Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.286
Filtrar
1.
Methods Mol Biol ; 2786: 89-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814391

RESUMO

While mRNA vaccines have shown their worth, they have the same failing as inactivated vaccines, namely they have limited half-life, are non-replicating, and therefore limited to the size of the vaccine payload for the amount of material translated. New advances averting these problems are combining replicon RNA (RepRNA) technology with nanotechnology. RepRNA are large self-replicating RNA molecules (typically 12-15 kb) derived from viral genomes defective in at least one essential structural protein gene. They provide sustained antigen production, effectively increasing vaccine antigen payloads over time, without the risk of producing infectious progeny. The major limitations with RepRNA are RNase-sensitivity and inefficient uptake by dendritic cells (DCs), which need to be overcome for efficacious RNA-based vaccine design. We employed biodegradable delivery vehicles to protect the RepRNA and promote DC delivery. Condensing RepRNA with polyethylenimine (PEI) and encapsulating RepRNA into novel Coatsome-replicon vehicles are two approaches that have proven effective for delivery to DCs and induction of immune responses in vivo.


Assuntos
Células Dendríticas , Genoma Viral , Pestivirus , RNA Viral , Replicon , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , RNA Viral/genética , Pestivirus/genética , Pestivirus/imunologia , Replicon/genética , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/administração & dosagem , Camundongos , Polietilenoimina/química , Vacinas de mRNA , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/administração & dosagem
2.
Methods Mol Biol ; 2786: 289-300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814400

RESUMO

In this protocol, we outline how to produce a chimeric viral vaccine in a biosafety level 1 (BSL1) environment. An animal viral vector RNA encapsidated with tobacco mosaic virus (TMV) coat protein can be fully assembled in planta. Agrobacterium cultures containing each component are inoculated together into tobacco leaves and the self-assembled hybrid chimeric viral vaccine is harvested 4 days later and purified with a simple PEG precipitation. The viral RNA delivery vector is derived from the BSL1 insect virus, Flock House virus (FHV), and replicates in human and animal cells but does not spread systemically. A polyethylene glycol purification protocol is also provided to collect and purify these vaccines for immunological tests. In this update, we also provide a protocol for in trans co-inoculation of a modified FHV protein A, which significantly increased the yield of in planta chimeric viral vaccine.


Assuntos
Nicotiana , Replicon , Vírus do Mosaico do Tabaco , Vacinas Virais , Nicotiana/genética , Vacinas Virais/imunologia , Vacinas Virais/genética , Animais , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/imunologia , Replicon/genética , RNA Viral/genética , Vetores Genéticos/genética , Nodaviridae/genética , Nodaviridae/imunologia , Plantas Geneticamente Modificadas/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Agrobacterium/genética , Humanos
3.
Viruses ; 16(4)2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675887

RESUMO

PRRS is a viral disease that profoundly impacts the global swine industry, causing significant economic losses. The development of a novel and effective vaccine is crucial to halt the rapid transmission of this virus. There have been several vaccination attempts against PRRSV using both traditional and alternative vaccine design development approaches. Unfortunately, there is no currently available vaccine that can completely control this disease. Thus, our study aimed to develop an mRNA vaccine using the antigens expressed by single or fused PRRSV structural proteins. In this study, the nucleotide sequence of the immunogenic mRNA was determined by considering the antigenicity of structural proteins and the stability of spatial structure. Purified GP5 protein served as the detection antigen in the immunological evaluation. Furthermore, cellular mRNA expression was detected by immunofluorescence and western blotting. In a mice experiment, the Ab titer in serum and the activation of spleen lymphocytes triggered by the antigen were detected by ELISA and ICS, respectively. Our findings demonstrated that both mRNA vaccines can significantly stimulate cellular and humoral immune responses. More specifically, the GP5-mRNA exhibited an immunological response that was similar to that of the commercially available vaccine when administered in high doses. To conclude, our vaccine may show promising results against the wild-type virus in a natural host.


Assuntos
Anticorpos Antivirais , Imunidade Celular , Imunidade Humoral , Camundongos Endogâmicos BALB C , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas do Envelope Viral , Vacinas Virais , Vacinas de mRNA , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Camundongos , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Síndrome Respiratória e Reprodutiva Suína/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Suínos , Feminino , Proteínas Estruturais Virais/imunologia , Proteínas Estruturais Virais/genética , RNA Mensageiro/genética
4.
Microb Pathog ; 190: 106630, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556102

RESUMO

Porcine circovirus type 2 (PCV2) is a globally prevalent infectious pathogen affecting swine, with its capsid protein (Cap) being the sole structural protein critical for vaccine development. Prior research has demonstrated that PCV2 Cap proteins produced in Escherichia coli (E. coli) can form virus-like particles (VLPs) in vitro, and nuclear localization signal peptides (NLS) play a pivotal role in stabilizing PCV2 VLPs. Recently, PCV2d has emerged as an important strain within the PCV2 epidemic. In this study, we systematically optimized the PCV2d Cap protein and successfully produced intact PCV2d VLPs containing NLS using E. coli. The recombinant PCV2d Cap protein was purified through affinity chromatography, yielding 7.5 mg of recombinant protein per 100 ml of bacterial culture. We augmented the conventional buffer system with various substances such as arginine, ß-mercaptoethanol, glycerol, polyethylene glycol, and glutathione to promote VLP assembly. The recombinant PCV2d Cap self-assembled into VLPs approximately 20 nm in diameter, featuring uniform distribution and exceptional stability in the optimized buffer. We developed the vaccine and immunized pigs and mice, evaluating the immunogenicity of the PCV2d VLPs vaccine by measuring PCV2-IgG, IL-4, TNF-α, and IFN-γ levels, comparing them to commercial vaccines utilizing truncated PCV2 Cap antigens. The HE staining and immunohistochemical tests confirmed that the PCV2 VLPs vaccine offered robust protection. The results revealed that animals vaccinated with the PCV2d VLPs vaccine exhibited high levels of PCV2 antibodies, with TNF-α and IFN-γ levels rapidly increasing at 14 days post-immunization, which were higher than those observed in commercially available vaccines, particularly in the mouse trial. This could be due to the fact that full-length Cap proteins can assemble into more stable PCV2d VLPs in the assembling buffer. In conclusion, our produced PCV2d VLPs vaccine elicited stronger immune responses in pigs and mice compared to commercial vaccines. The PCV2d VLPs from this study serve as an excellent candidate vaccine antigen, providing insights for PCV2d vaccine research.


Assuntos
Anticorpos Antivirais , Proteínas do Capsídeo , Circovirus , Escherichia coli , Proteínas Recombinantes , Vacinas de Partículas Semelhantes a Vírus , Animais , Circovirus/imunologia , Circovirus/genética , Suínos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/genética , Desenvolvimento de Vacinas , Antígenos Virais/imunologia , Antígenos Virais/genética , Imunoglobulina G/sangue , Análise Custo-Benefício , Feminino , Interferon gama/metabolismo , Imunogenicidade da Vacina
5.
Artigo em Inglês | MEDLINE | ID: mdl-38427544

RESUMO

Transfer RNAs (tRNA) are non-coding RNAs. Encouraged by biological applications discovered for peptides derived from other non-coding genomic regions, we explore the possibility of deriving epitope-based vaccines from tRNA encoded peptides (tREP) in this study. Epitope-based vaccines have been identified as an effective strategy to mitigate safety and specificity concerns observed in vaccine development. In this study, we explore the potential of tREP as a source for epitope-based vaccines for virus pathogens. We present a computational workflow that uses verified data sources and community-validated predictive tools to produce a ranked list of plausible epitope-based vaccines starting from tRNA sequences. The top epitope, bound to the predicted HLA molecule, for the virus pathogen is computationally validated through 200 ns molecular dynamics (MD) simulations followed by binding free energy calculations. The simulation results indicate that two tRNA encoded epitope-based vaccines, RRHIDIVV and IMVRFSAE for Mamastrovirus 3 and Norovirus GII, respectively, are likely candidates. Peptides originating from tRNAs provide unexplored opportunities for vaccine design. Encouraged by our previous experimental study, which established the inhibitory properties of tREPs against infectious parasites, we have proposed a computationally validated set of peptides derived from tREPs as vaccines for viral pathogens.


Assuntos
Biologia Computacional , Simulação de Dinâmica Molecular , Peptídeos , RNA de Transferência , RNA de Transferência/genética , RNA de Transferência/química , Biologia Computacional/métodos , Peptídeos/química , Peptídeos/genética , Peptídeos/imunologia , Humanos , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/química , Epitopos/química , Epitopos/imunologia , Epitopos/genética , Norovirus/genética , Norovirus/imunologia , Norovirus/química
6.
J Microbiol Biotechnol ; 34(1): 185-191, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-37830223

RESUMO

Various types of vaccines have been developed against COVID-19, including vector vaccines. Among the COVID-19 vaccines, AstraZeneca's chimpanzee adenoviral vaccine was the first to be commercialized. For viral vector vaccines, biodistribution studies are critical to vaccine safety, gene delivery, and efficacy. This study compared the biodistribution of the baculoviral vector vaccine (AcHERV-COVID19) and the adenoviral vector vaccine (Ad-COVID19). Both vaccines were administered intramuscularly to mice, and the distribution of the SARS-CoV-2 S gene in each tissue was evaluated for up to 30 days. After vaccination, serum and various tissue samples were collected from the mice at each time point, and IgG levels and DNA copy numbers were measured using an enzyme-linked immunosorbent assay and a quantitative real-time polymerase chain reaction. AcHERV-COVID19 and Ad-COVID19 distribution showed that the SARS-CoV-2 spike gene remained predominantly at the injection site in the mouse muscle. In kidney, liver, and spleen tissues, the AcHERV-COVID19 group showed about 2-4 times higher persistence of the SARS-CoV-2 spike gene than the Ad-COVID19 group. The distribution patterns of AcHERV-COVID19 and Ad-COVID19 within various organs highlight their contrasting biodistribution profiles, with AcHERV-COVID19 exhibiting a broader and prolonged presence in the body compared to Ad-COVID19. Understanding the biodistribution profile of AcHERV-COVID19 and Ad-COVID19 could help select viral vectors for future vaccine development.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Distribuição Tecidual , Vacinas Virais/genética , Anticorpos Antivirais
7.
Microbiol Spectr ; 12(1): e0240323, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38047650

RESUMO

IMPORTANCE: Porcine epidemic diarrhea (PED) is a highly infectious and economically significant gastrointestinal disorder that affects pigs of all ages. Preventing and controlling PED is achieved by immunizing sows with vaccines, enabling passive piglet immunization via colostrum. The prevalence of G2b porcine epidemic diarrhea virus (PEDV) continues in China despite the use of commercial vaccines, raising questions regarding current vaccine efficacy and the need for novel vaccine development. Adenovirus serotype 5 (Ad5) has several advantages, including high transduction efficiency, a wide range of host cells, and the ability to infect cells at various stages. In this study, we expressed the immunogenic proteins of spike (S) using an Ad5 vector and generated a PED vaccine candidate by inducing significant humoral immunity. The rAd5-PEDV-S prevented PED-induced weight loss, diarrhea, and intestinal damage in piglets. This novel vaccine candidate strain possesses the potential for use in the pig breeding industry.


Assuntos
Infecções por Adenoviridae , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Feminino , Animais Recém-Nascidos , Adenoviridae , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética , Vírus da Diarreia Epidêmica Suína/genética , Vacinas Virais/genética , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Diarreia/prevenção & controle , Diarreia/veterinária , Genótipo , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/epidemiologia
8.
Int J Biol Macromol ; 255: 128105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981286

RESUMO

Infectious bronchitis (IB) is an acute and highly contagious disease caused by avian infectious bronchitis virus (IBV), resulting in significant economic losses in the global poultry industry. In this study, we utilized a replication-incompetent adenovirus vector derived from chimpanzees for the first time to express the S gene of IBV. The adenovirus was successfully rescued and demonstrated convenient production, good growth performance, and stability on HEK293 A cells. Morphologically, the recombinant adenovirus (named PAD-S) appeared normal under transmission electron microscopy, and efficient expression of the exogenous gene was confirmed through immunofluorescence analysis and immunoblotting. Administration of PAD-S via ocular and nasal routes induced a strong immune response in the chicken population, as evidenced by specific antibody and cytokine measurements. PAD-S was unable to replicate within chickens and showed low pre-existing immunity, demonstrating high safety and environmental friendliness. The robust immune response triggered by PAD-S immunization effectively suppressed viral replication in various tissues, alleviating clinical symptoms and tissue damage, thus providing complete protection against viral challenges in the chicken population. In conclusion, this study successfully developed an IBV candidate vaccine strain that possesses biosafety, high protective efficacy, and ease of production.


Assuntos
Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Virais , Humanos , Animais , Galinhas , Vírus da Bronquite Infecciosa/genética , Pan troglodytes , Glicoproteína da Espícula de Coronavírus/genética , Adenoviridae , Células HEK293 , Vacinas Virais/genética , Proteínas Recombinantes
9.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 4809-4823, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38147983

RESUMO

In order to understand the prevalence and evolution of porcine reproductive and respiratory syndrome virus (PRRSV) in China and to develop subunit vaccine against the epidemic lineage, the genetic evolution analysis of PRRSV strains isolated in China from 2001 to 2021 was performed. The representative strains of the dominant epidemic lineage were selected to optimize the membrane protein GP5 and M nucleotide sequences, which were used, with the interferon and the Fc region of immunoglobulin, to construct the eukaryotic expression plasmids pCDNA3.4-IFNα-GP5-Fc and pCDNA3.4-IFNα-M-Fc. Subsequently, the recombinant proteins IFNα-GP5-Fc and IFNα-M-Fc were expressed by HEK293T eukaryotic expression system. The two recombinant proteins were mixed with ISA206VG adjuvant to immunize weaned piglets. The humoral immunity level was evaluated by ELISA and neutralization test, and the cellular immunity level was detected by ELISPOT test. The results showed that the NADC30-like lineage was the main epidemic lineage in China in recent years, and the combination of IFNα-GP5-Fc and IFNα-M-Fc could induce high levels of antibody and cellular immunity in piglets. This study may facilitate the preparation of a safer and more effective new PRRSV subunit vaccine.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vacinas Virais , Humanos , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Células HEK293 , Proteínas do Envelope Viral/genética , Anticorpos Antivirais , Vacinas Virais/genética , Proteínas Recombinantes , Vacinas de Subunidades Antigênicas
10.
J Gen Virol ; 104(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37976092

RESUMO

Virus vectored vaccines are not available commercially for cattle even though compelling potential applications exist. Bovine papular stomatitis virus (BPSV), a highly prevalent parapoxvirus, causes self-limited oral lesions in cattle. Ability of virus to accommodate large amounts of foreign DNA, induce low level of antiviral immunity, and circulate and likely persist in cattle populations, make BPSV an attractive candidate viral vector. Here, recombinant BPSV were constructed expressing either Bovine herpesvirus 1 (BoHV-1) glycoprotein gD (BPSVgD), or gD and gB (BPSVgD/gB). Immunization of BPSV serologically-positive calves with BPSVgD or BPSVgD/gB induced BoHV-1 neutralization antibodies and provided protection for three of four animals following a high dose BoHV-1 challenge at day 70 pi. Results indicate BPSV suitability as a candidate virus vector for cattle vaccines.


Assuntos
Doenças dos Bovinos , Herpesvirus Bovino 1 , Parapoxvirus , Estomatite , Vacinas , Vacinas Virais , Bovinos , Animais , Parapoxvirus/genética , Anticorpos Antivirais , Herpesvirus Bovino 1/genética , Vacinas Virais/genética , Doenças dos Bovinos/prevenção & controle
11.
Viruses ; 15(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38005821

RESUMO

Classical swine fever (CSF) remains one of the most economically significant viral diseases affecting domestic pigs and wild boars worldwide. To develop a safe and effective vaccine against CSF, we have constructed a triple gene-deleted pseudorabies virus (PRVtmv)-vectored bivalent subunit vaccine against porcine circovirus type 2b (PCV2b) and CSFV (PRVtmv+). In this study, we determined the protective efficacy of the PRVtmv+ against virulent CSFV challenge in pigs. The results revealed that the sham-vaccinated control group pigs developed severe CSFV-specific clinical signs characterized by pyrexia and diarrhea, and became moribund on or before the seventh day post challenge (dpc). However, the PRVtmv+-vaccinated pigs survived until the day of euthanasia at 21 dpc. A few vaccinated pigs showed transient diarrhea but recovered within a day or two. One pig had a low-grade fever for a day but recovered. The sham-vaccinated control group pigs had a high level of viremia, severe lymphocytopenia, and thrombocytopenia. In contrast, the vaccinated pigs had a low-moderate degree of lymphocytopenia and thrombocytopenia on four dpc, but recovered by seven dpc. Based on the gross pathology, none of the vaccinated pigs had any CSFV-specific lesions. Therefore, our results demonstrated that the PRVtmv+ vaccinated pigs are protected against virulent CSFV challenge.


Assuntos
Circovirus , Vírus da Febre Suína Clássica , Peste Suína Clássica , Herpesvirus Suídeo 1 , Linfopenia , Trombocitopenia , Vacinas Virais , Suínos , Animais , Herpesvirus Suídeo 1/genética , Vacinas Virais/genética , Proteínas do Envelope Viral , Anticorpos Antivirais , Sus scrofa , Diarreia
12.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762254

RESUMO

The Zika Virus (ZIKV) is an emerging arbovirus of great public health concern, particularly in the Americas after its last outbreak in 2015. There are still major challenges regarding disease control, and there is no ZIKV vaccine currently approved for human use. Among many different vaccine platforms currently under study, the recombinant envelope protein from Zika Virus (rEZIKV) constitutes an alternative option for vaccine development and has great potential for monitoring ZIKV infection and antibody response. This study describes a method to obtain a bioactive and functional rEZIKV using an E. coli expression system, with the aid of a 5-L airlift bioreactor and following an automated fast protein liquid chromatography (FPLC) protocol, capable of obtaining high yields of approximately 20 mg of recombinant protein per liter of bacterium cultures. The purified rEZIKV presented preserved antigenicity and immunogenicity. Our results show that the use of an airlift bioreactor for the production of rEZIKV is ideal for establishing protocols and further research on ZIKV vaccines bioprocess, representing a promising system for the production of a ZIKV envelope recombinant protein-based vaccine candidate.


Assuntos
Vacinas Virais , Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Proteínas do Envelope Viral/genética , Anticorpos Neutralizantes , Escherichia coli , Anticorpos Antivirais , Vacinas Virais/genética , Vacinas de Subunidades Antigênicas/genética , Proteínas Recombinantes/genética , Reatores Biológicos
13.
Comp Immunol Microbiol Infect Dis ; 101: 102054, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37651789

RESUMO

Porcine circovirus type 2 (PCV2) plays a key role in the etiology of PCV2-associated disease (PCVAD), and its predominant strain is PCV2d which is not completely controlled by most commercially available vaccines against PCV2a strains. Pseudorabies (PR) caused by pseudorabies virus (PRV) variants re-emerged in Bartha-K61 vaccine-immunized swine herds in late 2011, which brought considerable losses to the global pig husbandry. Therefore, it is significantly important to develop a safe and effective vaccine against both PCV2d and PRV infection. In the present study, the PCV2d ORF2 gene was amplified by PCR, and cloned into the BamHI site of PRV transfer plasmid pG vector to obtain the recombinant transfer plasmid pG-PCV2dCap-EGFP. Subsequently, it was transfected into ST cells infected with the three gene deleted PRV variant strain NY-gE-/gI-/TK- to generate a recombinant virus rPRV NY-gE-/gI-/TK-/PCV2dCap+/EGFP+, and then the EGFP gene was knocked out to harvest the rPRV NY-gE-/gI-/TK-/PCV2dCap+ using gene-editing technology termed CRISPR/Cas9 system. The recombinant virus rPRV NY-gE-/gI-/TK-/PCV2dCap+ had similar genetic stability and proliferation characteristics to the parental PRV as indicated by PCR and one-step growth curve test, and the expression of Cap was validated by Western blot. In animal experiment, higher PCV2-specific ELISA antibodies and detectable PCV2-specific neutralizing antibodies could be elicited in mice immunized with rPRV NY-gE-/gI-/TK-/PCV2dCap+ compared to commercial PCV2 inactivated vaccine. Moreover, the recombinant virus rPRV NY-gE-/gI-/TK-/PCV2dCap+ significantly reduced the viral loads in the hearts, livers, spleens, lungs, and kidneys in mice following a virulent PCV2d challenge. Mice immunized with rPRV NY-gE-/gI-/TK-/PCV2dCap+ developed comparable PRV-specific humoral immune responses and provided complete protection against a lethal PRV challenge. Together, the rPRV NY-gE-/gI-/TK-/PCV2dCap+ recombinant strain has strong immunogenicity.


Assuntos
Circovirus , Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Camundongos , Herpesvirus Suídeo 1/genética , Circovirus/genética , Pseudorraiva/prevenção & controle , Proteínas do Envelope Viral/genética , Vacinas Virais/genética , Anticorpos Antivirais
14.
Curr Opin Virol ; 61: 101334, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37276833

RESUMO

The world is in need of next-generation COVID-19 vaccines. Although first-generation injectable COVID-19 vaccines continue to be critical tools in controlling the current global health crisis, continuous emergence of SARS-CoV-2 variants of concern has eroded the efficacy of these vaccines, leading to staggering breakthrough infections and posing threats to poor vaccine responders. This is partly because the humoral and T-cell responses generated following intramuscular injection of spike-centric monovalent vaccines are mostly confined to the periphery, failing to either access or be maintained at the portal of infection, the respiratory mucosa (RM). In contrast, respiratory mucosal-delivered vaccine can induce immunity encompassing humoral, cellular, and trained innate immunity positioned at the respiratory mucosa that may act quickly to prevent the establishment of an infection. Viral vectors, especially adenoviruses, represent the most promising platform for RM delivery that can be designed to express both structural and nonstructural antigens of SARS-CoV-2. Boosting RM immunity via the respiratory route using multivalent adenoviral-vectored vaccines would be a viable next-generation vaccine strategy.


Assuntos
COVID-19 , Vacinas , Vacinas Virais , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2/genética , Vacinas Combinadas , Adenoviridae/genética , Mucosa Respiratória , Anticorpos Antivirais , Anticorpos Neutralizantes , Vacinas Virais/genética
15.
Vaccine ; 41(33): 4787-4797, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37355454

RESUMO

Coronavirus disease 2019 (Covid-19) caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) became a pandemic, causing significant burden on public health worldwide. Although the timely development and production of mRNA and adenoviral vector vaccines against SARS-CoV-2 have been successful, issues still exist in vaccine platforms for wide use and production. With the potential for proliferative capability and heat stability, the Newcastle disease virus (NDV)-vectored vaccine is a highly economical and conceivable candidate for treating emerging diseases. In this study, a recombinant NDV-vectored vaccine expressing the spike (S) protein of SARS-CoV-2, rK148/beta-S, was developed and evaluated for its efficacy against SARS-CoV-2 in K18-hACE-2 transgenic mice. Intramuscular vaccination with low dose (106.0 EID50) conferred a survival rate of 76 % after lethal challenge of a SARS-CoV-2 beta (B.1.351) variant. When administered with a high dose (107.0 EID50), vaccinated mice exhibited 100 % survival rate and reduced lung viral load against both beta and delta variants (B.1.617.2). Together with the protective immunity, rK148/beta-S is an accessible and cost-effective SARS-CoV-2 vaccine.


Assuntos
COVID-19 , Vacinas Virais , Camundongos , Animais , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Vacinas contra COVID-19 , Vírus da Doença de Newcastle/genética , Camundongos Transgênicos , Vacinas Virais/genética , Anticorpos Antivirais , Anticorpos Neutralizantes
16.
Virology ; 584: 9-23, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201320

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a porcine enteropathogenic coronavirus causing severe watery diarrhea, vomiting, dehydration, and death in piglets. However, most commercial vaccines are developed based on the GI genotype strains, and have poor immune protection against the currently dominant GII genotype strains. Therefore, four novel replication-deficient human adenovirus 5-vectored vaccines expressing codon-optimized forms of the GIIa and GIIb strain spike and S1 glycoproteins were constructed, and their immunogenicity was evaluated in mice by intramuscular (IM) injection. All the recombinant adenoviruses generated robust immune responses, and the immunogenicity of recombinant adenoviruses against the GIIa strain was stronger than that of recombinant adenoviruses against the GIIb strain. Moreover, Ad-XT-tPA-Sopt-vaccinated mice elicited optimal immune effects. In contrast, mice immunized with Ad-XT-tPA-Sopt by oral gavage did not induce strong immune responses. Overall, IM administration of Ad-XT-tPA-Sopt is a promising strategy against PEDV, and this study provides useful information for developing viral vector-based vaccines.


Assuntos
Adenovírus Humanos , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vacinas Virais , Animais , Suínos , Camundongos , Humanos , Anticorpos Antivirais , Vírus da Diarreia Epidêmica Suína/genética , Vacinas Sintéticas/genética , Vacinas Virais/genética , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Genótipo , Glicoproteína da Espícula de Coronavírus/genética
17.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(7): 1082-1095, 2023 Jul 06.
Artigo em Chinês | MEDLINE | ID: mdl-37198717

RESUMO

During the global efforts to prevent and control the COVID-19 pandemic, extensive research and development of SARS-CoV-2 vaccines using various technical approaches have taken place. Among these, vaccines based on adenovirus vector have gained substantial knowledge and experience in effectively combating potential emerging infectious diseases, while also providing novel ideas and methodologies for vaccine research and development (R&D). This comprehensive review focuses on the adenovirus vector technology platform in vaccine R&D, emphasizing the importance of mucosal immunity induced by adenoviral vector-based vaccine for COVID-19 prevention. Furthermore, it analyzes the key technical challenges and obstacles encountered in the development of vaccines based on the adenovirus vector technology platform, with the aim of providing valuable insights and references for researchers and professionals in related fields.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Vacinas contra COVID-19 , Pandemias/prevenção & controle , COVID-19/prevenção & controle , SARS-CoV-2/genética , Vacinas Virais/genética , Adenoviridae/genética , Tecnologia
18.
Sci Rep ; 13(1): 8189, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210393

RESUMO

Severe fever with thrombocytopenia syndrome virus was first discovered in 2009 as the causative agent of severe fever with thrombocytopenia syndrome. Despite its potential threat to public health, no prophylactic vaccine is yet available. This study developed a heterologous prime-boost strategy comprising priming with recombinant replication-deficient human adenovirus type 5 (rAd5) expressing the surface glycoprotein, Gn, and boosting with Gn protein. This vaccination regimen induced balanced Th1/Th2 immune responses and resulted in potent humoral and T cell-mediated responses in mice. It elicited high neutralizing antibody titers in both mice and non-human primates. Transcriptome analysis revealed that rAd5 and Gn proteins induced adaptive and innate immune pathways, respectively. This study provides immunological and mechanistic insight into this heterologous regimen and paves the way for future strategies against emerging infectious diseases.


Assuntos
Adenovírus Humanos , Febre Grave com Síndrome de Trombocitopenia , Vacinas Virais , Animais , Camundongos , Vacinas Virais/genética , Vacinação/métodos , Linfócitos T , Vetores Genéticos/genética , Anticorpos Antivirais , Imunização Secundária/métodos
19.
Signal Transduct Target Ther ; 8(1): 149, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029123

RESUMO

Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.


Assuntos
Doenças Transmissíveis , Orthomyxoviridae , Vacinas Virais , Animais , Humanos , Vacinas Virais/genética , Vacinas Virais/uso terapêutico , Vetores Genéticos , Orthomyxoviridae/genética , Adenoviridae/genética
20.
Microbiol Spectr ; 11(3): e0402422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036344

RESUMO

When it comes to the prevention of clinical signs and mortality associated with infection of the Newcastle disease virus (NDV), vaccination has been very effective. However, recent evidence has proven that more highly virulent strains are emerging that bypass existing immune protection and pose a serious threat to the global poultry industry. Here, a novel rescued adenovirus 5-coexpressed chicken granulocyte monocyte colony-stimulating factor (ChGM-CSF) bio-adjuvant and C22-hemagglutinin-neuraminidase (HN) boosted chickens' immunological genetic resistance and thus improved the immunological effectiveness of the critical new-generation vaccine in vitro and in vivo. Accordingly, the hemagglutination inhibition (HI) titers (log2) of the recombinant adenovirus (rAdv)-ChGM-CSF-HN-immunized chickens had greater, more persistent, and longer-lasting NDV-specific antibodies than the La Sota and rAdv-HN-inoculated birds. Moreover, humoral and adaptive immunological conditions were shown to be in harmony after rAdv-ChGM-CSF-HN inoculation and uniformly enhanced the expression of alpha interferon (IFN-α), IFN-ß, IFN-γ, interleukin-1ß (IL-1ß), IL-2, IL-16, IL-18, and IL-22. Postchallenge, the control challenge (CC), wild-type adenovirus (wtAdv), and rAdv-ChGM-CSF groups developed unique NDV clinical manifestations, significant viral shedding, high tissue viral loads, gross and microscopic lesions, and 100% mortality within 7 days. The La Sota, rAdv-HN, and rAdv-ChGM-CSF-HN groups were healthy and had 100% survival rates. The rAdv-ChGM-CSF-HN group swiftly regulated and stopped viral shedding and had lower tissue viral loads than all groups at 5 days postchallenge (dpc). Thus, the antiviral activity of ChGM-CSF offered robust immune protection in the face of challenge and reduced viral replication convincingly. Our advance innovation concepts, combining ChGM-CSF with a field-circulating strain epitope, could lead to the development of a safe, genotype-matched, universal transgenic vaccine that could eradicate the disease globally, reducing poverty and food insecurity. IMPORTANCE We studied the biological characterization of the developed functional synthetic recombinant adenoviruses, which showed a high degree of safety, thermostability, and genetic stability for up to 20 passages. It was demonstrated through both in vitro and in vivo testing that the immunogenicity of the proposed vaccine, which uses the T2A peptide from the Thosea asigna virus capsid protein supported by glycine and serine, helps with efficiency to generate a multicistronic vector, enables expression of two functional proteins in rAdv-ChGM-CSF-HN, and is superior to that of comparable vaccines. Additionally, adenovirus can be used to produce vaccines matching the virulent field-circulating strain epitope. Because there is no preexisting human adenoviral immunity detected in animals, the potency of adenoviral vaccines looks promising. Also, it ensures that the living vector does not carry the resistance gene that codes for the kanamycin antibiotic. Accordingly, a human recombinant adenoviral vaccine that has undergone biological improvements is beneficial and important.


Assuntos
Infecções por Adenoviridae , Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Humanos , Animais , Vírus da Doença de Newcastle/genética , Galinhas , Neuraminidase , Hemaglutininas , Doença de Newcastle/prevenção & controle , Adenoviridae , Antivirais , Monócitos , Vacinas Virais/genética , Vacinas Sintéticas , Genótipo , Anticorpos Antivirais , Fatores Estimuladores de Colônias/genética , Granulócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA