Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.740
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 157, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824552

RESUMO

Phosphoinositide-3-kinase γ (PI3Kγ) plays a critical role in pancreatic ductal adenocarcinoma (PDA) by driving the recruitment of myeloid-derived suppressor cells (MDSC) into tumor tissues, leading to tumor growth and metastasis. MDSC also impair the efficacy of immunotherapy. In this study we verify the hypothesis that MDSC targeting, via PI3Kγ inhibition, synergizes with α-enolase (ENO1) DNA vaccination in counteracting tumor growth.Mice that received ENO1 vaccination followed by PI3Kγ inhibition had significantly smaller tumors compared to those treated with ENO1 alone or the control group, and correlated with i) increased circulating anti-ENO1 specific IgG and IFNγ secretion by T cells, ii) increased tumor infiltration of CD8+ T cells and M1-like macrophages, as well as up-modulation of T cell activation and M1-like related transcripts, iii) decreased infiltration of Treg FoxP3+ T cells, endothelial cells and pericytes, and down-modulation of the stromal compartment and T cell exhaustion gene transcription, iv) reduction of mature and neo-formed vessels, v) increased follicular helper T cell activation and vi) increased "antigen spreading", as many other tumor-associated antigens were recognized by IgG2c "cytotoxic" antibodies. PDA mouse models genetically devoid of PI3Kγ showed an increased survival and a pattern of transcripts in the tumor area similar to that of pharmacologically-inhibited PI3Kγ-proficient mice. Notably, tumor reduction was abrogated in ENO1 + PI3Kγ inhibition-treated mice in which B cells were depleted.These data highlight a novel role of PI3Kγ in B cell-dependent immunity, suggesting that PI3Kγ depletion strengthens the anti-tumor response elicited by the ENO1 DNA vaccine.


Assuntos
Vacinas de DNA , Animais , Camundongos , Vacinas de DNA/farmacologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Humanos , Linhagem Celular Tumoral , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Modelos Animais de Doenças , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo
2.
J Nanobiotechnology ; 22(1): 308, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825711

RESUMO

Research into mRNA vaccines is advancing rapidly, with proven efficacy against coronavirus disease 2019 and promising therapeutic potential against a variety of solid tumors. Adjuvants, critical components of mRNA vaccines, significantly enhance vaccine effectiveness and are integral to numerous mRNA vaccine formulations. However, the development and selection of adjuvant platforms are still in their nascent stages, and the mechanisms of many adjuvants remain poorly understood. Additionally, the immunostimulatory capabilities of certain novel drug delivery systems (DDS) challenge the traditional definition of adjuvants, suggesting that a revision of this concept is necessary. This review offers a comprehensive exploration of the mechanisms and applications of adjuvants and self-adjuvant DDS. It thoroughly addresses existing issues mentioned above and details three main challenges of immune-related adverse event, unclear mechanisms, and unsatisfactory outcomes in old age group in the design and practical application of cancer mRNA vaccine adjuvants. Ultimately, this review proposes three optimization strategies which consists of exploring the mechanisms of adjuvant, optimizing DDS, and improving route of administration to improve effectiveness and application of adjuvants and self-adjuvant DDS.


Assuntos
Adjuvantes Imunológicos , Vacinas Anticâncer , Nanotecnologia , Neoplasias , Vacinas de mRNA , Humanos , Vacinas Anticâncer/imunologia , Nanotecnologia/métodos , Neoplasias/terapia , Neoplasias/imunologia , Animais , Sistemas de Liberação de Medicamentos/métodos , COVID-19/prevenção & controle , Adjuvantes de Vacinas , RNA Mensageiro/genética , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia
3.
J Nanobiotechnology ; 22(1): 230, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720322

RESUMO

Tumor vaccines, a crucial immunotherapy, have gained growing interest because of their unique capability to initiate precise anti-tumor immune responses and establish enduring immune memory. Injected tumor vaccines passively diffuse to the adjacent draining lymph nodes, where the residing antigen-presenting cells capture and present tumor antigens to T cells. This process represents the initial phase of the immune response to the tumor vaccines and constitutes a pivotal determinant of their effectiveness. Nevertheless, the granularity paradox, arising from the different requirements between the passive targeting delivery of tumor vaccines to lymph nodes and the uptake by antigen-presenting cells, diminishes the efficacy of lymph node-targeting tumor vaccines. This study addressed this challenge by employing a vaccine formulation with a tunable, controlled particle size. Manganese dioxide (MnO2) nanoparticles were synthesized, loaded with ovalbumin (OVA), and modified with A50 or T20 DNA single strands to obtain MnO2/OVA/A50 and MnO2/OVA/T20, respectively. Administering the vaccines sequentially, upon reaching the lymph nodes, the two vaccines converge and simultaneously aggregate into MnO2/OVA/A50-T20 particles through base pairing. This process enhances both vaccine uptake and antigen delivery. In vitro and in vivo studies demonstrated that, the combined vaccine, comprising MnO2/OVA/A50 and MnO2/OVA/T20, exhibited robust immunization effects and remarkable anti-tumor efficacy in the melanoma animal models. The strategy of controlling tumor vaccine size and consequently improving tumor antigen presentation efficiency and vaccine efficacy via the DNA base-pairing principle, provides novel concepts for the development of efficient tumor vaccines.


Assuntos
Vacinas Anticâncer , Linfonodos , Compostos de Manganês , Camundongos Endogâmicos C57BL , Nanopartículas , Ovalbumina , Óxidos , Animais , Vacinas Anticâncer/imunologia , Linfonodos/imunologia , Camundongos , Ovalbumina/imunologia , Ovalbumina/química , Óxidos/química , Nanopartículas/química , Compostos de Manganês/química , Imunidade Celular , Feminino , Linhagem Celular Tumoral , DNA/química , DNA/imunologia , Imunoterapia/métodos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Tamanho da Partícula , Antígenos de Neoplasias/imunologia
4.
Front Immunol ; 15: 1354710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726010

RESUMO

Cancer vaccines are gaining ground as immunotherapy options. We have previously demonstrated in cutaneous melanoma (CM) patients that adjuvant treatment with VACCIMEL, a mixture of four irradiated CM cell lines co-adjuvanted with BCG and GM-CSF, increases the cellular immune response to melanocyte differentiation antigens, cancer-testis antigens and neoantigens, with respect to basal levels. On the other hand, it is also known that treatment with anti-PD-1 monoclonal antibodies (MAbs), acting on pre-existing tumor-reactive lymphocytes, induces clinical responses in CM patients, albeit in a fraction of treated patients. A combination of both treatments would appear therefore desirable. In this paper, we describe CM patients who, having progressed even years after vaccination, were treated with anti-PD-1 MAbs. In 5/5 of such progressor patients, complete responses were obtained which lasted between 3 and 65+ months. Three of the patients remain disease-free and two recurred. One of the patients passed away after a recurrence of brain metastases. We suggest that clonally expanded reactive lymphocytes induced by VACCIMEL partially remain as memory cells, which may be recalled after tumor recurrence and may foster ulterior activity of anti-PD-1 MAbs.


Assuntos
Vacinas Anticâncer , Melanoma , Receptor de Morte Celular Programada 1 , Neoplasias Cutâneas , Humanos , Melanoma/imunologia , Melanoma/terapia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/administração & dosagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Inibidores de Checkpoint Imunológico/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Melanoma Maligno Cutâneo , Resultado do Tratamento , Adjuvantes Imunológicos/uso terapêutico , Adjuvantes Imunológicos/administração & dosagem
5.
Front Immunol ; 15: 1404121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720900

RESUMO

Pharmacodynamic assessment of T-cell-based cancer immunotherapies often focus on detecting rare circulating T-cell populations. The therapy-induced immune cells in blood-derived clinical samples are often present in very low frequencies and with the currently available T-cell analytical assays, amplification of the cells of interest prior to analysis is often required. Current approaches aiming to enrich antigen-specific T cells from human Peripheral Blood Mononuclear Cells (PBMCs) depend on in vitro culturing in presence of their cognate peptides and cytokines. In the present work, we improved a standard, publicly available protocol for T-cell immune analyses based on the in vitro expansion of T cells. We used PBMCs from healthy subjects and well-described viral antigens as a model system for optimizing the experimental procedures and conditions. Using the standard protocol, we first demonstrated significant enrichment of antigen-specific T cells, even when their starting frequency ex vivo was low. Importantly, this amplification occurred with high specificity, with no or neglectable enrichment of irrelevant T-cell clones being observed in the cultures. Testing of modified culturing timelines suggested that the protocol can be adjusted accordingly to allow for greater cell yield with strong preservation of the functionality of antigen-specific T cells. Overall, our work has led to the refinement of a standard protocol for in vitro stimulation of antigen-specific T cells and highlighted its reliability and reproducibility. We envision that the optimized protocol could be applied for longitudinal monitoring of rare blood-circulating T cells in scenarios with limited sample material.


Assuntos
Linfócitos T , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígenos Virais/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Células Cultivadas , Vacinas Anticâncer/imunologia
6.
Nat Commun ; 15(1): 3902, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724527

RESUMO

Radiation-induced in situ tumor vaccination alone is very weak and insufficient to elicit robust antitumor immune responses. In this work, we address this issue by developing chiral vidarabine monophosphate-gadolinium nanowires (aAGd-NWs) through coordination-driven self-assembly. We elucidate the mechanism of aAGd-NW assembly and characterize their distinct features, which include a negative surface charge, ultrafine topography, and right-handed chirality. Additionally, aAGd-NWs not only enhance X-ray deposition but also inhibit DNA repair, thereby enhancing radiation-induced in situ vaccination. Consequently, the in situ vaccination induced by aAGd-NWs sensitizes radiation enhances CD8+ T-cell-dependent antitumor immunity and synergistically potentiates the efficacy immune checkpoint blockade therapies against both primary and metastatic tumors. The well-established aAGd-NWs exhibit exceptional therapeutic capacity and biocompatibility, offering a promising avenue for the development of radioimmunotherapy approaches.


Assuntos
Nanofios , Polímeros , Nanofios/química , Animais , Camundongos , Polímeros/química , Linhagem Celular Tumoral , Gadolínio/química , Gadolínio/farmacologia , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Vacinas Anticâncer/imunologia , Feminino , Humanos , Vacinação/métodos , Neoplasias/imunologia
7.
J Immunother Cancer ; 12(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702146

RESUMO

BACKGROUND: T cell checkpoint receptors are expressed when T cells are activated, and modulation of the expression or signaling of these receptors can alter the function of T cells and their antitumor efficacy. We previously found that T cells activated with cognate antigen had increases in the expression of PD-1, and this was attenuated in the presence of multiple toll-like receptor (TLR) agonists, notably TLR3 plus TLR9. In the current report, we sought to investigate whether combining TLR agonists with immune checkpoint blockade can further augment vaccine-mediated T cell antitumor immunity in murine tumor models. METHODS: TLR agonists (TLR3 plus TLR9) and immune checkpoint inhibitors (antibodies targeting PD-1, CTLA-4, LAG-3, TIM-3 or VISTA) were combined and delivered with vaccines or vaccine-activated CD8+T cells to E.G7-OVA or MyC-CaP tumor-bearing mice. Tumors were assessed for growth and then collected and analyzed by flow cytometry. RESULTS: Immunization of E.G7-OVA tumor-bearing mice with SIINFEKL peptide vaccine, coadministered with TLR agonists and αCTLA-4, demonstrated greater antitumor efficacy than immunization with TLR agonists or αCTLA-4 alone. Conversely, the antitumor efficacy was abrogated when vaccine and TLR agonists were combined with αPD-1. TLR agonists suppressed PD-1 expression on regulatory T cells (Tregs) and activated this population. Depletion of Tregs in tumor-bearing mice led to greater antitumor efficacy of this combination therapy, even in the presence of αPD-1. Combining vaccination with TLR agonists and αCTLA-4 or αLAG-3 showed greater antitumor than with combinations with αTIM-3 or αVISTA. CONCLUSION: The combination of TLR agonists and αCTLA-4 or αLAG-3 can further improve the efficacy of a cancer vaccine, an effect not observed using αPD-1 due to activation of Tregs when αPD-1 was combined with TLR3 and TLR9 agonists. These data suggest that optimal combinations of TLR agonists and immune checkpoint blockade may improve the efficacy of human anticancer vaccines.


Assuntos
Vacinas Anticâncer , Inibidores de Checkpoint Imunológico , Receptores Toll-Like , Animais , Camundongos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Feminino , Humanos , Linhagem Celular Tumoral , Agonistas do Receptor Semelhante a Toll
8.
Hum Vaccin Immunother ; 20(1): 2345940, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38714324

RESUMO

Traditional vaccines have limits against some persistent infections and pathogens. The development of novel vaccine technologies is particularly critical for the future. Exosomes play an important role in physiological and pathological processes. Exosomes present many advantages, such as inherent capacity being biocompatible, non-toxic, which make them a more desirable candidate for vaccines. However, research on exosomes are in their infancy and the barriers of low yield, low purity, and weak targeting of exosomes limit their applications in vaccines. Accordingly, further exploration is necessary to improve these problems and subsequently facilitate the functional studies of exosomes. In this study, we reviewed the origin, classification, functions, modifications, separation and purification, and characterization methods of exosomes. Meanwhile, we focused on the role and mechanism of exosomes for cancer and COVID-19 vaccines.


Assuntos
Vacinas contra COVID-19 , Vacinas Anticâncer , Exossomos , Exossomos/imunologia , Humanos , Vacinas contra COVID-19/imunologia , Vacinas Anticâncer/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , SARS-CoV-2/imunologia , Neoplasias/imunologia , Animais , Desenvolvimento de Vacinas
9.
Sci Adv ; 10(19): eadm7515, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728394

RESUMO

The nonpolymorphic major histocompatibility complex E (MHC-E) molecule is up-regulated on many cancer cells, thus contributing to immune evasion by engaging inhibitory NKG2A/CD94 receptors on NK cells and tumor-infiltrating T cells. To investigate whether MHC-E expression by cancer cells can be targeted for MHC-E-restricted T cell control, we immunized rhesus macaques (RM) with rhesus cytomegalovirus (RhCMV) vectors genetically programmed to elicit MHC-E-restricted CD8+ T cells and to express established tumor-associated antigens (TAAs) including prostatic acidic phosphatase (PAP), Wilms tumor-1 protein, or Mesothelin. T cell responses to all three tumor antigens were comparable to viral antigen-specific responses with respect to frequency, duration, phenotype, epitope density, and MHC restriction. Thus, CMV-vectored cancer vaccines can bypass central tolerance by eliciting T cells to noncanonical epitopes. We further demonstrate that PAP-specific, MHC-E-restricted CD8+ T cells from RhCMV/PAP-immunized RM respond to PAP-expressing HLA-E+ prostate cancer cells, suggesting that the HLA-E/NKG2A immune checkpoint can be exploited for CD8+ T cell-based immunotherapies.


Assuntos
Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Antígenos HLA-E , Antígenos de Histocompatibilidade Classe I , Macaca mulatta , Animais , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Neoplasias/imunologia , Humanos , Vacinas Anticâncer/imunologia , Apresentação de Antígeno/imunologia , Linhagem Celular Tumoral , Masculino , Citomegalovirus/imunologia , Mesotelina , Fosfatase Ácida
10.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38697107

RESUMO

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Assuntos
Imunoterapia , Lipídeos , RNA , Microambiente Tumoral , Animais , Cães , Feminino , Humanos , Camundongos , Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glioblastoma/terapia , Glioblastoma/imunologia , Glioma/terapia , Glioma/imunologia , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Neoplasias/imunologia , RNA/química , RNA/uso terapêutico , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Lipídeos/química
11.
Cell Rep Med ; 5(5): 101560, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38729159

RESUMO

Stimulator of IFN genes (STING) is a promising target for adjuvants utilized in in situ cancer vaccination approaches. However, key barriers remain for clinical translation, including low cellular uptake and accessibility, STING variability necessitating personalized STING agonists, and interferon (IFN)-independent signals that can promote tumor growth. Here, we identify C100, a highly deacetylated chitin-derived polymer (HDCP), as an attractive alternative to conventional STING agonists. C100 promotes potent anti-tumor immune responses, outperforming less deacetylated HDCPs, with therapeutic efficacy dependent on STING and IFN alpha/beta receptor (IFNAR) signaling and CD8+ T cell mediators. Additionally, C100 injection synergizes with systemic checkpoint blockade targeting PD-1. Mechanistically, C100 triggers mitochondrial stress and DNA damage to exclusively activate the IFN arm of the cGAS-STING signaling pathway and elicit sustained IFNAR signaling. Altogether, these results reveal an effective STING- and IFNAR-dependent adjuvant for in situ cancer vaccines with a defined mechanism and distinct properties that overcome common limitations of existing STING therapeutics.


Assuntos
Adjuvantes Imunológicos , Linfócitos T CD8-Positivos , Quitina , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta , Transdução de Sinais , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/genética , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Humanos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Linhagem Celular Tumoral , Feminino , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Neoplasias/imunologia , Neoplasias/terapia
12.
Int J Biol Macromol ; 269(Pt 2): 132177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729484

RESUMO

Tumor vaccine, which can effectively prevent tumor recurrence and metastasis, is a promising tool in tumor immunotherapy. However, heterogeneity of tumors and the inability to achieve a cascade effect limit the therapeutic effects of most developing tumor vaccine. We have developed a cascading immunoinducible in-situ mannose-functionalized polydopamine loaded with imiquimod phenylboronic hyaluronic acid nanocomposite gel vaccine (M/P-PDA@IQ PHA) through a boronic ester-based reaction. This reaction utilizes mannose-functionalized polydopamine loaded with imiquimod (M/P-PDA@IQ NAs) as a cross-linking agent to react with phenylboronic-grafted hyaluronic acid. Under near-infrared light irradiation, the M/P-PDA@IQ PHA caused local hyperthermia to trigger immunogenic cell death of tumor cells and tumor-associated antigens (TAAs) releasing. Subsequently, the M/P-PDA@IQ NAs which were gradually released by the pH/ROS/GSH-triggered degradation of M/P-PDA@IQ PHA, could capture and deliver these TAAs to lymph nodes. Finally, the M/P-PDA@IQ NAs facilitated maturation and cross-presentation of dendritic cells, as well as activation of cytotoxic T lymphocytes. Overall, the M/P-PDA@IQ PHA could serve as a novel in situ vaccine to stimulate several key nodes including TAAs release and capture, targeting lymph nodes and enhanced dendritic cells uptake and maturation as well as T cells activation. This cascading immune activation strategy can effectively elicit antitumor immune response.


Assuntos
Vacinas Anticâncer , Ácido Hialurônico , Hidrogéis , Indóis , Nanopartículas , Polímeros , Ácido Hialurônico/química , Polímeros/química , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Indóis/química , Indóis/farmacologia , Animais , Camundongos , Hidrogéis/química , Nanopartículas/química , Humanos , Imiquimode/química , Imiquimode/farmacologia , Células Dendríticas/imunologia , Vacinação , Linhagem Celular Tumoral , Imunoterapia/métodos , Reagentes de Ligações Cruzadas/química , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos
13.
ACS Appl Mater Interfaces ; 16(21): 27187-27201, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747985

RESUMO

Development of theranostic nanomedicines to tackle glioma remains to be challenging. Here, we present an advanced blood-brain barrier (BBB)-crossing nanovaccine based on cancer cell membrane-camouflaged poly(N-vinylcaprolactam) (PVCL) nanogels (NGs) incorporated with MnO2 and doxorubicin (DOX). We show that the disulfide bond-cross-linked redox-responsive PVCL NGs can be functionalized with dermorphin and imiquimod R837 through cell membrane functionalization. The formed functionalized PVCL NGs having a size of 220 nm are stable, can deplete glutathione, and responsively release both Mn2+ and DOX under the simulated tumor microenvironment to exert the chemo/chemodynamic therapy mediated by DOX and Mn2+, respectively. The combined therapy induces tumor immunogenic cell death to maturate dendritic cells (DCs) and activate tumor-killing T cells. Further, the nanovaccine composed of cancer cell membranes as tumor antigens, R837 as an adjuvant with abilities of DC maturation and macrophages M1 repolarization, and MnO2 with Mn2+-mediated stimulator of interferon gene activation of tumor cells can effectively act on both targets of tumor cells and immune cells. With the dermorphin-mediated BBB crossing, cell membrane-mediated homologous tumor targeting, and Mn2+-facilitated magnetic resonance (MR) imaging property, the designed NG-based theranostic nanovaccine enables MR imaging and combination chemo-, chemodynamic-, and imnune therapy of orthotopic glioma with a significantly decreased recurrence rate.


Assuntos
Glioma , Imageamento por Ressonância Magnética , Compostos de Manganês , Nanomedicina Teranóstica , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Glioma/terapia , Glioma/patologia , Animais , Camundongos , Humanos , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Vacinas Anticâncer/química , Imunoterapia , Óxidos/química , Óxidos/farmacologia , Linhagem Celular Tumoral , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Barreira Hematoencefálica/metabolismo , Nanogéis/química , Imiquimode/química , Imiquimode/farmacologia , Nanovacinas
14.
J Immunother Cancer ; 12(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772685

RESUMO

RATIONALE: Androgen deprivation therapy (ADT) is the primary treatment for recurrent and metastatic prostate cancer. In addition to direct antitumor effects, ADT has immunomodulatory effects such as promoting T-cell infiltration and enhancing antigen processing/presentation. Previous studies in our laboratory have demonstrated that ADT also leads to increased expression of the androgen receptor (AR) and increased recognition of prostate tumor cells by AR-specific CD8+T cells. We have also demonstrated that ADT combined with a DNA vaccine encoding the AR significantly slowed tumor growth and improved the survival of prostate tumor-bearing mice. The current study aimed to investigate the impact of the timing and sequencing of ADT with vaccination on the tumor immune microenvironment in murine prostate cancer models to further increase the antitumor efficacy of vaccines. METHODS: Male FVB mice implanted with Myc-CaP tumor cells, or male C57BL/6 mice implanted with TRAMP-C1 prostate tumor cells, were treated with a DNA vaccine encoding AR (pTVG-AR) and ADT. The sequence of administration was evaluated for its effect on tumor growth, and tumor-infiltrating immune populations were characterized. RESULTS: Vaccination prior to ADT (pTVG-AR → ADT) significantly enhanced antitumor responses and survival. This was associated with increased tumor infiltration by CD4+ and CD8+ T cells, including AR-specific CD8+T cells. Depletion of CD8+T cells prior to ADT significantly worsened overall survival. Following ADT treatment, however, Gr1+ myeloid-derived suppressor cells (MDSCs) increased, and this was associated with fewer infiltrating T cells and reduced tumor growth. Inhibiting Gr1+MDSCs recruitment, either by using a CXCR2 antagonist or by cycling androgen deprivation with testosterone replacement, improved antitumor responses and overall survival. CONCLUSION: Vaccination prior to ADT significantly improved antitumor responses, mediated in part by increased infiltration of CD8+T cells following ADT. Targeting MDSC recruitment following ADT further enhanced antitumor responses. These findings suggest logical directions for future clinical trials to improve the efficacy of prostate cancer vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias da Próstata , Receptores Androgênicos , Masculino , Animais , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/farmacologia , Vacinas Anticâncer/imunologia , Vacinas de DNA/uso terapêutico , Vacinas de DNA/farmacologia , Antagonistas de Androgênios/uso terapêutico , Antagonistas de Androgênios/farmacologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Vacinação , Humanos , Microambiente Tumoral , Modelos Animais de Doenças , Linfócitos T CD8-Positivos/imunologia
15.
Braz J Med Biol Res ; 57: e12874, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38775545

RESUMO

More attention has been paid to immunotherapy for ovarian cancer and the development of tumor vaccines. We developed a trichostatin A (TSA)-modified tumor vaccine with potent immunomodulating activities that can inhibit the growth of ovarian cancer in rats and stimulate immune cell response in vivo. TSA-treated Nutu-19 cells inactivated by X-ray radiation were used as a tumor vaccine in rat ovarian cancer models. Prophylactic and therapeutic experiments were performed with TSA-modified tumor vaccine in rats. Flow cytometry and ELISpot assays were conducted to assess immune response. Immune cell expression in the spleen and thymus were detected by immunohistochemical staining. GM-CSF, IL-7, IL-17, LIF, LIX, KC, MCP-1, MIP-2, M-CSF, IP-10/CXCL10, MIG/CXCL9, RANTES, IL-4, IFN-γ, and VEGF expressions were detected with Milliplex Map Magnetic Bead Panel immunoassay. TSA vaccination in therapeutic and prophylactic models could effectively stimulate innate immunity and boost the adaptive humoral and cell-mediated immune responses to inhibit the growth and tumorigenesis of ovarian cancer. This vaccine stimulated the thymus into reactivating status and enhanced infiltrating lymphocytes in tumor-bearing rats. The expression of key immunoregulatory factors were upregulated in the vaccine group. The intensities of infiltrating CD4+ and CD8+ T cells and NK cells were significantly increased in the vaccine group compared to the control group (P<0.05). This protection was mainly dependent on the IFN-γ pathway and, to a much lesser extent, by the IL-4 pathway. The tumor cells only irradiated by X-ray as the control group still showed a slight immune effect, indicating that irradiated cells may also cause certain immune antigen exposure, but the efficacy was not as significant as that of the TSA-modified tumor vaccine. Our study revealed the potential application of the TSA-modified tumor vaccine as a novel tumor vaccine against tumor refractoriness and growth. These findings offer a better understanding of the immunomodulatory effects of the vaccine against latent tumorigenesis and progression. This tumor vaccine therapy may increase antigen exposure, synergistically activate the immune system, and ultimately improve remission rates. A vaccine strategy designed to induce effective tumor immune response is being considered for cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Ácidos Hidroxâmicos , Neoplasias Ovarianas , Animais , Feminino , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/prevenção & controle , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Ratos , Ácidos Hidroxâmicos/uso terapêutico , Ácidos Hidroxâmicos/farmacologia , Citometria de Fluxo , Linhagem Celular Tumoral , Modelos Animais de Doenças
16.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732150

RESUMO

Peptide antigens derived from tumors have been observed to elicit protective immune responses, categorized as either tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs). Subunit cancer vaccines incorporating these antigens have shown promise in inducing protective immune responses, leading to cancer prevention or eradication. Over recent years, peptide-based cancer vaccines have gained popularity as a treatment modality and are often combined with other forms of cancer therapy. Several clinical trials have explored the safety and efficacy of peptide-based cancer vaccines, with promising outcomes. Advancements in techniques such as whole-exome sequencing, next-generation sequencing, and in silico methods have facilitated the identification of antigens, making it increasingly feasible. Furthermore, the development of novel delivery methods and a deeper understanding of tumor immune evasion mechanisms have heightened the interest in these vaccines among researchers. This article provides an overview of novel insights regarding advancements in the field of peptide-based vaccines as a promising therapeutic avenue for cancer treatment. It summarizes existing computational methods for tumor neoantigen prediction, ongoing clinical trials involving peptide-based cancer vaccines, and recent studies on human vaccination experiments.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Neoplasias , Peptídeos , Humanos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Antígenos de Neoplasias/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/prevenção & controle , Peptídeos/imunologia , Peptídeos/química , Vacinas de Subunidades Antigênicas/imunologia , Animais , Ensaios Clínicos como Assunto
17.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38770719

RESUMO

Recent advances in cancer immunotherapy have highlighted the potential of neoantigen-based vaccines. However, the design of such vaccines is hindered by the possibility of weak binding affinity between the peptides and the patient's specific human leukocyte antigen (HLA) alleles, which may not elicit a robust adaptive immune response. Triggering cross-immunity by utilizing peptide mutations that have enhanced binding affinity to target HLA molecules, while preserving their homology with the original one, can be a promising avenue for neoantigen vaccine design. In this study, we introduced UltraMutate, a novel algorithm that combines Reinforcement Learning and Monte Carlo Tree Search, which identifies peptide mutations that not only exhibit enhanced binding affinities to target HLA molecules but also retains a high degree of homology with the original neoantigen. UltraMutate outperformed existing state-of-the-art methods in identifying affinity-enhancing mutations in an independent test set consisting of 3660 peptide-HLA pairs. UltraMutate further showed its applicability in the design of peptide vaccines for Human Papillomavirus and Human Cytomegalovirus, demonstrating its potential as a promising tool in the advancement of personalized immunotherapy.


Assuntos
Algoritmos , Vacinas Anticâncer , Método de Monte Carlo , Humanos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/genética , Antígenos HLA/imunologia , Antígenos HLA/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Mutação
18.
J Nanobiotechnology ; 22(1): 267, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764014

RESUMO

Enhancing immune response activation through the synergy of effective antigen delivery and immune enhancement using natural, biodegradable materials with immune-adjuvant capabilities is challenging. Here, we present NAPSL.p that can activate the Toll-like receptor 4 (TLR4) pathway, an amphiphilic exopolysaccharide, as a potential self-assembly adjuvant delivery platform. Its molecular structure and unique properties exhibited remarkable self-assembly, forming a homogeneous nanovaccine with ovalbumin (OVA) as the model antigen. When used as an adjuvant, NAPSL.p significantly increased OVA uptake by dendritic cells. In vivo imaging revealed prolonged pharmacokinetics of NAPSL. p-delivered OVA compared to OVA alone. Notably, NAPSL.p induced elevated levels of specific serum IgG and isotype titers, enhancing rejection of B16-OVA melanoma xenografts in vaccinated mice. Additionally, NAPSL.p formulation improved therapeutic effects, inhibiting tumor growth, and increasing animal survival rates. The nanovaccine elicited CD4+ and CD8+ T cell-based immune responses, demonstrating the potential for melanoma prevention. Furthermore, NAPSL.p-based vaccination showed stronger protective effects against influenza compared to Al (OH)3 adjuvant. Our findings suggest NAPSL.p as a promising, natural self-adjuvanting delivery platform to enhance vaccine design across applications.


Assuntos
Adjuvantes Imunológicos , Melanoma Experimental , Camundongos Endogâmicos C57BL , Ovalbumina , Probióticos , Animais , Ovalbumina/imunologia , Ovalbumina/química , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Probióticos/farmacologia , Melanoma Experimental/imunologia , Feminino , Células Dendríticas/imunologia , Receptor 4 Toll-Like/metabolismo , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Humanos , Nanopartículas/química , Linfócitos T CD4-Positivos/imunologia
19.
ACS Nano ; 18(19): 12386-12400, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38699808

RESUMO

Current cancer vaccines face challenges due to an immunosuppressive tumor microenvironment and their limited ability to produce an effective immune response. To address the above limitations, we develop a 3-(2-spiroadamantyl)-4-methoxy-4-(3-phosphoryloxy)-phenyl-1,2-dioxetane (alkaline phosphatase substrate) and XMD8-92 (extracellular signal-regulated kinase 5 inhibitor)-codelivered copper-tetrahydroxybenzoquinone (Cu-THBQ/AX) nanosized metal-organic framework to in situ-generate therapeutic vaccination. Once inside the early endosome, the alkaline phosphatase overexpressed in the tumor cells' membrane activates the in situ type I photodynamic effect of Cu-THBQ/AX for generating •O2-, and the Cu-THBQ/AX catalyzes O2 and H2O2 to •O2- and •OH via semiquinone radical catalysis and Fenton-like reactions. This surge of ROS in early endosomes triggers caspase-3-mediated proinflammatory pyroptosis via activating phospholipase C. Meanwhile, Cu-THBQ/AX can also induce the oligomerization of dihydrolipoamide S-acetyltransferase to trigger tumor cell cuproptosis. The production of •OH could also trigger the release of XMD8-92 for effectively inhibiting the efferocytosis of macrophages to convert immunosuppressive apoptosis of cancer cells into proinflammatory secondary necrosis. The simultaneous induction of pyroptosis, cuproptosis, and secondary necrosis effectively converts the tumor microenvironment from "cold" to "hot" conditions, making it an effective antigen pool. This transformation successfully activates the antitumor immune response, inhibiting tumor growth and metastasis.


Assuntos
Vacinas Anticâncer , Cobre , Macrófagos , Estruturas Metalorgânicas , Piroptose , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Animais , Camundongos , Piroptose/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Humanos , Cobre/química , Cobre/farmacologia , Vacinas Anticâncer/química , Microambiente Tumoral/efeitos dos fármacos , Nanopartículas/química , Fagocitose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Camundongos Endogâmicos BALB C , Eferocitose , Nanovacinas
20.
Rev Med Suisse ; 20(874): 984-989, 2024 May 15.
Artigo em Francês | MEDLINE | ID: mdl-38756036

RESUMO

For over a decade, immunotherapy has been transforming cancer treatment and prognosis. Tumor therapeutic vaccines trigger new immune responses and enhance existing immunity to more effectively combat cancer. These vaccines aim to curb the established disease or prevent recurrence, unlike conventional preventive vaccines. There are four categories of therapeutic vaccines: cellular, viral/bacterial, peptide, and nucleic acid, each with its own benefits and challenges. Advances in the understanding of anti-tumor immunity and advanced technologies such as mRNA vaccines support the development of this new treatment option. Currently in clinical trials, they could lead to promising and personalised anti-cancer therapies.


Depuis plus d'une décennie, l'immunothérapie améliore le traitement et le pronostic des patients atteints de cancer. Les vaccins thérapeutiques tumoraux activent de nouvelles réponses immunitaires et amplifient l'immunité existante pour combattre le cancer plus efficacement. Ces vaccins visent à freiner la maladie établie ou à éviter les récidives, à la différence des vaccins préventifs classiques. Il existe quatre catégories de vaccins thérapeutiques : cellulaire, viral/bactérien, peptidique et à acide nucléique, chacun avec des bénéfices et des défis spécifiques. Les avancées dans la compréhension de l'immunité antitumorale et dans les technologies de pointe, comme les vaccins à ARNm, favorisent le développement de cette nouvelle option de traitement. Actuellement en essais cliniques, ils pourraient aboutir à des thérapies anticancéreuses prometteuses et personnalisées.


Assuntos
Vacinas Anticâncer , Imunoterapia , Neoplasias , Humanos , Vacinas Anticâncer/administração & dosagem , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/prevenção & controle , Imunoterapia/métodos , Imunoterapia/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA