rich lipid rafts and their association with the proton pump Pma1p was explored. Pma1p was previously identified as a Lf-binding protein. Results showed that bovine Lf (bLf) perturbs ergosterol-rich lipid rafts organization by inducing intracellular accumulation of ergosterol. Using yeast mutant strains lacking lipid rafts-associated proteins or enzymes involved in the synthesis of ergosterol and sphingolipids, we found that perturbations in the composition of these membrane domains increase resistance to bLf-induced yeast cell death. Also, when Pma1p-lipid rafts association is compromised in the Pma1-10 mutant and in the absence of the Pma1p-binding protein Ast1p, the bLf killing activity is impaired. Altogether, results showed that the perturbation of lipid rafts and the inhibition of both Pma1p and V-ATPase activities mediate the antifungal activity of bLf. Since it is suggested that the combination of conventional antifungals with lipid rafts-disrupting compounds is a powerful antifungal approach, our data will help to pave the way for the use of bLf alone or in combination for the treatment/eradication of clinically and agronomically relevant yeast pathogens/fungi.


Assuntos
Antifúngicos/farmacologia , Lactoferrina/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , ATPases Translocadoras de Prótons/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Farmacorresistência Fúngica , Ergosterol/metabolismo , Filipina , Proteínas de Fluorescência Verde/análise , Microdomínios da Membrana/química , Mutação Puntual , ATPases Translocadoras de Prótons/biossíntese , ATPases Translocadoras de Prótons/genética , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/biossíntese , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/efeitos dos fármacos , Vacúolos/enzimologia , beta-Ciclodextrinas/farmacologia
4.
Plant Physiol Biochem ; 145: 52-63, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31665667

RESUMO

The role of glutathione in the plant vacuole is still being debated. In the present paper, the redox state of glutathione and the activity of glutathione S-transferase (GST, E 2.5.1.18) in the vacuole compared to those in leucoplast have been studied. Organelles were isolated from dormant red beet (Beta vulgaris L.) taproots. Two generally used approaches have been applied to quantitatively assess the content of glutathione. Initially, levels of glutathione were measured in isolated organelles after labeling with monochlorobimane (MCB) and imaging with the use of confocal laser scanning microscopy. However, there are factors limiting the specificity of this method, because of which the resulting concentrations of vacuolar GSH have been underestimated. Another approach used was HPLC, which allows to simultaneously quantify the reduced glutathione (GSH) and glutathione disulfide (GSSG). The concentration of the total glutathione (GSHt) and GSSG in vacuoles determined with the aid of HPLC-UV was higher in comparison to that in the leucoplasts. The reduction potential (Eh) for the glutathione couple in the vacuoles was more positive (-163 mV), than that in plastids (-282 mV). The relatively rapid increase in fluorescence in the isolated vacuoles and plastids during MCB-labeling has indicated to the contribution of GSTs, since the conjugation of GSH to bimane is catalysed by these enzymes. The GST activity in the vacuoles has been assessed to be quite high compared to that of leucoplasts. The number of isoforms of GSTs also differed markedly in vacuoles and plastids. Collectively, our findings suggest the idea that the glutathione accumulated by central vacuole seems to contribute to the redox processes and to the detoxification, which can take place in this compartment.


Assuntos
Beta vulgaris , Glutationa , Plastídeos , Vacúolos , Beta vulgaris/citologia , Beta vulgaris/enzimologia , Cromatografia Líquida de Alta Pressão , Glutationa/análise , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Microscopia Confocal , Plastídeos/metabolismo , Pirazóis/metabolismo , Vacúolos/química , Vacúolos/enzimologia
5.
New Phytol ; 219(4): 1421-1432, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29938800

RESUMO

The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration.


Assuntos
Pirofosfatase Inorgânica/metabolismo , Nicotiana/enzimologia , Salinidade , Cloreto de Sódio/farmacologia , Vacúolos/enzimologia , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Difosfatos/metabolismo , Concentração de Íons de Hidrogênio , Isoenzimas/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/enzimologia , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Bombas de Próton/metabolismo , Prótons , Estresse Fisiológico/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/metabolismo
6.
Planta ; 248(1): 89-103, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29589146

RESUMO

MAIN CONCLUSION: Stilbene synthase (STS) and its metabolic products are accumulated in senescing grapevine leaves. Ectopic expression of VpSTS29 in Arabidopsis shows the presence of VpSTS29 in oil bodies and increases trans-piceid in developing leaves. Stilbenes are the natural antimicrobial phytoalexins that are synthesised via the phenylpropanoid pathway. STS is the key enzyme catalysing the production of stilbenes. We have previously reported that the VpSTS29 gene plays an important role in powdery mildew resistance in Vitis pseudoreticulata. However, the synthesis and accumulation of these stilbene products in plant cells remain unclear. Here, we demonstrate that VpSTS29 is present in cytosolic oil bodies and can be transported into the vacuole at particular plant-developmental stages. Western blot and high-performance liquid chromatography showed that STS and trans-piceid accumulated in senescent grape leaves and in pVpSTS29::VpSTS29-expressing Arabidopsis during age-dependent leaf senescence. Subcellular localisation analyses indicated VpSTS29-GFP was present in the cytoplasm and in STS-containing bodies in Arabidopsis. Nile red staining, co-localisation and immunohistochemistry analyses of leaves confirmed that the STS-containing bodies were oil bodies and that these moved randomly in the cytoplasm and vacuole. Detection of protein profiles revealed that no free GFP was detected in the pVpSTS29::VpSTS29-GFP-expressing protoplasts or in Arabidopsis during the dark-light cycle, demonstrating that GFP fluorescence distributed in the STS-containing bodies and vacuole was the VpSTS29-GFP fusion protein. Intriguingly, in comparison to the controls, over-expression of VpSTS29 in Arabidopsis resulted in relatively high levels of trans-piceid, chlorophyll content and of photochemical efficiency accompanied by delayed leaf senescence. These results provide exciting new insights into the subcellular localisation of STS in plant cells and information about stilbene synthesis and storage.


Assuntos
Aciltransferases/genética , Gotículas Lipídicas/enzimologia , Vitis/metabolismo , Aciltransferases/metabolismo , Arabidopsis/genética , Western Blotting , Cromatografia Líquida de Alta Pressão , Genes de Plantas/genética , Folhas de Planta/enzimologia , Plantas Geneticamente Modificadas , Vacúolos/enzimologia , Vitis/enzimologia , Vitis/genética
7.
Methods Mol Biol ; 1744: 283-297, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29392673

RESUMO

Plant senescence is accompanied by a marked increase in proteolytic activities, and cysteine proteases (Cys-protease) represent the prevailing class among the responsible proteases. Cys-proteases predominantly locate to lytic compartments, i.e., to the central vacuole (CV) and to senescence-associated vacuoles (SAVs), the latter being specific to the photosynthetic cells of senescing leaves. Cellular fractionation of vacuolar compartments may facilitate Cys-proteases purification and their concentration for further analysis. Active Cys-proteases may be analyzed by different, albeit complementary approaches: (1) in vivo examination of proteolytic activity by fluorescence microscopy using specific substrates which become fluorescent upon cleavage by Cys-proteases, (2) protease labeling with specific probes that react irreversibly with the active enzymes, and (3) zymography, whereby protease activities are detected in polyacrylamide gels copolymerized with a substrate for proteases. Here we describe the three methods mentioned above for detection of active Cys-proteases and a cellular fractionation technique to isolate SAVs.


Assuntos
Envelhecimento , Cisteína Proteases/metabolismo , Fenômenos Fisiológicos Vegetais , Vacúolos/enzimologia , Ativação Enzimática , Proteínas de Plantas/metabolismo , Coloração e Rotulagem
8.
Curr Genet ; 64(2): 417-422, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29043484

RESUMO

The precise and controlled regulation of gene expression at transcriptional and post-transcriptional levels is crucial for the eukaryotic cell survival and functions. In eukaryotes, more than 100 types of post-transcriptional RNA modifications have been identified. The N6-methyladenosine (m6A) modification in mRNA is among the most common post-transcriptional RNA modifications known in eukaryotic organisms, and the m6A RNA modification can regulate gene expression. The role of yeast m6A methyltransferase (Ime4) in meiosis, sporulation, triacylglycerol metabolism, vacuolar morphology, and mitochondrial functions has been reported. Stress triggers triacylglycerol accumulation as lipid droplets. Lipid droplets are physically connected to the different organelles such as endoplasmic reticulum, mitochondria, and peroxisomes. However, the physiological relevance of these physical interactions remains poorly understood. In yeast, peroxisome is the sole site of fatty acid ß-oxidation. The metabolic status of the cell readily governs the number and physiological function of peroxisomes. Under low-glucose or stationary-phase conditions, peroxisome biogenesis and proliferation increase in the cells. Therefore, we hypothesized a possible role of Ime4 in the peroxisomal functions. There is no report on the role of Ime4 in peroxisomal biology. Here, we report that IME4 gene deletion causes peroxisomal dysfunction under stationary-phase conditions in Saccharomyces cerevisiae; besides, the ime4Δ cells showed a significant decrease in the expression of the key genes involved in peroxisomal ß-oxidation compared to the wild-type cells. Therefore, identification and determination of the target genes of Ime4 that are directly involved in the peroxisomal biogenesis, morphology, and functions will pave the way to better understand the role of m6A methylation in peroxisomal biology.


Assuntos
Adenosina/análogos & derivados , Ácidos Graxos/genética , Metiltransferases/genética , Peroxissomos/genética , Proteínas de Saccharomyces cerevisiae/genética , 3-Hidroxiacil-CoA Desidrogenases/genética , Acetil-CoA C-Aciltransferase/genética , Adenosina/genética , Adenosina/metabolismo , Isomerases de Ligação Dupla Carbono-Carbono/genética , Enoil-CoA Hidratase/genética , Ácidos Graxos/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Metabolismo dos Lipídeos/genética , Metiltransferases/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Peroxissomos/enzimologia , Processamento Pós-Transcricional do RNA/genética , Racemases e Epimerases/genética , Saccharomyces cerevisiae/genética , Vacúolos/enzimologia , Vacúolos/genética
9.
J Biol Chem ; 292(49): 20113-20124, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29038292

RESUMO

Prions are infectious proteins that cause fatal neurodegenerative disorders including Creutzfeldt-Jakob and bovine spongiform encephalopathy (mad cow) diseases. The yeast [PSI+] prion is formed by the translation-termination factor Sup35, is the best-studied prion, and provides a useful model system for studying such diseases. However, despite recent progress in the understanding of prion diseases, the cellular defense mechanism against prions has not been elucidated. Here, we report that proteolytic cleavage of Sup35 suppresses spontaneous de novo generation of the [PSI+] prion. We found that during yeast growth in glucose media, a maximum of 40% of Sup35 is cleaved at its N-terminal prion domain. This cleavage requires the vacuolar proteases PrA-PrB. Cleavage occurs in a manner dependent on translation but independently of autophagy between the glutamine/asparagine-rich (Q/N-rich) stretch critical for prion formation and the oligopeptide-repeat region required for prion maintenance, resulting in the removal of the Q/N-rich stretch from the Sup35 N terminus. The complete inhibition of Sup35 cleavage, by knocking out either PrA (pep4Δ) or PrB (prb1Δ), increased the rate of de novo formation of [PSI+] prion up to ∼5-fold, whereas the activation of Sup35 cleavage, by overproducing PrB, inhibited [PSI+] formation. On the other hand, activation of the PrB pathway neither cleaved the amyloid conformers of Sup35 in [PSI+] strains nor eliminated preexisting [PSI+]. These findings point to a mechanism antagonizing prion generation in yeast. Our results underscore the usefulness of the yeast [PSI+] prion as a model system to investigate defense mechanisms against prion diseases and other amyloidoses.


Assuntos
Proteínas Fúngicas/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Proteínas Priônicas/metabolismo , Príons/antagonistas & inibidores , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Peptídeo Hidrolases/metabolismo , Príons/metabolismo , Vacúolos/enzimologia , Leveduras/metabolismo
10.
J Cell Biol ; 216(7): 2075-2090, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28637746

RESUMO

Adaptation to environmental stress is critical for cell survival. Adaptation generally occurs via changes in transcription and translation. However, there is a time lag before changes in gene expression, which suggests that more rapid mechanisms likely exist. In this study, we show that in yeast, the cyclin-dependent kinase Pho85/CDK5 provides protection against hyperosmotic stress and acts before long-term adaptation provided by Hog1. This protection requires the vacuolar/endolysosomal signaling lipid PI3,5P2 We show that Pho85/CDK5 directly phosphorylates and positively regulates the PI3P-5 kinase Fab1/PIKfyve complex and provide evidence that this regulation is conserved in mammalian cells. Moreover, this regulation is particularly crucial in yeast for the stress-induced transient elevation of PI3,5P2 Our study reveals a rapid protection mechanism regulated by Pho85/CDK5 via signaling from the vacuole/lysosome, which is distinct temporally and spatially from the previously discovered long-term adaptation Hog1 pathway, which signals from the nucleus.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Endossomos/enzimologia , Lisossomos/enzimologia , Pressão Osmótica , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sistemas do Segundo Mensageiro , Vacúolos/enzimologia , Adaptação Fisiológica , Animais , Células Cultivadas , Quinase 5 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Ciclinas/metabolismo , Fibroblastos/enzimologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Viabilidade Microbiana , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Fosfotransferases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Regulação para Cima
11.
Genome Biol ; 18(1): 47, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270225

RESUMO

BACKGROUND: Proteases represent one of the most abundant classes of enzymes in eukaryotes and are known to play key roles in many biological processes in plants. However, little is known about their functions in fruit ripening and disease resistance, which are unique to flowering plants and required for seed maturation and dispersal. Elucidating the genetic mechanisms of fruit ripening and disease resistance is an important goal given the biological and dietary significance of fruit. RESULTS: Through expression profile analyses of genes encoding tomato (Solanum lycopersicum) cysteine proteases, we identify a number of genes whose expression increases during fruit ripening. RNA interference (RNAi)-mediated repression of SlVPE3, a vacuolar protease gene, results in alterations in fruit pigmentation, lycopene biosynthesis, and ethylene production, suggesting that SlVPE3 is necessary for normal fruit ripening. Surprisingly, the SlVPE3 RNAi fruit are more susceptible to the necrotrophic pathogen Botrytis cinerea. Quantitative proteomic analysis identified 314 proteins that differentially accumulate upon SlVPE3 silencing, including proteins associated with fruit ripening and disease resistance. To identify the direct SlVPE3 targets and mechanisms contributing to fungal pathogen resistance, we perform a screening of SlVPE3-interacting proteins using co-immunoprecipitation coupled with mass spectrometry. We show that SlVPE3 is required for the cleavage of the serine protease inhibitor KTI4, which contributes to resistance against the fungal pathogen B. cinerea. CONCLUSIONS: Our findings contribute to elucidating gene regulatory networks and mechanisms that control fruit ripening and disease resistance responses.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Vacúolos/enzimologia , Proteínas de Transporte , Análise por Conglomerados , Resistência à Doença/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Inativação Gênica , Estudos de Associação Genética , Interações Hospedeiro-Patógeno/genética , Fenótipo , Doenças das Plantas/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteólise , Proteoma , Proteômica/métodos , Processamento Pós-Transcricional do RNA
12.
Elife ; 62017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28296633

RESUMO

Hypoxia Inducible transcription Factors (HIFs) are principally regulated by the 2-oxoglutarate and Iron(II) prolyl hydroxylase (PHD) enzymes, which hydroxylate the HIFα subunit, facilitating its proteasome-mediated degradation. Observations that HIFα hydroxylation can be impaired even when oxygen is sufficient emphasise the importance of understanding the complex nature of PHD regulation. Here, we use an unbiased genome-wide genetic screen in near-haploid human cells to uncover cellular processes that regulate HIF1α. We identify that genetic disruption of the Vacuolar H+ ATPase (V-ATPase), the key proton pump for endo-lysosomal acidification, and two previously uncharacterised V-ATPase assembly factors, TMEM199 and CCDC115, stabilise HIF1α in aerobic conditions. Rather than preventing the lysosomal degradation of HIF1α, disrupting the V-ATPase results in intracellular iron depletion, thereby impairing PHD activity and leading to HIF activation. Iron supplementation directly restores PHD catalytic activity following V-ATPase inhibition, revealing important links between the V-ATPase, iron metabolism and HIFs.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Prolil Hidroxilases/metabolismo , Processamento de Proteína Pós-Traducional , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/enzimologia , Vacúolos/metabolismo , Aerobiose , Humanos , Hidroxilação
13.
J Cell Sci ; 130(9): 1625-1636, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28302909

RESUMO

Acidocalcisome-like organelles are found in all kingdoms of life. Many of their functions, such as the accumulation and storage of metal ions, nitrogen and phosphate, the activation of blood clotting and inflammation, depend on the controlled synthesis and turnover of polyphosphate (polyP), a polymer of inorganic phosphate linked by phosphoric anhydride bonds. The exploration of the role of acidocalcisomes in metabolism and physiology requires the manipulation of polyP turnover, yet the complete set of proteins responsible for this turnover is unknown. Here, we identify a novel type of polyphosphatase operating in the acidocalcisome-like vacuoles of the yeast Saccharomyces cerevisiae, which we called Ppn2. Ppn2 belongs to the PPP-superfamily of metallophosphatases, is activated by Zn2+ ions and exclusively shows endopolyphosphatase activity. It is sorted to vacuoles via the multivesicular body pathway. Together with Ppn1, Ppn2 is responsible for a substantial fraction of polyphosphatase activity that is necessary to mobilize polyP stores, for example in response to phosphate scarcity. This finding opens the way to manipulating polyP metabolism more profoundly and deciphering its roles in phosphate and energy homeostasis, as well as in signaling.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Ácidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Vacúolos/enzimologia , Zinco/metabolismo , Hidrolases Anidrido Ácido/química , Sequência de Aminoácidos , Técnicas de Inativação de Genes , Corpos Multivesiculares/metabolismo , Polifosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/química
14.
Autophagy ; 13(4): 670-685, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28129027

RESUMO

The vacuolar-type H+-translocating ATPase (v-H+-ATPase) has been implicated in the amino acid-dependent activation of the mechanistic target of rapamycin complex 1 (MTORC1), an important regulator of macroautophagy. To reveal the mechanistic links between the v-H+-ATPase and MTORC1, we destablilized v-H+-ATPase complexes in mouse liver cells by induced deletion of the essential chaperone ATP6AP2. ATP6AP2-mutants are characterized by massive accumulation of endocytic and autophagic vacuoles in hepatocytes. This cellular phenotype was not caused by a block in endocytic maturation or an impaired acidification. However, the degradation of LC3-II in the knockout hepatocytes appeared to be reduced. When v-H+-ATPase levels were decreased, we observed lysosome association of MTOR and normal signaling of MTORC1 despite an increase in autophagic marker proteins. To better understand why MTORC1 can be active when v-H+-ATPase is depleted, the activation of MTORC1 was analyzed in ATP6AP2-deficient fibroblasts. In these cells, very little amino acid-elicited activation of MTORC1 was observed. In contrast, insulin did induce MTORC1 activation, which still required intracellular amino acid stores. These results suggest that in vivo the regulation of macroautophagy depends not only on v-H+-ATPase-mediated regulation of MTORC1.


Assuntos
Autofagia , Fígado/enzimologia , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Receptores de Superfície Celular/metabolismo , Vacúolos/enzimologia , Aminoácidos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Embrião de Mamíferos/citologia , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Insulina/farmacologia , Fígado/efeitos dos fármacos , Fígado/ultraestrutura , Lisossomos/efeitos dos fármacos , Camundongos Knockout , ATPases Translocadoras de Prótons/deficiência , Receptores de Superfície Celular/deficiência , Vacúolos/efeitos dos fármacos
15.
FEMS Yeast Res ; 16(5)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27370212

RESUMO

Vacuolar H(+)-ATPase (V-ATPase) is responsible for the acidification of eukaryotic intracellular compartments and plays an important role in oxidative stress response (OSR), but its molecular bases are largely unknown. Here, we investigated how V-ATPase is involved in the OSR by using a strain lacking VPH2, which encodes an assembly factor of V-ATPase, in the pathogenic fungus Candida glabrata The loss of Vph2 resulted in increased H2O2 sensitivity and intracellular reactive oxygen species (ROS) level independently of mitochondrial functions. The Δvph2 mutant also displayed growth defects under alkaline conditions accompanied by the accumulation of intracellular ROS and these phenotypes were recovered in the presence of the ROS scavenger N-acetyl-l-cysteine. Both expression and activity levels of mitochondrial manganese superoxide dismutase (Sod2) and catalase (Cta1) were decreased in the Δvph2 mutant. Phenotypic analyses of strains lacking and overexpressing these genes revealed that Sod2 and Cta1 play a predominant role in endogenous and exogenous OSR, respectively. Furthermore, supplementation of copper and iron restored the expression of SOD2 specifically in the Δvph2 mutant, suggesting that the homeostasis of intracellular cupper and iron levels maintained by V-ATPase was important for the Sod2-mediated OSR. This report demonstrates novel roles of V-ATPase in the OSR in C. glabrata.


Assuntos
Candida glabrata/enzimologia , Candida glabrata/fisiologia , Cobre/metabolismo , Estresse Oxidativo , ATPases Translocadoras de Prótons/metabolismo , Vacúolos/enzimologia , Vacúolos/metabolismo , Álcalis/toxicidade , Candida glabrata/genética , Candida glabrata/metabolismo , Catalase/metabolismo , Citosol/química , Deleção de Genes , Peróxido de Hidrogênio/toxicidade , Chaperonas Moleculares/genética , Espécies Reativas de Oxigênio/análise , Superóxido Dismutase/metabolismo
16.
New Phytol ; 211(3): 1092-107, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27214749

RESUMO

Petunia mutants (Petunia hybrida) with blue flowers defined a novel vacuolar proton pump consisting of two interacting P-ATPases, PH1 and PH5, that hyper-acidify the vacuoles of petal cells. PH5 is similar to plasma membrane H(+) P3A -ATPase, whereas PH1 is the only known eukaryoticP3B -ATPase. As there were no indications that this tonoplast pump is widespread in plants, we investigated the distribution and evolution of PH1 and PH5. We combined database mining and phylogenetic and synteny analyses of PH1- and PH5-like proteins from all kingdoms with functional analyses (mutant complementation and intracellular localization) of homologs from diverse angiosperms. We identified functional PH1 and PH5 homologs in divergent angiosperms. PH5 homologs evolved from plasma membrane P3A -ATPases, acquiring an N-terminal tonoplast-sorting sequence and new cellular function before angiosperms appeared. PH1 is widespread among seed plants and related proteins are found in some groups of bacteria and fungi and in one moss, but is absent in most algae, suggesting that its evolution involved several cases of gene loss and possibly horizontal transfer events. The distribution of PH1 and PH5 in the plant kingdom suggests that vacuolar acidification by P-ATPases appeared in gymnosperms before flowers. This implies that, next to flower color determination, vacuolar hyper-acidification is required for yet unknown processes.


Assuntos
Ácidos/metabolismo , Evolução Molecular , Proteínas de Membrana Transportadoras/metabolismo , Petunia/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Vacúolos/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cátions , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/química , Rosa/genética , Homologia de Sequência de Aminoácidos , Vacúolos/metabolismo , Vitis/genética
17.
Mol Cell Biochem ; 414(1-2): 179-86, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26895320

RESUMO

Yeast GTP-binding protein (YPT1 protein) has been reported to function in the early stages of the secretory pathway. Particularly, YPT1 protein is observed to regulate both the endoplasmic reticulum-to-Golgi transport and the autophagy. Therefore, the YPT1 protein overexpressed in yeast vacuoles is expected to enhance antimicrobial and anticancer activity. The enhancement of yeast vacuolar activity under the overexpression of YPT1 was evaluated by the analysis of lysozyme activity, antimicrobial activity against Escherichia coli and Staphylococcus aureus, and MTT assay against HeLa cell lines. Additionally, the rise in concentration of some important proteinases inside the vacuole, such as proteinase A, proteinase B, and vacuolar carboxypeptidase Y (CPY) were also recorded using a 2DE technique. All results imply YPT1 involvement in the recruitment of some specific proteinases into vacuoles, which leads to the enhancement of vacuolar activity. Since these there proteinases belong to the CPY pathway, YPT1 is even believed to up-regulate this trafficking pathway in yeast cells. Future studies, however, should be carried out to discover the mechanisms that allow YPT1 to recruit these proteins into yeast vacuoles.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Proteínas Fúngicas/farmacologia , Células HeLa , Humanos , Microscopia Eletrônica de Varredura , Muramidase/metabolismo , Peptídeo Hidrolases/metabolismo , Recombinação Genética , Vacúolos/enzimologia
18.
Plant Biotechnol J ; 14(1): 169-76, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25846201

RESUMO

Cold storage of potato tubers is commonly used to reduce sprouting and extend postharvest shelf life. However, cold temperature stimulates the accumulation of reducing sugars in potato tubers. Upon high-temperature processing, these reducing sugars react with free amino acids, resulting in brown, bitter-tasting products and elevated levels of acrylamide--a potential carcinogen. To minimize the accumulation of reducing sugars, RNA interference (RNAi) technology was used to silence the vacuolar invertase gene (VInv), which encodes a protein that breaks down sucrose to glucose and fructose. Because RNAi often results in incomplete gene silencing and requires the plant to be transgenic, here we used transcription activator-like effector nucleases (TALENs) to knockout VInv within the commercial potato variety, Ranger Russet. We isolated 18 plants containing mutations in at least one VInv allele, and five of these plants had mutations in all VInv alleles. Tubers from full VInv-knockout plants had undetectable levels of reducing sugars, and processed chips contained reduced levels of acrylamide and were lightly coloured. Furthermore, seven of the 18 modified plant lines appeared to contain no TALEN DNA insertions in the potato genome. These results provide a framework for using TALENs to quickly improve traits in commercially relevant autotetraploid potato lines.


Assuntos
Temperatura Baixa , Criopreservação/métodos , Técnicas de Inativação de Genes , Marcação de Genes , Solanum tuberosum/genética , Acrilamida/análise , Sequência de Bases , Carboidratos/análise , Genes de Plantas , Mutação/genética , Plantas Geneticamente Modificadas , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Vacúolos/enzimologia , beta-Frutofuranosidase/genética
19.
Plant Biotechnol J ; 14(2): 709-18, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26079224

RESUMO

Acrylamide is produced in a wide variety of carbohydrate-rich foods during high-temperature cooking. Dietary acrylamide is a suspected human carcinogen, and health concerns related to dietary acrylamide have been raised worldwide. French fries and potato chips contribute a significant proportion to the average daily intake of acrylamide, especially in developed countries. One way to mitigate health concerns related to acrylamide is to develop potato cultivars that have reduced contents of the acrylamide precursors asparagine, glucose and fructose in tubers. We generated a large number of silencing lines of potato cultivar Russet Burbank by targeting the vacuolar invertase gene VInv and the asparagine synthetase genes StAS1 and StAS2 with a single RNA interference construct. The transcription levels of these three genes were correlated with reducing sugar (glucose and fructose) and asparagine content in tubers. Fried potato products from the best VInv/StAS1/StAS2-triple silencing lines contained only one-fifteenth of the acrylamide content of the controls. Interestingly, the extent of acrylamide reduction of the best triple silencing lines was similar to that of the best VInv-single silencing lines developed previously from the same potato cultivar Russet Burbank. These results show that an acrylamide mitigation strategy focused on developing potato cultivars with low reducing sugars is likely to be an effective and sufficient approach for minimizing the acrylamide-forming potential of French fry processing potatoes.


Assuntos
Acrilamida/metabolismo , Aspartato-Amônia Ligase/genética , Culinária , Inativação Gênica , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Vacúolos/enzimologia , beta-Frutofuranosidase/genética , Asparagina/biossíntese , Sequência de Bases , Metabolismo dos Carboidratos/genética , Frutose/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucose/metabolismo , Fenótipo , Caules de Planta/metabolismo , Tubérculos/genética , Solanum tuberosum/química , Sacarose/metabolismo , Vacúolos/genética
20.
J Cell Physiol ; 231(8): 1695-708, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26599499

RESUMO

Rab7 regulates the biogenesis of late endosomes, lysosomes, and autophagosomes. It has been proposed that a functional and physical interaction exists between Rab7 and Rac1 GTPases in CDH1 endocytosis and ruffled border formation. In FRT cells over-expressing Rab7, increased expression and activity of Rac1 was observed, whereas a reduction of Rab7 expression by RNAi resulted in reduced Rac1 activity, as measured by PAK1 phosphorylation. We found that CDH1 endocytosis was extremely reduced only in Rab7 over-expressing cells but was unchanged in Rab7 silenced cells. In Rab7 under or over-expressing cells, Rab7 and LC3B-II co-localized and co-localization in large circular structures occurred only in Rab7 over-expressing cells. These large circular structures occurred in about 10% of the cell population; some of them (61%) showed co-localization of Rab7 with cortactin and f-actin and were identified as circular dorsal ruffles (CDRs), the others as mature autophagosomes. We propose that the over-expression of Rab7 is sufficient to induce CDRs. Furthermore, in FRT cells, we found that the expression of the insoluble/active form of Rab7, rather than Rab5, or Rab8, was inducible by cAMP and that cAMP-stimulated FRT cells showed increased PAK1 phosphorylation and were no longer able to endocytose CDH1. Finally, we demonstrated that Rab7 over-expressing cells are able to endocytose exogenous thyroglobulin via pinocytosis/CDRs more efficiently than control cells. We propose that the major thyroglobulin endocytosis described in thyroid autonomous adenomas due to Rab7 increased expression, occurs via CDRs. J. Cell. Physiol. 231: 1695-1708, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Caderinas/metabolismo , Extensões da Superfície Celular/enzimologia , Endocitose , Tireoglobulina/metabolismo , Glândula Tireoide/enzimologia , Vacúolos/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Autofagia , Linhagem Celular , Extensões da Superfície Celular/efeitos dos fármacos , Cortactina/metabolismo , AMP Cíclico/metabolismo , Endocitose/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Pinocitose , Interferência de RNA , Ratos Endogâmicos F344 , Sistemas do Segundo Mensageiro , Glândula Tireoide/citologia , Glândula Tireoide/efeitos dos fármacos , Fatores de Tempo , Transfecção , Vacúolos/efeitos dos fármacos , Quinases Ativadas por p21/metabolismo , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7 , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA