Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Am J Trop Med Hyg ; 110(5): 892-901, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531102

RESUMO

Malaria eradication efforts prioritize safe and efficient vaccination strategies, although none with high-level efficacy against malaria infection are yet available. Among several vaccine candidates, Sanaria® PfSPZ Vaccine and Sanaria PfSPZ-CVac are, respectively, live radiation- and chemo-attenuated sporozoite vaccines designed to prevent infection with Plasmodium falciparum, the leading cause of malaria-related morbidity and mortality. We are conducting a randomized normal saline placebo-controlled trial called IDSPZV1 that will analyze the safety, tolerability, immunogenicity, and efficacy of PfSPZ Vaccine and PfSPZ-CVac administered pre-deployment to malaria-naive Indonesian soldiers assigned to temporary duties in a high malaria transmission area. We describe the manifold challenges of enrolling and immunizing 345 soldier participants at their home base in western Indonesia before their nearly 6,000-km voyage to eastern Indonesia, where they are being monitored for incident P. falciparum and Plasmodium vivax malaria cases during 9 months of exposure. The unique regulatory, ethical, and operational complexities of this trial demonstrate the importance of thorough planning, frequent communication, and close follow-up with stakeholders. Effective engagement with the military community and the ability to adapt to unanticipated events have proven key to the success of this trial.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária Vivax , Militares , Plasmodium falciparum , Esporozoítos , Vacinas Atenuadas , Humanos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/uso terapêutico , Vacinas Antimaláricas/administração & dosagem , Indonésia/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Esporozoítos/imunologia , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico , Plasmodium falciparum/imunologia , Malária Vivax/prevenção & controle , Malária Vivax/epidemiologia , Masculino , Adulto , Adulto Jovem , Plasmodium vivax/imunologia , Feminino
2.
Pediatr Infect Dis J ; 41(9): e388-e392, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35895884

RESUMO

BACKGROUND: Kawasaki disease (KD) is an acute and febrile systemic vasculitis that occurs during childhood. Infliximab (IFX) is a chimeric monoclonal antibody that binds to tumor necrosis factor-α. Although IFX therapy is a useful option for refractory KD, vaccine-associated infections may develop after therapy. In Japan, IFX therapy is recommended after a duration of at least 3 months after live vaccinations or at least 6 months after Bacillus Calmette-Guérin (BCG) in children with KD. However, the appropriate duration between live vaccinations and IFX therapy is unclear. METHODS: We investigated children who developed KD within 3 months after live vaccinations or within 6 months after BCG. Clinical characteristics, side effects of therapies and efficacy of live vaccinations were retrospectively investigated. RESULTS: Forty-eight patients developed KD within 3 months of live vaccinations or within 6 months after BCG. Eight patients underwent IFX therapy. There were no apparent vaccine-associated infections. The patients who underwent IFX acquired protective IgG antibody titers in the 5 of 6 live vaccines. CONCLUSIONS: Safe and appropriate duration between live vaccinations and IFX therapy for KD patients could be shorter in the future, although more studies are warranted to establish the safe duration.


Assuntos
Síndrome de Linfonodos Mucocutâneos , Vacina BCG , Criança , Estudos de Viabilidade , Humanos , Infliximab/efeitos adversos , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Estudos Retrospectivos , Resultado do Tratamento , Vacinação , Vacinas Atenuadas/uso terapêutico
3.
Artigo em Inglês | LILACS, CUMED | ID: biblio-1410302

RESUMO

In Egypt, the lyophilized live attenuated sheep pox virus vaccine has been used for the vaccination of cattle against lumpy skin disease virus to control its economic impact on livestock industry. In this endeavor, we validate the efficacy of Carbopol® as a stabilizer and adjuvant to enhance immunogenicity of such a heterologous sheep pox virus vaccine against lumpy skin disease. Lyophilization of sheep pox virus vaccine stabilized with Carbopol® produced better physical and antigenic properties than freeze-drying with lactalbumin/sucrose stabilizer; this was manifested by superior disc uniformity, thermo-stability at 37oC, and less reduction in virus titer. Immunization of calves' groups with variable sheep pox vaccine doses containing different Carbopol® concentrations revealed that 103.5 TCID50 of sheep pox virus vaccine enclosing 0.5 percent Carbopol® is the field dose of choice. Moreover, it induced protective serum neutralizing index of 2.5 and a ELISA S/P ratio of 36, by the 4th week post vaccination. Besides, the inclusion of 0.5 percent Carbopol® in formulation of the sheep pox virus vaccine was safe in bovines and enhanced cellular immune response to lumpy skin disease virus, as evidenced by increased T cell proliferation. Hence, it is recommended to use Carbopol® as 0.5 percent in preparation of live attenuated sheep pox virus vaccine to confer better protection against lumpy skin disease virus infection(AU)


En Egipto, la vacuna atenuada liofilizada contra el virus de la viruela ovina ha sido utilizado para la vacunación del ganado, contra el virus de la dermatosis nodular contagiosa, para controlar su impacto económico en la industria ganadera. En este trabajo, validamos la eficacia del Carbopol®, como estabilizador y adyuvante, para mejorar la inmunogenicidad de dicha vacuna heteróloga contra la dermatosis nodular contagiosa. La liofilización de la vacuna contra el virus de la viruela ovina estabilizada con Carbopol®, resultó en mejores propiedades físicas y antigénicas que la liofilización con el estabilizador de lactoalbúmina/sacarosa; lo anterior se manifestó en la uniformidad superior del disco, la termoestabilidad a 37°C y la menor reducción del título del virus. La inmunización de grupos de terneros con dosis variables de vacuna contra el virus de la viruela ovina, que contenían diferentes concentraciones de Carbopol®, reveló que la dosis de campo de elección fue 103,5 TCID50 de la vacuna contra el virus de la viruela ovina conteniendo 0,5 por ciento de Carbopol®, la que indujo un índice de neutralización sérica protectora de 2,5 y una relación S/P de ELISA de 36 a la cuarta semana después de la vacunación. Además, la inclusión de Carbopol® al 0,5 por ciento en la formulación de la vacuna contra el virus de la viruela ovina fue segura en los bovinos y potenció la respuesta inmunitaria celular contra el virus de la dermatosis nodular contagiosa, como lo demuestra el aumento de la proliferación de células T. Por lo tanto, se recomienda el uso de Carbopol® al 0,5 por ciento en la preparación de la vacuna viva atenuada contra el virus de la viruela ovina para conferir una mejor protección contra la infección por el virus de la dermatosis nodular contagiosa(AU)


Assuntos
Animais , Ensaio de Imunoadsorção Enzimática/métodos , Capripoxvirus/patogenicidade , Medicamentos de Referência , Vírus da Doença Nodular Cutânea/patogenicidade , Vacinas , Vacinas Atenuadas/uso terapêutico , Egito
4.
Biomed Pharmacother ; 144: 112304, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34634560

RESUMO

Dengue virus (DENV) is a global health threat causing about half of the worldwide population to be at risk of infection, especially the people living in tropical and subtropical area. Although the dengue disease caused by dengue virus (DENV) is asymptomatic and self-limiting in most people with first infection, increased severe dengue symptoms may be observed in people with heterotypic secondary DENV infection. Since there is a lack of specific antiviral medication, the development of dengue vaccines is critical in the prevention and control this disease. Several targets and strategies in the development of dengue vaccine have been demonstrated. Currently, Dengvaxia, a live-attenuated chimeric yellow-fever/tetravalent dengue vaccine (CYD-TDV) developed by Sanofi Pasteur, has been licensed and approved for clinical use in some countries. However, this vaccine has demonstrated low efficacy in children and dengue-naïve individuals and also increases the risk of severe dengue in young vaccinated recipients. Accordingly, many novel strategies for the dengue vaccine are under investigation and development. Here, we conducted a systemic literature review according to PRISMA guidelines to give a concise overview of various aspects of the vaccine development process against DENVs, mainly targeting five potential strategies including live attenuated vaccine, inactivated virus vaccine, recombinant subunit vaccine, viral-vector vaccine, and DNA vaccine. This study offers the comprehensive view of updated information and current progression of immunogen selection as well as strategies of vaccine development against DENVs.


Assuntos
Vacinas contra Dengue/uso terapêutico , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Desenvolvimento de Vacinas , Proteínas do Envelope Viral/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Dengue/imunologia , Dengue/virologia , Vacinas contra Dengue/efeitos adversos , Vacinas contra Dengue/imunologia , Vírus da Dengue/genética , Vírus da Dengue/patogenicidade , Humanos , Resultado do Tratamento , Eficácia de Vacinas , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico , Vacinas de DNA/imunologia , Vacinas de DNA/uso terapêutico , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/uso terapêutico , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/uso terapêutico , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética
5.
Bull Exp Biol Med ; 171(5): 651-655, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34618261

RESUMO

We studied the effect of an experimental synthetic organoselenium compound 2,6-dipyridinium- 9-selenabicyclo[3.3.1]nonane dibromide (974zh) on the cell composition of the red bone marrow and peripheral blood in white mice. The study drug co-administered with Yersinia pestis EV vaccine strain (103 CFU) potentiated maturation and migration of mature neutrophils from the bone marrow into the circulation. Reducing the dose of the live vaccine and the anti-inflammatory properties of the study drug made it possible to reduce the allergic reaction during the vaccination process.


Assuntos
Linfopoese/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Vacinação , Vacinas Atenuadas/farmacologia , Yersinia pestis/imunologia , Animais , Animais não Endogâmicos , Contagem de Células Sanguíneas , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/imunologia , Células Sanguíneas/patologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Camundongos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico
6.
Malar J ; 20(1): 308, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34243763

RESUMO

BACKGROUND: Vaccination with radiation-attenuated Plasmodium falciparum sporozoites is known to induce protective immunity. However, the mechanisms underlying this protection remain unclear. In this work, two recent radiation-attenuated sporozoite vaccination studies were used to identify potential transcriptional correlates of vaccination-induced protection. METHODS: Longitudinal whole blood RNAseq transcriptome responses to immunization with radiation-attenuated P. falciparum sporozoites were analysed and compared across malaria-naïve adult participants (IMRAS) and malaria-experienced adult participants (BSPZV1). Parasite dose and method of delivery differed between trials, and immunization regimens were designed to achieve incomplete protective efficacy. Observed protective efficacy was 55% in IMRAS and 20% in BSPZV1. Study vaccine dosings were chosen to elicit both protected and non-protected subjects, so that protection-associated responses could be identified. RESULTS: Analysis of comparable time points up to 1 week after the first vaccination revealed a shared cross-study transcriptional response programme, despite large differences in number and magnitude of differentially expressed genes between trials. A time-dependent regulatory programme of coherent blood transcriptional modular responses was observed, involving induction of inflammatory responses 1-3 days post-vaccination, with cell cycle responses apparent by day 7 in protected individuals from both trials. Additionally, strongly increased induction of inflammation and interferon-associated responses was seen in non-protected IMRAS participants. All individuals, except for non-protected BSPZV1 participants, showed robust upregulation of cell-cycle associated transcriptional responses post vaccination. CONCLUSIONS: In summary, despite stark differences between the two studies, including route of vaccination and status of malaria exposure, responses were identified that were associated with protection after PfRAS vaccination. These comprised a moderate early interferon response peaking 2 days post vaccination, followed by a later proliferative cell cycle response steadily increasing over the first 7 days post vaccination. Non-protection is associated with deviations from this model, observed in this study with over-induction of early interferon responses in IMRAS and failure to mount a cell cycle response in BSPZV1.


Assuntos
Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Anticorpos Antiprotozoários/sangue , Ensaios Clínicos como Assunto , Humanos , Vacinas Antimaláricas/administração & dosagem , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Esporozoítos/genética , Esporozoítos/imunologia , Transcrição Gênica , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/uso terapêutico
7.
Nat Commun ; 11(1): 3461, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651371

RESUMO

Leishmaniasis is a neglected tropical disease caused by Leishmania protozoa transmitted by infected sand flies. Vaccination through leishmanization with live Leishmania major has been used successfully but is no longer practiced because it resulted in occasional skin lesions. A second generation leishmanization is described here using a CRISPR genome edited L. major strain (LmCen-/-). Notably, LmCen-/- is a genetically engineered centrin gene knock-out mutant strain that is antibiotic resistant marker free and does not have detectable off-target mutations. Mice immunized with LmCen-/- have no visible lesions following challenge with L. major-infected sand flies, while non-immunized animals develop large and progressive lesions with a 2-log fold higher parasite burden. LmCen-/- immunization results in protection and an immune response comparable to leishmanization. LmCen-/- is safe since it is unable to cause disease in immunocompromised mice, induces robust host protection against vector sand fly challenge and because it is marker free, can be advanced to human vaccine trials.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Leishmania major/genética , Leishmania major/patogenicidade , Vacinas Atenuadas/uso terapêutico , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Dexametasona/farmacologia , Feminino , Citometria de Fluxo , Edição de Genes , Engenharia Genética , Humanos , Terapia de Imunossupressão , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Psychodidae/parasitologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Am J Trop Med Hyg ; 103(2): 855-863, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32394880

RESUMO

New dengue vaccines are needed to prevent this globally expanding vector-borne disease. The V180 vaccine candidate consists of four recombinant, soluble, dengue virus envelope glycoproteins and has been previously evaluated in two clinical trials for safety and immunogenicity in Flavivirus-naive participants (NCT01477580 and NCT0093642). Here, we report on a randomized, placebo-controlled, double-blind study of the safety and immunogenicity of the V180 vaccine in subjects who have previously received the live attenuated tetravalent vaccine (LATV) developed by the National Institute of Allergy and Infectious Diseases (protocol #V180-002 [CIR-301]). The study was designed to evaluate whether this recombinant subunit vaccine could boost the neutralizing antibody responses induced by dengue LATV. Twenty participants who had previously received one or two doses of dengue LATV were randomized and received a single dose of V180 nonadjuvanted (N = 8), V180 adjuvanted with Alhydrogel™ (aluminum hydroxide gel, Brenntag Biosector, Frederikssund, Denmark) (N = 8), or placebo (N = 4). Immunogenicity was measured using a plaque reduction neutralization test at days 1, 15, 28, and 180 after vaccination. In addition, vaccine safety (solicited and unsolicited adverse events) was assessed using a vaccination report card for 28 days following vaccination, and serious adverse events were captured from the time of informed consent through the final study visit at 6 months after vaccination. The results of the study demonstrate that the V180 vaccine is generally well tolerated and immunogenic in these dengue-seropositive volunteers.


Assuntos
Vacinas contra Dengue/uso terapêutico , Dengue/prevenção & controle , Imunização Secundária , Adjuvantes Imunológicos/uso terapêutico , Adulto , Hidróxido de Alumínio/uso terapêutico , Anticorpos Neutralizantes/imunologia , Vírus da Dengue/imunologia , Método Duplo-Cego , Feminino , Humanos , Imunogenicidade da Vacina , Reação no Local da Injeção , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Vacinas Atenuadas/uso terapêutico , Vacinas de Subunidades Antigênicas/uso terapêutico , Vacinas Sintéticas/uso terapêutico , Proteínas do Envelope Viral/imunologia , Adulto Jovem
9.
J Med Virol ; 92(9): 1469-1474, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32320059

RESUMO

The whole world has entered a terrible crisis with a huge and increasing number of human deaths and economic losses in fighting the pandemic of COVID-19 caused by the novel coronavirus termed SARS-CoV-2. The live pathogen vaccine (LPV) strategy, which originated in ancient China for fighting smallpox, has been applied successfully by US military recruits for decades to control acute respiratory diseases caused by types 4 and 7 adenoviruses. This strategy has also been widely employed in veterinary medicine. These facts suggest a fast way out of the current pandemic crisis, namely that SARS-CoV-2 could be directly used as a live vaccine. Beyond the two traditional mechanisms to guarantee the LPV's safety (the LPV seed strain is properly selected; the LPV is inoculated bypassing the respiratory sites of pathology), three novel mechanisms to further ensure the LPV's safety are available (the virus replication is inhibited with early use of an antiviral drug; symptomatic LPV recipients are cured with convalescent plasma; the LPV is inoculated in the hot season). This LPV strategy has multiple potential advantages over other options and could reduce morbidity and mortality greatly as well as the economic loss caused by the pandemic. The safety and efficacy of this strategy should be investigated strictly using animal experiments and clinical trials, and even if the experiments and trials all support the strategy, it should be implemented with enough caution.


Assuntos
Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Vacinas Atenuadas/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Humanos , Pandemias , Segurança
10.
Crit Rev Biotechnol ; 40(2): 247-264, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31918573

RESUMO

Oncolytic viruses (including measles virus) offer an alternative approach to reduce the high mortality rate of late-stage cancer. Several measles virus strains infect and lyse cancer cells efficiently, but the broad application of this therapeutic concept is hindered by the large number of infectious particles required (108-1012 TCID50 per dose). The manufacturing process must, therefore, achieve high titers of oncolytic measles virus (OMV) during upstream production and ensure that the virus product is not damaged during purification by applying appropriate downstream processing (DSP) unit operations. DSP is currently a production bottleneck because there are no specific platforms for OMV. Infectious OMV must be recovered as intact, enveloped particles, and host cell proteins and DNA must be reduced to acceptable levels to meet regulatory guidelines that were developed for virus-based vaccines and gene therapy vectors. Handling such high viral titers and process volumes is technologically challenging and expensive. This review considers the state of the art in OMV purification and looks at promising DSP technologies. We discuss here the purification of other enveloped viruses where such technologies could also be applied to OMV. The development of DSP technologies tailored for enveloped viruses is necessary to produce sufficient titers for virotherapy, which could offer hope to millions of patients suffering from incurable cancer.


Assuntos
Antineoplásicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/fisiologia , Humanos , Vacina contra Sarampo/uso terapêutico , Vírus do Sarampo/genética , Vírus do Sarampo/imunologia , Vírus do Sarampo/fisiologia , Neoplasias/prevenção & controle , Neoplasias/virologia , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Vacinas Atenuadas/uso terapêutico
11.
Ann Rheum Dis ; 79(1): 39-52, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31413005

RESUMO

To update the European League Against Rheumatism (EULAR) recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases (AIIRD) published in 2011. Four systematic literature reviews were performed regarding the incidence/prevalence of vaccine-preventable infections among patients with AIIRD; efficacy, immunogenicity and safety of vaccines; effect of anti-rheumatic drugs on the response to vaccines; effect of vaccination of household of AIIRDs patients. Subsequently, recommendations were formulated based on the evidence and expert opinion. The updated recommendations comprise six overarching principles and nine recommendations. The former address the need for an annual vaccination status assessment, shared decision-making and timing of vaccination, favouring vaccination during quiescent disease, preferably prior to the initiation of immunosuppression. Non-live vaccines can be safely provided to AIIRD patients regardless of underlying therapy, whereas live-attenuated vaccines may be considered with caution. Influenza and pneumococcal vaccination should be strongly considered for the majority of patients with AIIRD. Tetanus toxoid and human papilloma virus vaccination should be provided to AIIRD patients as recommended for the general population. Hepatitis A, hepatitis B and herpes zoster vaccination should be administered to AIIRD patients at risk. Immunocompetent household members of patients with AIIRD should receive vaccines according to national guidelines, except for the oral poliomyelitis vaccine. Live-attenuated vaccines should be avoided during the first 6 months of life in newborns of mothers treated with biologics during the second half of pregnancy. These 2019 EULAR recommendations provide an up-to-date guidance on the management of vaccinations in patients with AIIRD.


Assuntos
Antirreumáticos/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Infecções Bacterianas/prevenção & controle , Doenças Reumáticas/tratamento farmacológico , Vacinas/uso terapêutico , Viroses/prevenção & controle , Características da Família , Hepatite A/prevenção & controle , Vacinas contra Hepatite A/uso terapêutico , Hepatite B/prevenção & controle , Vacinas contra Hepatite B/uso terapêutico , Herpes Zoster/prevenção & controle , Vacina contra Herpes Zoster/uso terapêutico , Humanos , Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/uso terapêutico , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/uso terapêutico , Tétano/prevenção & controle , Toxoide Tetânico/uso terapêutico , Vacinas Atenuadas/uso terapêutico
12.
Vaccine ; 37(36): 5137-5146, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31377079

RESUMO

The first licensed dengue vaccine, CYD-TDV (Dengvaxia) is efficacious in seropositive individuals, but increases the risk for severe dengue in seronegative persons about two years after administration of the first dose. For countries considering the introduction of Dengvaxia, WHO recommends a pre-vaccination screening strategy whereby only persons with evidence of a past dengue infection would be vaccinated. Policy-makers need to consider the risk-benefit of vaccination strategies based on such screening tests, the optimal age to introduce the vaccine, communication and implementation strategies. To address these questions, the Global Dengue and Aedes-transmitted diseases Consortium (GDAC) organized a 3-day workshop in January 2019 with country representatives from Asia and Latin America. The meeting discussions highlighted many challenges in introducing Dengvaxia, in terms of screening test characteristics, costs of such tests combined with a 3-dose schedule, logistics, achieving high coverage rates, vaccine confidence and communication; more challenges than for any other vaccine introduction programme. A screening test would require a high specificity to minimize individual risk, and at the same time high sensitivity to maximize individual and population benefit. The underlying seroprevalence dependent positive predictive value is the best indicator for an acceptable safety profile of a pre-vaccination screening strategy. The working groups discussed many possible implementation strategies. Addressing the bottlenecks in school-based vaccine introduction for Dengvaxia will also benefit other vaccines such as HPV and booster doses for tetanus and pertussis. Levels of public trust are highly variable and context specific, and understanding of population perceptions and concerns is essential to tailor interventions, monitor and mitigate risks.


Assuntos
Vacinas contra Dengue/uso terapêutico , Adolescente , Adulto , Anticorpos Antivirais/imunologia , Criança , Dengue/imunologia , Dengue/microbiologia , Dengue/prevenção & controle , Vacinas contra Dengue/imunologia , Vírus da Dengue , Humanos , Programas de Imunização/métodos , Saúde Pública , Estudos Soroepidemiológicos , Vacinas Atenuadas/uso terapêutico , Organização Mundial da Saúde , Adulto Jovem
13.
Clin Transplant ; 33(9): e13563, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31002409

RESUMO

These updated guidelines of the AST IDCOP review vaccination of solid organ transplant candidates and recipients. General principles of vaccination as well as the use of specific vaccines in this population are discussed. Vaccination should be reviewed in the pre-transplant setting and appropriate vaccines updated. Both inactivated and live vaccines can be given pre-transplant. The timing of vaccination post-transplant should be taken into account. In the post-transplant setting, inactivated vaccines can be administered starting at 3 months post-transplant with the exception of influenza which can be given as early as one month. Inactivated vaccines can be safely administered post-transplant. There is accumulating data that live-attenuated vaccines can also be given to select post-transplant patients. Close contacts of transplant patients can receive most routine live vaccines. Specific vaccines including pneumococcal, influenza, hepatitis B, HPV, and meningococcal vaccines are discussed. Newer vaccines for seasonal influenza vaccine and herpes zoster are highlighted. Live-attenuated vaccines such as measles, mumps, rubella, and varicella are also discussed. Emerging data on live-attenuated vaccines post-transplant are highlighted.


Assuntos
Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/tratamento farmacológico , Transplante de Órgãos/efeitos adversos , Guias de Prática Clínica como Assunto/normas , Vacinação/métodos , Vacinas Atenuadas/uso terapêutico , Doenças Transmissíveis/etiologia , Humanos , Hospedeiro Imunocomprometido , Cuidados Pré-Operatórios , Sociedades Médicas , Transplantados , Imunologia de Transplantes
14.
Cancer Lett ; 448: 168-181, 2019 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-30753837

RESUMO

Bacteria have been investigated as anti-tumor therapeutic agents for more than a century, since Coley first observed successful curing of a patient with inoperable cancer by injection of streptococcal organisms. Previous studies have demonstrated that some obligate or facultative anaerobes can selectively accumulate and proliferate within tumors and suppress their growth. Developments in molecular biology as well as the complete genome sequencing of many bacterial species have increased the applicability of bacterial organisms for cancer treatment. In particular, the facultative anaerobe Salmonella Typhimurium has been widely studied and genetically engineered to improve its tumor-targeting ability as well as to reduce bacterial virulence. Moreover, the effectiveness of engineered attenuated S. Typhimurium strains employed as live delivery vectors of various anti-tumor therapeutic agents or combined with other therapies has been evaluated in a large number of animal experiments. The well-known S. Typhimurium mutant VNP20009 and its derivative strain TAPET-CD have even been applied in human clinical trials. However, Salmonella-mediated cancer therapies have not achieved the expected success, except in animal experiments. Many problems remain to be solved to exploit more promising strategies for combatting cancer with Salmonella bacteria. Here, we summarize the promising studies regarding cancer therapy mediated by Salmonella bacteria and highlight the main mechanisms of Salmonella anti-tumor activities.


Assuntos
Antineoplásicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Neoplasias/terapia , Salmonella typhimurium/imunologia , Vacinas Atenuadas/uso terapêutico , Animais , Humanos
15.
Mem. Inst. Oswaldo Cruz ; 114: e180571, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1002691

RESUMO

BACKGROUND TcP21 is a ubiquitous secreted protein of Trypanosoma cruzi and its recombinant form (rP21) promotes parasite cell invasion and acts as a phagocytosis inducer by activating actin polymerisation in the host cell. OBJECTIVE Our goal was to evaluate if the additional supplementation of rP21 during a prime/boost/challenge scheme with T. cruzi TCC attenuated parasites could modify the well-known protective behavior conferred by these parasites. METHODS The humoral immune response was evaluated through the assessment of total anti-T. cruzi antibodies as well as IgG subtypes. IFN-γ, TNF-α and IL-10 were measured in supernatants of splenic cells stimulated with total parasite homogenate or rP21. FINDINGS Our results demonstrated that, when comparing TCC+rP21 vs. TCC vaccinated animals, the levels of IFN-γ were significantly higher in the former group, while the levels of IL-10 and TNF-α were significantly lower. Further, the measurement of parasite load after lethal challenge showed an exacerbated infection and parasite load in heart and skeletal muscle after pre-treatment with rP21, suggesting the important role of this protein during parasite natural invasion process. MAIN CONCLUSION Our results demonstrated that rP21 may have adjuvant capacity able to modify the cytokine immune profile elicited by attenuated parasites.


Assuntos
Humanos , Vacinas Atenuadas/uso terapêutico , Proteínas rho de Ligação ao GTP/análise , Trypanosoma cruzi , Doença de Chagas/transmissão
16.
Sci Rep ; 8(1): 13206, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181550

RESUMO

Zika virus (ZIKV) is an emerging mosquito-borne pathogen representing a global health concern. It has been linked to fetal microcephaly and other birth defects and neurological disorders in adults. Sanofi Pasteur has engaged in the development of an inactivated ZIKV vaccine, as well as a live chimeric vaccine candidate ChimeriVax-Zika (CYZ) that could become a preferred vaccine depending on future ZIKV epidemiology. This report focuses on the CYZ candidate that was constructed by replacing the pre-membrane and envelope (prM-E) genes in the genome of live attenuated yellow fever 17D vaccine virus (YF 17D) with those from ZIKV yielding a viable CYZ chimeric virus. The replication rate of CYZ in the Vero cell substrate was increased by using a hybrid YF 17D-ZIKV signal sequence for the prM protein. CYZ was highly attenuated both in mice and in human in vitro models (human neuroblastoma and neuronal progenitor cells), without the need for additional attenuating modifications. It exhibited significantly reduced viral loads in organs compared to a wild-type ZIKV and a complete lack of neuroinvasion following inoculation of immunodeficient A129 mice. A single dose of CYZ elicited high titers of ZIKV-specific neutralizing antibodies in both immunocompetent and A129 mice and protected animals from ZIKV challenge. The data indicate that CYZ is a promising vaccine candidate against ZIKV.


Assuntos
Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Vírus da Febre Amarela/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Chlorocebus aethiops , Humanos , Camundongos , Camundongos Endogâmicos ICR , Vacinas Atenuadas/uso terapêutico , Células Vero , Carga Viral , Vacinas Virais/uso terapêutico , Infecção por Zika virus/imunologia
17.
Vaccine ; 36(41): 6077-6086, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30197283

RESUMO

Almost all commercial poultry are vaccinated against avian coronavirus infectious bronchitis virus (IBV) using live attenuated vaccines mass administered by spray at day of hatch. Although many different types of IBV vaccines are used successfully, the ArkDPI serotype vaccine, when applied by spray, does not infect and replicate sufficiently to provide protection against homologous challenge. In this study, we examined a different Ark vaccine strain (Ark99), which is no longer used commercially due to its reactivity in one day old chicks, to determine if it could be further attenuated by passage in embryonated eggs but still provide adequate protection. Further attenuation of the Ark99 vaccine was achieved by passage in embryonated eggs but ArkGA P1, P20, and P40 (designated ArkGA after P1) were still too reactive to be suitable vaccine candidates. However, ArkGA P60 when given by spray had little or no vaccine reaction in one day old broiler chicks, and it induced protection from clinical signs and ciliostasis following homologous challenge. In addition, vaccinated and challenged birds had significantly less challenge virus, an important measure of protection, compared to non-vaccinated and challenged controls. The full-length genomes of viruses from egg passages 1, 20, 40, and 60 were sequenced using the Illumina platform and the data showed single nucleotide polymorphisms (SNPs) had accumulated in regions of the genome associated with viral replication, pathogenicity, and cell tropism. ArkGA P60 accumulated the most SNPs in key genes associated with pathogenicity (polyprotein gene 1ab) and cell tropism (spike gene), compared to previous passages, which likely resulted in its more attenuated phenotype. These results indicate that the ArkGA P60 vaccine is safe for spray vaccination of broiler chicks and induces suitable protection against challenge with pathogenic Ark-type virus.


Assuntos
Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Vírus da Bronquite Infecciosa/imunologia , Vírus da Bronquite Infecciosa/patogenicidade , Animais , Galinhas , Vírus da Bronquite Infecciosa/genética , Polimorfismo de Nucleotídeo Único/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sorogrupo , Vacinação , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico , Replicação Viral/imunologia
18.
mBio ; 9(5)2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228241

RESUMO

Glioblastoma (GBM) is the deadliest type of brain tumor, and glioma stem cells (GSCs) contribute to tumor recurrence and therapeutic resistance. Thus, an oncolytic virus targeting GSCs may be useful for improving GBM treatment. Because Zika virus (ZIKV) has an oncolytic tropism for infecting GSCs, we investigated the safety and efficacy of a live attenuated ZIKV vaccine candidate (ZIKV-LAV) for the treatment of human GBM in a GSC-derived orthotopic model. Intracerebral injection of ZIKV-LAV into mice caused no neurological symptoms or behavioral abnormalities. The neurovirulence of ZIKV-LAV was more attenuated than that of the licensed Japanese encephalitis virus LAV 14-14-2, underlining the superior safety of ZIKV-LAV for potential GBM treatment. Importantly, ZIKV-LAV significantly reduced intracerebral tumor growth and prolonged animal survival by selectively killing GSCs within the tumor. Mechanistically, ZIKV infection elicited antiviral immunity, inflammation, and GSC apoptosis. Together, these results further support the clinical development of ZIKV-LAV for GBM therapy.IMPORTANCE Glioblastoma (GBM), the deadliest type of brain tumor, is currently incurable because of its high recurrence rate after traditional treatments, including surgery to remove the main part of the tumor and radiation and chemotherapy to target residual tumor cells. These treatments fail mainly due to the presence of a cell subpopulation called glioma stem cells (GSCs), which are resistant to radiation and chemotherapy and capable of self-renewal and tumorigenicity. Because Zika virus (ZIKV) has an oncolytic tropism for infecting GSCs, we tested a live attenuated ZIKV vaccine candidate (ZIKV-LAV) for the treatment of human GBM in a human GSC-derived orthotopic model. Our results showed that ZIKV-LAV retained good efficacy against glioblastoma by selectively killing GSCs within the tumor. In addition, ZIKV-LAV exhibited an excellent safety profile upon intracerebral injection into the treated animals. The good balance between the safety of ZIKV-LAV and its efficacy against human GSCs suggests that it is a potential candidate for combination with the current treatment regimen for GBM therapy.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Terapia Viral Oncolítica , Animais , Apoptose , Chlorocebus aethiops , Feminino , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/virologia , Vírus Oncolíticos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico , Células Vero , Tropismo Viral , Ensaios Antitumorais Modelo de Xenoenxerto , Zika virus
19.
Proc Natl Acad Sci U S A ; 115(32): 8179-8184, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038013

RESUMO

Agents that remodel the tumor microenvironment (TME), prime functional tumor-specific T cells, and block inhibitory signaling pathways are essential components of effective immunotherapy. We are evaluating live-attenuated, double-deleted Listeria monocytogenes expressing tumor antigens (LADD-Ag) in the clinic. Here we show in numerous mouse models that while treatment with nonrecombinant LADD induced some changes in the TME, no antitumor efficacy was observed, even when combined with immune checkpoint blockade. In contrast, LADD-Ag promoted tumor rejection by priming tumor-specific KLRG1+PD1loCD62L- CD8+ T cells. These IFNγ-producing effector CD8+ T cells infiltrated the tumor and converted the tumor from an immunosuppressive to an inflamed microenvironment that was characterized by a decrease in regulatory T cells (Treg) levels, a proinflammatory cytokine milieu, and the shift of M2 macrophages to an inducible nitric oxide synthase (iNOS)+CD206- M1 phenotype. Remarkably, these LADD-Ag-induced tumor-specific T cells persisted for more than 2 months after primary tumor challenge and rapidly controlled secondary tumor challenge. Our results indicate that the striking antitumor efficacy observed in mice with LADD-based immunotherapy stems from TME remodeling which is a direct consequence of eliciting potent, systemic tumor-specific CD8+ T cells.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Listeria monocytogenes/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/uso terapêutico , Vacinas Anticâncer/genética , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Listeria monocytogenes/genética , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Resultado do Tratamento , Vacinação/métodos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de DNA/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Sci Rep ; 8(1): 11194, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30046133

RESUMO

In 2012, Fiji introduced rotavirus vaccine (Rotarix, GSK) into the national immunisation schedule. We describe the intussusception epidemiology prior to rotavirus vaccine, temporal association of intussusception cases to administration of rotavirus vaccine, and estimate the additional number of intussusception cases that may be associated with rotavirus vaccine. A retrospective review of intussusception cases for children aged <24 months old was undertaken between January 2007 and October 2012 pre-vaccine. All admissions and deaths with a discharge diagnosis of intussusception, bowel obstruction, paralytic ileus, or intussusception ICD10-AM codes were extracted from national databases and hospital records. Nationwide active intussusception surveillance was established for three years post-vaccine (2013-2015). There were 24 definite intussusception cases in the pre-rotavirus vaccine period, 96% were confirmed by surgery. The median age was 6.5 months. The incidence rate was 22.2 (95% CI: 13.9-33.7) per 100,000 infants. There were no deaths. Active surveillance identified 25 definite intussusception cases, 96% of which were among children who were age-eligible for rotavirus vaccine. None were potentially vaccine related. We estimated one to five additional  cases of intussusception every five years. The incidence of intussusception pre-rotavirus vaccine in Fiji is low. Intussusception associated with rotavirus vaccine is likely a rare event in Fiji.


Assuntos
Intussuscepção/epidemiologia , Infecções por Rotavirus/epidemiologia , Vacinas contra Rotavirus/uso terapêutico , Pré-Escolar , Feminino , Fiji/epidemiologia , Hospitalização , Humanos , Lactente , Intussuscepção/prevenção & controle , Intussuscepção/virologia , Estudos Retrospectivos , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/virologia , Vacinação/métodos , Vacinas Atenuadas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA