Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
J Zhejiang Univ Sci B ; 25(3): 254-270, 2024 Mar 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38453639

RESUMO

As a potential vectored vaccine, Newcastle disease virus (NDV) has been subject to various studies for vaccine development, while relatively little research has outlined the immunomodulatory effect of the virus in antigen presentation. To elucidate the key inhibitory factor in regulating the interaction of infected dendritic cells (DCs) and T cells, DCs were pretreated with the NDV vaccine strain LaSota as an inhibitor and stimulated with lipopolysaccharide (LPS) for further detection by enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunoblotting, and quantitative real-time polymerase chain reaction (qRT-PCR). The results revealed that NDV infection resulted in the inhibition of interleukin (IL)-12p40 in DCs through a p38 mitogen-activated protein kinase (MAPK)|-dependent manner, thus inhibiting the synthesis of IL-12p70, leading to the reduction in T cell proliferation and the secretion of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and IL-6 induced by DCs. Consequently, downregulated cytokines accelerated the infection and viral transmission from DCs to T cells. Furthermore, several other strains of NDV also exhibited inhibitory activity. The current study reveals that NDV can modulate the intensity of the innate|‒|adaptive immune cell crosstalk critically toward viral invasion improvement, highlighting a novel mechanism of virus-induced immunosuppression and providing new perspectives on the improvement of NDV-vectored vaccine.


Assuntos
Vírus da Doença de Newcastle , Vacinas , Animais , Vírus da Doença de Newcastle/fisiologia , Interleucina-12/farmacologia , Apresentação de Antígeno , Vacinas/farmacologia , Células Dendríticas
2.
Microbiol Spectr ; 12(3): e0366123, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315025

RESUMO

Uropathogenic Escherichia coli (UPEC) is the primary causative agent of lower urinary tract infection (UTI). UTI presents a serious health risk and has considerable secondary implications including economic burden, recurring episodes, and overuse of antibiotics. A safe and effective vaccine would address this widespread health problem and emerging antibiotic resistance. Killed, whole-cell vaccines have shown limited efficacy to prevent recurrent UTI in human trials. We explored photochemical inactivation with psoralen drugs and UVA light (PUVA), which crosslinks nucleic acid, as an alternative to protein-damaging methods of inactivation to improve whole-cell UTI vaccines. Exposure of UPEC to the psoralen drug AMT and UVA light resulted in a killed but metabolically active (KBMA) state, as reported previously for other PUVA-inactivated bacteria. The immunogenicity of PUVA-UPEC as compared to formalin-inactivated UPEC was compared in mice. Both generated high UPEC-specific serum IgG titers after intramuscular delivery. However, using functional adherence as a measure of surface protein integrity, we found differences in the properties of PUVA- and formalin-inactivated UPEC. Adhesion mediated by Type-1 and P-fimbriae was severely compromised by formalin but was unaffected by PUVA, indicating that PUVA preserved the functional conformation of fimbrial proteins, which are targets of protective immune responses. In vitro assays indicated that although they retained metabolic activity, PUVA-UPEC lost virulence properties that could negatively impact vaccine safety. Our results imply the potential for PUVA to improve killed, whole-cell UTI vaccines by generating bacteria that more closely resemble their live, infectious counterparts relative to vaccines generated with protein-damaging methods. IMPORTANCE: Lower urinary tract infection (UTI), caused primarily by uropathogenic Escherichia coli, represents a significant health burden, accounting for 7 million primary care and 1 million emergency room visits annually in the United States. Women and the elderly are especially susceptible and recurrent infection (rUTI) is common in those populations. Lower UTI can lead to life-threatening systemic infection. UTI burden is manifested by healthcare dollars spent (1.5 billion annually), quality of life impact, and resistant strains emerging from antibiotic overuse. A safe and effective vaccine to prevent rUTI would address a substantial healthcare issue. Vaccines comprised of inactivated uropathogenic bacteria have yielded encouraging results in clinical trials but improvements that enhance vaccine performance are needed. To that end, we focused on inactivation methodology and provided data to support photochemical inactivation, which targets nucleic acid, as a promising alternative to conventional protein-damaging inactivation methods to improve whole-cell UTI vaccines.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Furocumarinas , Ácidos Nucleicos , Infecções Urinárias , Escherichia coli Uropatogênica , Vacinas , Humanos , Feminino , Animais , Camundongos , Idoso , Infecções por Escherichia coli/tratamento farmacológico , Qualidade de Vida , Recidiva Local de Neoplasia/tratamento farmacológico , Infecções Urinárias/microbiologia , Antibacterianos/farmacologia , Vacinas/farmacologia , Vacinas/uso terapêutico , Formaldeído/farmacologia , Formaldeído/uso terapêutico , Ácidos Nucleicos/farmacologia , Ácidos Nucleicos/uso terapêutico , Furocumarinas/farmacologia , Furocumarinas/uso terapêutico , Proteínas de Escherichia coli/metabolismo
3.
Antiviral Res ; 222: 105806, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38211737

RESUMO

After three years of the SARS-CoV-2 pandemic, the search and availability of relatively low-cost benchtop therapeutics for people not at high risk for a severe disease are still ongoing. Although vaccines and new SARS-CoV-2 variants reduce the death toll, the long COVID-19 along with neurologic symptoms can develop and persist even after a mild initial infection. Reinfections, which further increase the risk of sequelae in multiple organ systems as well as the risk of death, continue to require caution. The spike protein of SARS-CoV-2 is an important target for both vaccines and therapeutics. The presence of disulfide bonds in the receptor binding domain (RBD) of the spike protein is essential for its binding to the human ACE2 receptor and cell entry. Here, we demonstrate that thiol-reducing peptides based on the active site of oxidoreductase thioredoxin 1, called thioredoxin mimetic (TXM) peptides, can prevent syncytia formation, SARS-CoV-2 entry into cells, and infection in a mouse model. We also show that TXM peptides inhibit the redox-sensitive HIV pseudotyped viral cell entry. These results support disulfide targeting as a common therapeutic strategy for treating infections caused by viruses using redox-sensitive fusion. Furthermore, TXM peptides exert anti-inflammatory properties by lowering the activation of NF-κB and IRF signaling pathways, mitogen-activated protein kinases (MAPKs) and lipopolysaccharide (LPS)-induced cytokines in mice. The antioxidant and anti-inflammatory effects of the TXM peptides, which also cross the blood-brain barrier, in combination with prevention of viral infections, may provide a beneficial clinical strategy to lower viral infections and mitigate severe consequences of COVID-19.


Assuntos
COVID-19 , Vacinas , Animais , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Síndrome de COVID-19 Pós-Aguda , Peptídeos/farmacologia , Vacinas/farmacologia , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Tiorredoxinas/farmacologia , Anti-Inflamatórios/farmacologia , Dissulfetos/farmacologia , Células Gigantes , Ligação Proteica
4.
Cancer Metastasis Rev ; 43(1): 363-377, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38012357

RESUMO

This comprehensive review explores vimentin as a pivotal therapeutic target in cancer treatment, with a primary focus on mitigating metastasis and overcoming drug resistance. Vimentin, a key player in cancer progression, is intricately involved in processes such as epithelial-to-mesenchymal transition (EMT) and resistance mechanisms to standard cancer therapies. The review delves into diverse vimentin inhibition strategies. Precision tools, including antibodies and nanobodies, selectively neutralize vimentin's pro-tumorigenic effects. DNA and RNA aptamers disrupt vimentin-associated signaling pathways through their adaptable binding properties. Innovative approaches, such as vimentin-targeted vaccines and microRNAs (miRNAs), harness the immune system and post-transcriptional regulation to combat vimentin-expressing cancer cells. By dissecting vimentin inhibition strategies across these categories, this review provides a comprehensive overview of anti-vimentin therapeutics in cancer treatment. It underscores the growing recognition of vimentin as a pivotal therapeutic target in cancer and presents a diverse array of inhibitors, including antibodies, nanobodies, DNA and RNA aptamers, vaccines, and miRNAs. These multifaceted approaches hold substantial promise for tackling metastasis and overcoming drug resistance, collectively presenting new avenues for enhanced cancer therapy.


Assuntos
Aptâmeros de Nucleotídeos , MicroRNAs , Anticorpos de Domínio Único , Vacinas , Humanos , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/uso terapêutico , Resistência a Medicamentos , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Metástase Neoplásica , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/uso terapêutico , Vacinas/farmacologia , Vacinas/uso terapêutico , Vimentina/antagonistas & inibidores , Vimentina/genética , Vimentina/metabolismo
5.
Adv Sci (Weinh) ; 11(3): e2304648, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38037457

RESUMO

The balance among different CD4+ T cell subsets is crucial for repairing the injured spinal cord. Dendritic cell (DC)-derived small extracellular vesicles (DsEVs) effectively activate T-cell immunity. Altered peptide ligands (APLs), derived from myelin basic protein (MBP), have been shown to affect CD4+ T cell subsets and reduce neuroinflammation levels. However, the application of APLs is challenging because of their poor stability and associated side effects. Herein, it is demonstrate that DsEVs can act as carriers for APL MBP87-99 A91 (A91-DsEVs) to induce the activation of 2 helper T (Th2) and regulatory T (Treg) cells for spinal cord injury (SCI) in mice. These stimulated CD4+ T cells can efficiently "home" to the lesion area and establish a beneficial microenvironment through inducing the activation of M2 macrophages/microglia, inhibiting the expression of inflammatory cytokines, and increasing the release of neurotrophic factors. The microenvironment mediated by A91-DsEVs may enhance axon regrowth, protect neurons, and promote remyelination, which may support the recovery of motor function in the SCI model mice. In conclusion, using A91-DsEVs as a therapeutic vaccine may help induce neuroprotective immunity in the treatment of SCI.


Assuntos
Vesículas Extracelulares , Traumatismos da Medula Espinal , Vacinas , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Ligantes , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Vacinas/farmacologia , Vacinas/uso terapêutico , Peptídeos , Linfócitos T Reguladores , Vesículas Extracelulares/metabolismo , Células Dendríticas
6.
Sci Rep ; 13(1): 98, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596856

RESUMO

Dendritic cell (DC)-based immunotherapies have been shown to be a potential treatment option for various cancers; however, the exact strategies in ovarian cancer remain unknown. Here, we report the effectiveness of mouse CD8α+ DCs derived from bone marrow hematopoietic stem cells (BM-HSCs), equivalent to human CD141+ DCs, which have proven to be a highly superior subset. Mono-DCs from monocytes and stem-DCs from HSCs were characterized by CD11c+ CD80+ CD86+ and CD8α+ Clec9a+ expression, respectively. Despite a lower dose compared with Mono-DCs, mice treated with pulsed Stem-DCs showed a reduced amount of ascitic fluid and lower body weights compared with those of vehicle-treated mice. These mice treated with pulsed stem-DCs appeared to have fewer tumor implants, which were usually confined in the epithelium of tumor-invaded organs. All mice treated with DCs showed longer survival than the vehicle group, especially in the medium/high dose pulsed Stem-DC treatment groups. Moreover, the stem-DC-treated group demonstrated a low proportion of myeloid-derived suppressor cells and regulatory T cells, high interleukin-12 and interferon-γ levels, and accumulation of several tumor-infiltrating lymphocytes. Together, these results indicate that mouse CD8α+ DCs derived from BM-HSCs decrease tumor progression and enhance antitumor immune responses against murine ovarian cancer, suggesting that better DC vaccines can be used as an effective immunotherapy in EOC treatment. Further studies are necessary to develop potent DC vaccines using human CD141+ DCs.


Assuntos
Neoplasias Ovarianas , Vacinas , Animais , Camundongos , Humanos , Feminino , Células-Tronco Hematopoéticas , Interleucina-12/metabolismo , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/metabolismo , Células Dendríticas , Vacinas/farmacologia , Camundongos Endogâmicos C57BL
7.
Braz. J. Vet. Res. Anim. Sci. (Online) ; 60: e210215, 2023. graf, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1518145

RESUMO

Both pregnancy and obesity can influence significant changes in the immune system. On this basis, the present study proposes to evaluate the humoral immune response of overweight pregnant mares in response to a commercial vaccine. Thirty pregnant Crioulo mares were separated according to body condition score (BCS) into overweight (BCS≥7/9) or lean-control (BCS= 5-6/9). In each group, the animals were subdivided into vaccinated and controls. The mares were vaccinated against EHV-1 in two doses spaced 21 days apart and had their blood collected monthly, for five months, for antibody evaluation. Both vaccinated groups had an increase in specific neutralizing antibodies after the vaccine. However, after the second dose, there was no increase in antibodies in any of the groups. Vaccinated overweight and lean-control mares did not differ at any time point. Therefore, this study demonstrated that obesity does not influence the humoral immune response in pregnant Crioulo mares.(AU)


Tanto a gestação quanto a obesidade podem influenciar o desenvolvimento de alterações significativas no sistema imune, portanto, o presente estudo teve como objetivo avaliar a resposta imune humoral de éguas gestantes com sobrepeso em resposta a uma vacina comercial. Trinta éguas Crioulas gestantes foram separadas de acordo com o escore de condição corporal (ECC) em éguas com sobrepeso (ECC≥7/9) e éguas controles (ECC=5-6/9) e, ainda, em cada grupo, os animais também foram separados em vacinados e controles. As éguas foram vacinadas contra o EHV-1 em duas doses com intervalo de 21 dias, sendo realizadas coletas de sangue mensalmente durante cinco meses para avaliação de anticorpos neutralizantes. Ambos os grupos vacinados tiveram aumento de anticorpos neutralizantes específicos após a vacina, porém, após a segunda dose, não foi observado aumento de anticorpos em nenhum dos grupos. Nenhuma diferença foi observada entre éguas vacinadas com sobrepeso e as éguas controles em nenhum momento. Assim, este estudo demonstrou que a obesidade não é um fator que influencia a resposta imune humoral de éguas Crioulas gestantes.(AU)


Assuntos
Animais , Feminino , Gravidez , Vacinas/farmacologia , Imunidade Humoral/fisiologia , Cavalos/imunologia , Prenhez/fisiologia , Herpesvirus Equídeo 1/patogenicidade , Sobrepeso/veterinária
8.
Mol Biochem Parasitol ; 252: 111531, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36375598

RESUMO

Praziquantel (PZQ) is the drug of choice for the treatment of all forms of schistosomiasis, although its mechanisms of action are not completely understood. PZQ acts largely on adult worms. This narrative literature review describes what is known about the mechanisms of action of PZQ against schistosomes from in vitro and in vivo studies and highlights the molecular targets in parasites and immune responses induced in definitive hosts by this drug. Moreover, new therapeutic uses of PZQ are discussed. Studies have demonstrated that in addition to impacting voltage-operated Ca2 + channels, PZQ may interact with other schistosome molecules, such as myosin regulatory light chain, glutathione S-transferase, and transient receptor potential channels. Following PZQ administration, increased T regulatory type 1 (Tr1) cell differentiation and decreased inflammation were observed, indicating that PZQ promotes immunoregulatory pathways. Although PZQ is widely used in mass drug administration schemes, the existence of resistant parasites has not been proven; however, it is a concern that should be constantly investigated in human populations. In addition, we discuss studies that evaluate health applications of PZQ (other than helminth infection), such as its effect in cancer therapy and its adjuvant action in vaccines against viruses.


Assuntos
Anti-Helmínticos , Esquistossomose mansoni , Esquistossomose , Canais de Potencial de Receptor Transitório , Vacinas , Adulto , Animais , Humanos , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Praziquantel/metabolismo , Esquistossomose/tratamento farmacológico , Schistosoma/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Vacinas/metabolismo , Vacinas/farmacologia , Vacinas/uso terapêutico , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/metabolismo , Schistosoma mansoni
9.
Acta Biomater ; 154: 401-411, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36241013

RESUMO

Immune checkpoint blockade (ICB) therapy has shown promising antitumor effects, but its immune response rate remains unsatisfactory. In recent years, chemotherapy has been proven to have synergistic effects with ICB therapy because some chemotherapeutic agents can enhance the immunogenicity of tumor cells by inducing immunogenic cell death (ICD). However, it cannot be ignored that chemotherapy often shows limited therapeutic efficacy due to high cytotoxicity, drug resistance, and some other side effects. Herein, we report a strategy to improve cancer immunotherapy by utilizing red blood cell-based vaccines (RBC-vaccines) where chemotherapy-induced tumor antigens (cAgs) are anchored onto red blood cells (RBCs) via the EDC/NHS-mediated amine coupling reaction. In this work, RBC-vaccines administered subcutaneously are primarily devoured by dendritic cells (DCs) and significantly improve the efficacy of αPD-1 (anti-programmed cell death 1) treatment by increasing the infiltration of intratumoral CD8+ and CD4+ T cells and elevating the intratumoral ratio of CD8+ T cells to regulatory T cells in the CT-26 colon cancer model. Finally, based on the rejection of tumor rechallenge in cured mice, the combination therapy of RBC-vaccines and αPD-1 can induce the expansion of memory T cells and thereby establish a long-term antitumor immune response. Taken together, the proposed RBC-vaccines have great potential to improve chemoimmunotherapy. STATEMENT OF SIGNIFICANCE: Immunotherapy, especially immune checkpoint blockade therapy, has made great contributions to the treatment of some advanced cancers. Unfortunately, the great majority of patients with cancer do not benefit from immunotherapy. To enhance the response rate of immunotherapy, we developed red blood cell-based vaccines (RBC-vaccines) against cancers where antigens were harvested from chemotherapy-treated cancer cells and then attached to erythrocytes via covalent surface modification. Such RBC-vaccines could provide a wide variety of tumor antigens and damage-associated molecular patterns without the use of any extra ingredients to trigger a stronger antitumor immune response. More importantly, the combination of RBC-vaccines with PD-1 blockade could significantly improve the efficacy of cancer immunotherapy and induce durable antitumor immunity.


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas , Camundongos , Animais , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Neoplasias/tratamento farmacológico , Antígenos de Neoplasias , Vacinas/farmacologia , Eritrócitos , Linhagem Celular Tumoral , Microambiente Tumoral
10.
Front Immunol ; 13: 916491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059475

RESUMO

Background: Recently, bacterial components were shown to enhance immune responses by shifting immune cell metabolism towards glycolysis and lactic acid production, also known as the Warburg Effect. Currently, the effect of allergen products for immunotherapy (AIT) and commercial vaccines on immune cell metabolism is mostly unknown. Objective: To investigate the effect of AIT products (adjuvanted with either MPLA or Alum) on myeloid dendritic cell (mDC) metabolism and activation. Methods: Bone marrow-derived mDCs were stimulated with five allergoid-based AIT products (one adjuvanted with MPLA, four adjuvanted with Alum) and two MPLA-adjuvanted vaccines and analyzed for their metabolic activation, expression of cell surface markers, and cytokine secretion by ELISA. mDCs were pre-incubated with either immunological or metabolic inhibitors or cultured in glucose- or glutamine-free culture media and subsequently stimulated with the MPLA-containing AIT product (AIT product 1). mDCs were co-cultured with allergen-specific CD4+ T cells to investigate the contribution of metabolic pathways to the T cell priming capacity of mDCs stimulated with AIT product 1. Results: Both the MPLA-containing AIT product 1 and commercial vaccines, but not the Alum-adjuvanted AIT products, activated Warburg metabolism and TNF-α secretion in mDCs. Further experiments focused on AIT product 1. Metabolic analysis showed that AIT product 1 increased glycolytic activity while also inducing the secretion of IL-1ß, IL-10, IL-12, and TNF-α. Both rapamycin (mTOR-inhibitor) and SP600125 (SAP/JNK MAPK-inhibitor) dose-dependently suppressed the AIT product 1-induced Warburg Effect, glucose consumption, IL-10-, and TNF-α secretion. Moreover, both glucose- and glutamine deficiency suppressed secretion of all investigated cytokines (IL-1ß, IL-10, and TNF-α). Glucose metabolism in mDCs was also critical for the (Th1-biased) T cell priming capacity of AIT product 1-stimulated mDCs, as inhibition of mTOR signaling abrogated their ability to induce Th1-responses. Conclusion: The AIT product and commercial vaccines containing the adjuvant MPLA were shown to modulate the induction of immune responses by changing the metabolic state of mDCs. Better understanding the mechanisms underlying the interactions between cell metabolism and immune responses will allow us to further improve vaccine development and AIT.


Assuntos
Alérgenos , Vacinas , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos/metabolismo , Adjuvantes Farmacêuticos/farmacologia , Células Dendríticas , Glucose/metabolismo , Fatores Imunológicos/farmacologia , Imunoterapia , Interleucina-10 , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vacinas/farmacologia
11.
Int J Biol Macromol ; 220: 638-658, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973483

RESUMO

The study aims to investigate the constituents, adjuvant effects, and underlying mechanisms of purified polysaccharides from cultivated Cistanche deserticola (C. deserticola). Two macromolecules designated as CCDP-1 (26.5 kDa) and CCDP-2 (32.3 kDa) from C. deserticola were respectively identified as carbohydrate-lignin complexes with 44.1 % and 43.8 % lignin. CCDP-1 and CCDP-2 were composed of glucose, rhamnose, galactose, arabinose, and mannose respectively in the molar ratios of 7.22: 5.98:2.51:1.81:1.00 and 6.57:8.48:4.20:2.72:1.00. An in vitro experiment revealed that endotoxin-free CCDP-1 and CCDP-2 promoted splenocyte proliferation without cytotoxicity, but CCDP-2 induced dendritic cell (DC) maturation more efficiently than CCDP-1. An in vivo experiment suggested that CCDP-2 enhanced OVA-specific antibody production, antigen-specific T-cell activation, IFN-γ production, IL-4 production, and DC activation. Notably, CCDP-2 elicited a Th1-biased response. Mechanically, CCDP-2 upregulated CD40, CD80, CD86, and MHC II, facilitated allogeneic T-cell proliferation and Th1/Th2 cytokines, improved IFN-γ, IL-12, IL-6, and TNF-α production, and decreased endocytosis from DCs in vitro. Blocking assays indicated that TLR2 and TLR4 were the membrane receptor candidates of DCs. Western blot implied that CCDP-2 with the immune-enhancing activities were involved in the activation of MAPKs and NF-κB pathways in a dose-/time-related manner and could be employed as a more balanced Th1/Th2 adjuvant for vaccine exploitation.


Assuntos
Cistanche , Vacinas , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/farmacologia , Arabinose/farmacologia , Cistanche/química , Citocinas/metabolismo , Células Dendríticas , Galactose/metabolismo , Glucose/metabolismo , Interleucina-12/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Lignina/metabolismo , Manose/metabolismo , NF-kappa B/metabolismo , Polissacarídeos/química , Ramnose/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vacinas/farmacologia
12.
Front Immunol ; 13: 901055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784360

RESUMO

Objective: In the light of the current COVID-19 epidemic and the availability of effective vaccines, this study aims to identify factors associated with non-response to anti-SARS-CoV-2 vaccines as immunological alteration associated with immune rheumatic diseases (IRD) and immunosuppressive medications may impair the response to vaccination. Methods: Volunteers in the health profession community with IRD, age, and sex-matched controls (CTRL) who underwent vaccination with two doses of BNT162b2 were recruited for this study. Anti-Trimeric Spike protein antibodies were assayed eight ± one weeks after the second vaccine dose. Univariate and logistic regression analyses were performed to identify factors independently associated with non-response and low antibody titers. Results: Samples were obtained from 237 IRD patients (m/f 73/164, mean age 57, CI 95% [56-59]): 4 autoinflammatory diseases (AI), 62 connective tissue diseases (CTD), 86 rheumatoid arthritis (RA), 71 spondylarthritis (SpA) and 14 vasculitis (Vsc). 232 CTRL were recruited (m/f 71/161, mean age 57, CI 95% [56-58]). Globally, IRD had a lower seroconversion rate (88.6% vs 99.6%, CI 95% OR [1.61-5.73], p<0.001) and lower antibody titer compared to controls (median (IQR) 403 (131.5-1012) versus 1160 (702.5-1675), p<0.001). After logistic regression, age, corticosteroid (CCS), Abatacept and Mycophenolate Mofetil (MMF) use were associated with non-response. Lower antibody titer was associated with the use of MMF, ABA, CCS, Rituximab, tumor necrosis factor inhibitor, JAK inhibitors, and higher age. Conclusion: The response to anti-SARS-CoV-2 vaccines is often impaired in IRD patients under treatment and may pose them at higher risk of severe COVID-19. Specific vaccination protocols are desirable for these patients.


Assuntos
Artrite Reumatoide , COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vacinas , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Pessoa de Meia-Idade , Vacinação , Vacinas/farmacologia
13.
Cancer Immunol Res ; 9(11): 1316-1326, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34518197

RESUMO

Expression of the L-arginine catabolizing enzyme arginase 1 (ARG1) is a central immunosuppressive mechanism mediated by tumor-educated myeloid cells. Increased activity of ARG1 promotes the formation of an immunosuppressive microenvironment and leads to a more aggressive phenotype in many cancers. Intrinsic T-cell immunity against ARG1-derived epitopes in the peripheral blood of cancer patients and healthy subjects has previously been demonstrated. To evaluate the antitumor efficacy of ARG1-derived peptide vaccines as a monotherapy and as a combinational therapy with checkpoint blockade, different in vivo syngeneic mouse tumor models were utilized. To evaluate the antitumor effects, flow cytometry analysis and IHC were performed on tumors, and ELISPOT assays were performed to characterize immune responses. We show that ARG1-targeting therapeutic vaccines were able to activate endogenous antitumor immunity in several in vivo syngeneic mouse tumor models and to modulate the cell composition of the tumor microenvironment without causing any associated side effects or systemic toxicity. ARG1-targeting vaccines in combination with anti-PD-1 also resulted in increased T-cell infiltration, decreased ARG1 expression, reduced suppressive function of tumor-educated myeloid cells, and a shift in the M1/M2 ratio of tumor-infiltrating macrophages. These results indicated that the induced shift toward a more proinflammatory microenvironment by ARG1-targeting immunotherapy favors effective tumor control when combined with anti-PD-1 checkpoint blockade. Our data illustrate the ability of ARG1-based immune modulatory vaccination to elicit antigen-specific immunosurveillance and imply the feasibility of this novel immunotherapeutic approach for clinical translation.


Assuntos
Arginase/metabolismo , Células Mieloides/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Vacinas/uso terapêutico , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Microambiente Tumoral , Vacinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
PLoS One ; 16(8): e0254605, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34398875

RESUMO

The re-emergence of virulent strains of the Infectious Bursal Disease Virus (IBDV) leads to significant economic losses of poultry industry in Pakistan during last few years. This disease causes the infection of bursa, which leads to major immune losses. A total number of 30 samples from five IBD outbreaks during the period of 2019-20 were collected from different areas of Faisalabad district, Pakistan and assayed by targeting the IBD virus VP2 region through RT-PCR. Among all the outbreaks, almost 80% of poultry birds were found positive for the IBDV. The bursa tissues were collected from the infected birds and histopathological examination of samples revealed severe lymphocytic depletion, infiltration of inflammatory cells, and necrosis of the bursa of Fabricius (BF). Positive samples were subjected to re-isolation and molecular characterization of IBDV. The Pakistan IBDV genes were subjected to DNA sequencing to determine the virus nucleotide sequences. The sequences of 100 Serotype-I IBDVs showing nearest homology were compared and identified with the study sequence. The construction of the phylogenetic tree for nucleotide sequences was accomplished by the neighbor-joining method in MEGA-6 with reference strains. The VP2 segment reassortment of IBDVs carrying segment A were identified as one important type of circulating strains in Pakistan. The findings indicated the molecular features of the Pakistan IBDV strains playing a role in the evolution of new strains of the virus, which will contribute to the vaccine selection and effective prevention of the disease.


Assuntos
Infecções por Birnaviridae/epidemiologia , Vírus da Doença Infecciosa da Bursa/patogenicidade , Aves Domésticas/virologia , Vacinas/farmacologia , Animais , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/virologia , Bolsa de Fabricius/patologia , Bolsa de Fabricius/virologia , Galinhas/virologia , Surtos de Doenças/veterinária , Humanos , Vírus da Doença Infecciosa da Bursa/genética , Paquistão/epidemiologia , Filogenia , Doenças das Aves Domésticas/virologia , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia
15.
Sci Rep ; 11(1): 11472, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075153

RESUMO

In post-stroke patients, a decreased adherence to antiplatelet drugs is a major challenge in the prevention of recurrent stroke. Previously, we reported an antiplatelet vaccine against S100A9 in mice, but the use of Freund's adjuvant and the difference in amino acid sequences in epitopes between mice and humans were problematic for clinical use. Here, we redesigned the S100A9 vaccine for the common sequence in both humans and monkeys and examined its effects in cynomolgus monkeys with Alum adjuvant. First, we assessed several candidate epitopes and selected 102 to 112 amino acids as the suitable epitope, which could produce antibodies. When this peptide vaccine was intradermally injected into 4 cynomolgus monkeys with Alum, the antibody against human S100A9 was successfully produced. Anti-thrombotic effects were shown in two monkeys in a mixture of vaccinated serum and fresh whole blood from another cynomolgus monkey. Additionally, the anti-thrombotic effects were partially inhibited by the epitope peptide, indicating the feasibility of neutralizing anti-thrombotic effects of produced antibodies. Prolongation of bleeding time was not observed in vaccinated monkeys. Although further studies on increasing the effect of vaccine and safety are necessary, this vaccine will be a promising approach to improve adherence to antiplatelet drugs in clinical settings.


Assuntos
Calgranulina B , Fibrinolíticos , Peptídeos , Trombose , Vacinas , Animais , Calgranulina B/química , Calgranulina B/imunologia , Calgranulina B/farmacologia , Fibrinolíticos/imunologia , Fibrinolíticos/farmacologia , Humanos , Macaca fascicularis , Macaca mulatta , Peptídeos/química , Peptídeos/imunologia , Peptídeos/farmacologia , Trombose/imunologia , Trombose/terapia , Vacinas/imunologia , Vacinas/farmacologia
16.
Biomed Res Int ; 2021: 8845826, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095312

RESUMO

Immunotherapy, a treatment based on host immune system activation, has been shown to provide a substitute for marginally effective conventional chemotherapy in controlling visceral leishmaniasis (VL), the deadliest form of leishmaniasis. As the majority of endemic inhabitants exhibit either subclinical or asymptomatic infection which often develops into the active disease state, therapeutic intervention seems to be an important avenue for combating infections by stimulating the natural defense system of infected individuals. With this perspective, the present study focuses on two immunodominant Leishmania (L.) donovani antigens (triosephosphate isomerase and enolase) previously proved to be potent prophylactic VL vaccine candidates, for generating a recombinant chimeric antigen. This is based on the premise that in a heterogeneous population, a multivalent antigen vaccine would be required for an effective response against leishmaniasis (a complex parasitic disease). The resulting molecule rLdT-E chimeric protein was evaluated for its immunogenicity and immunotherapeutic efficacy. A Th1 stimulating adjuvant BCG was employed with the protein which showed a remarkable 70% inhibition of splenic parasitic multiplication positively correlated with boosted Th1 dominant immune response against lethal L. donovani challenge in hamsters as evidenced by high IFN-γ and TNF-α and low IL-10. In addition, immunological analysis of antibody subclass presented IgG2-based humoral response besides considerable delayed-type hypersensitivity and lymphocyte proliferative responses in rLdT-E/BCG-treated animals. Our observations indicate the potential of the chimera towards its candidature for an effective vaccine against Leishmania donovani infection.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Células Th1 , Animais , Cricetinae , Feminino , Imunidade Adaptativa/imunologia , Antígenos de Protozoários/imunologia , Citocinas/metabolismo , Fatores Imunológicos/metabolismo , Imunoterapia/métodos , Leishmania donovani/genética , Leishmania donovani/imunologia , Leishmania donovani/patogenicidade , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/terapia , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária/imunologia , Linfócitos/metabolismo , Fosfopiruvato Hidratase/imunologia , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/metabolismo , Células Th1/imunologia , Triose-Fosfato Isomerase/imunologia , Vacinas/farmacologia
17.
Hematol Oncol ; 39(4): 448-464, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33963789

RESUMO

Autologous cell vaccines use a patient's tumor cells to stimulate a broad antitumor response in vivo. This approach shows promise for treating hematologic cancers in early phase clinical trials, but overall safety and efficacy remain poorly described. We conducted a systematic review assessing the use of autologous cell vaccination in treating hematologic cancers. Primary outcomes of interest were safety and clinical response, with secondary outcomes including survival, relapse rate, correlative immune assays and health-quality related metrics. We performed a search of MEDLINE, Embase and the Cochrane Register of Controlled Trials including any interventional trial employing an autologous, whole cell product in any hematologic malignancy. Risk of bias was assessed using a modified Institute of Health Economics tool. Across 20 single arm studies, only 341 of 592 enrolled participants received one or more vaccinations. Primary reasons for not receiving vaccination included rapid disease progression/death and manufacturing challenges. Overall, few high-grade adverse events were observed. One death was reported and attributed to a GM-CSF producing allogeneic cell line co-administered with the autologous vaccine. Of 58 evaluable patients, the complete response rate was 21.0% [95% CI, 10.4%-37.8%)] and overall response rate was 35.8% (95% CI, 24.4%-49.0%). Of 97 evaluable patients for survival, the 5-years overall survival rate was 64.9% (95% CI, 52.6%-77.2%) and disease-free survival was 59.7% (95% CI, 47.7%-71.7%). We conclude that, in hematologic malignancies, based on limited available data, autologous cell vaccines are safe and display a trend towards efficacy but that challenges exist in vaccine manufacture and administration.


Assuntos
Neoplasias Hematológicas/terapia , Vacinas/uso terapêutico , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vacinas/farmacologia
18.
Cell Mol Immunol ; 18(5): 1197-1210, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33762685

RESUMO

One of the main goals of vaccine research is the development of adjuvants that can enhance immune responses and are both safe and biocompatible. We explored the application of the natural polymer hyaluronan (HA) as a promising immunological adjuvant for protein-based vaccines. Chemical conjugation of HA to antigens strongly increased their immunogenicity, reduced booster requirements, and allowed antigen dose sparing. HA-based bioconjugates stimulated robust and long-lasting humoral responses without the addition of other immunostimulatory compounds and proved highly efficient when compared to other adjuvants. Due to its intrinsic biocompatibility, HA allowed the exploitation of different injection routes and did not induce inflammation at the inoculation site. This polymer promoted rapid translocation of the antigen to draining lymph nodes, thus facilitating encounters with antigen-presenting cells. Overall, HA can be regarded as an effective and biocompatible adjuvant to be exploited for the design of a wide variety of vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Ácido Hialurônico/farmacologia , Vacinas/farmacologia , Alarminas/metabolismo , Animais , Materiais Biocompatíveis/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Fluorescência , Ácido Hialurônico/química , Imunidade Humoral/efeitos dos fármacos , Inflamação/patologia , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peso Molecular , Ovalbumina/imunologia , Fatores de Tempo
20.
Methods Mol Biol ; 2244: 403-463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33555597

RESUMO

Human cytomegalovirus is the largest human herpesvirus and shares many core features of other herpesviruses such as tightly regulated gene expression during genome replication and latency as well as the establishment of lifelong persistence following infection. In contrast to stereotypic clinical syndromes associated with alpha-herpesvirus infections, almost all primary HCMV infections are asymptomatic and acquired early in life in most populations in the world. Although asymptomatic in most individuals, HCMV is a major cause of disease in hosts with deficits in adaptive and innate immunity such as infants who are infected in utero and allograft recipients following transplantation. Congenital HCMV is a commonly acquired infection in the developing fetus that can result in a number of neurodevelopmental abnormalities. Similarly, HCMV is a major cause of disease in allograft recipients in the immediate and late posttransplant period and is thought to be a major contributor to chronic allograft rejection. Even though HCMV induces robust innate and adaptive immune responses, it also encodes a vast array of immune evasion functions that are thought aid in its persistence. Immune correlates of protective immunity that prevent or modify intrauterine HCMV infection remain incompletely defined but are thought to consist primarily of adaptive responses in the pregnant mother, thus making congenital HCMV a potentially vaccine modifiable disease. Similarly, HCMV infection in allograft recipients is often more severe in recipients without preexisting adaptive immunity to HCMV. Thus, there has been a considerable effort to modify HCMV specific immunity in transplant recipient either through active immunization or passive transfer of adaptive effector functions. Although efforts to develop an efficacious vaccine and/or passive immunotherapy to limit HCMV disease have been underway for nearly six decades, most have met with limited success at best. In contrast to previous efforts, current HCMV vaccine development has relied on observations of unique properties of HCMV in hopes of reproducing immune responses that at a minimum will be similar to that following natural infection. However, more recent findings have suggested that immunity following naturally acquired HCMV infection may have limited protective activity and almost certainly, is not sterilizing. Such observations suggest that either the induction of natural immunity must be specifically tailored to generate protective activity or alternatively, that providing targeted passive immunity to susceptible populations could be prove to be more efficacious.


Assuntos
Vacinas contra Citomegalovirus/imunologia , Citomegalovirus/imunologia , Vacinação/métodos , Imunidade Adaptativa/imunologia , Anticorpos Antivirais/imunologia , Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/prevenção & controle , Suscetibilidade a Doenças , Feminino , Humanos , Imunidade Humoral/imunologia , Imunidade Inata/imunologia , Lactente , Masculino , Gravidez , Vacinas/imunologia , Vacinas/metabolismo , Vacinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA