Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
1.
Int J Biol Macromol ; 267(Pt 2): 131517, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621559

RESUMO

Infection with the hepatitis C virus (HCV) is one of the causes of liver cancer, which is the world's sixth most prevalent and third most lethal cancer. The current treatments do not prevent reinfection; because they are expensive, their usage is limited to developed nations. Therefore, a prophylactic vaccine is essential to control this virus. Hence, in this study, an immunoinformatics method was applied to design a multi-epitope vaccine against HCV. The best B- and T-cell epitopes from conserved regions of the E2 protein of seven HCV genotypes were joined with the appropriate linkers to design a multi-epitope vaccine. In addition, cholera enterotoxin subunit B (CtxB) was included as an adjuvant in the vaccine construct. This study is the first to present this epitopes-adjuvant combination. The vaccine had acceptable physicochemical characteristics. The vaccine's 3D structure was predicted and validated. The vaccine's binding stability with Toll-like receptor 2 (TLR2) and TLR4 was confirmed using molecular docking and molecular dynamics (MD) simulation. The immune simulation revealed the vaccine's efficacy by increasing the population of B and T cells in response to vaccination. In silico expression in Escherichia coli (E. coli) was also successful.


Assuntos
Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Hepacivirus , Hepatite C , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Hepacivirus/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Humanos , Biologia Computacional/métodos , Hepatite C/prevenção & controle , Hepatite C/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/química , Vacinas contra Hepatite Viral/imunologia , Vacinas contra Hepatite Viral/química , Simulação por Computador , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/química , Imunoinformática
2.
Science ; 378(6617): 263-269, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264808

RESUMO

Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma in humans and afflicts more than 58 million people worldwide. The HCV envelope E1 and E2 glycoproteins are essential for viral entry and comprise the primary antigenic target for neutralizing antibody responses. The molecular mechanisms of E1E2 assembly, as well as how the E1E2 heterodimer binds broadly neutralizing antibodies, remain elusive. Here, we present the cryo-electron microscopy structure of the membrane-extracted full-length E1E2 heterodimer in complex with three broadly neutralizing antibodies-AR4A, AT1209, and IGH505-at ~3.5-angstrom resolution. We resolve the interface between the E1 and E2 ectodomains and deliver a blueprint for the rational design of vaccine immunogens and antiviral drugs.


Assuntos
Hepacivirus , Hepatite C , Proteínas do Envelope Viral , Humanos , Antivirais/química , Anticorpos Amplamente Neutralizantes , Microscopia Crioeletrônica , Hepacivirus/química , Hepacivirus/imunologia , Hepatite C/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Multimerização Proteica , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/imunologia
3.
Proc Natl Acad Sci U S A ; 119(11): e2112008119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263223

RESUMO

SignificanceHepatitis C virus chronically infects approximately 1% of the world's population, making an effective vaccine for hepatitis C virus a major unmet public health need. The membrane-associated E1E2 envelope glycoprotein has been used in clinical studies as a vaccine candidate. However, limited neutralization breadth and difficulty in producing large amounts of homogeneous membrane-associated E1E2 have hampered efforts to develop an E1E2-based vaccine. Our previous work described the design and biochemical validation of a native-like soluble secreted form of E1E2 (sE1E2). Here, we describe the immunogenic characterization of the sE1E2 complex. sE1E2 elicited broadly neutralizing antibodies in immunized mice, with increased neutralization breadth relative to the membrane-associated E1E2, thereby validating this platform as a promising model system for vaccine development.


Assuntos
Anticorpos Amplamente Neutralizantes , Anticorpos Anti-Hepatite C , Hepatite C , Imunogenicidade da Vacina , Proteínas do Envelope Viral , Vacinas contra Hepatite Viral , Animais , Anticorpos Amplamente Neutralizantes/biossíntese , Anticorpos Amplamente Neutralizantes/sangue , Hepatite C/prevenção & controle , Anticorpos Anti-Hepatite C/biossíntese , Anticorpos Anti-Hepatite C/sangue , Camundongos , Multimerização Proteica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/imunologia
4.
J Virol ; 96(5): e0167521, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34986001

RESUMO

A vaccine to prevent hepatitis C virus (HCV) infection is urgently needed for use alongside direct-acting antiviral drugs to achieve elimination targets. We have previously shown that a soluble recombinant form of the glycoprotein E2 ectodomain (residues 384 to 661) that lacks three variable regions (Δ123) is able to elicit a higher titer of broadly neutralizing antibodies (bNAbs) than the parental form (receptor-binding domain [RBD]). In this study, we engineered a viral nanoparticle that displays HCV glycoprotein E2 on a duck hepatitis B virus (DHBV) small surface antigen (S) scaffold. Four variants of E2-S virus-like particles (VLPs) were constructed: Δ123-S, RBD-S, Δ123A7-S, and RBDA7-S; in the last two, 7 cysteines were replaced with alanines. While all four E2-S variant VLPs display E2 as a surface antigen, the Δ123A7-S and RBDA7-S VLPs were the most efficiently secreted from transfected mammalian cells and displayed epitopes recognized by cross-genotype broadly neutralizing monoclonal antibodies (bNMAbs). Both Δ123A7-S and RBDA7-S VLPs were immunogenic in guinea pigs, generating high titers of antibodies reactive to native E2 and able to prevent the interaction between E2 and the cellular receptor CD81. Four out of eight animals immunized with Δ123A7-S elicited neutralizing antibodies (NAbs), with three of those animals generating bNAbs against 7 genotypes. Immune serum generated by animals with NAbs mapped to major neutralization epitopes located at residues 412 to 420 (epitope I) and antigenic region 3. VLPs that display E2 glycoproteins represent a promising vaccine platform for HCV and could be adapted to large-scale manufacturing in yeast systems. IMPORTANCE There is currently no vaccine to prevent hepatitis C virus infection, which affects more than 71 million people globally and is a leading cause of progressive liver disease, including cirrhosis and cancer. Broadly neutralizing antibodies that recognize the E2 envelope glycoprotein can protect against heterologous viral infection and correlate with viral clearance in humans. However, broadly neutralizing antibodies are difficult to generate due to conformational flexibility of the E2 protein and epitope occlusion. Here, we show that a VLP vaccine using the duck hepatitis B virus S antigen fused to HCV glycoprotein E2 assembles into virus-like particles that display epitopes recognized by broadly neutralizing antibodies and elicit such antibodies in guinea pigs. This platform represents a novel HCV vaccine candidate amenable to large-scale manufacture at low cost.


Assuntos
Hepacivirus , Hepatite C , Proteínas do Envelope Viral , Vacinas contra Hepatite Viral , Animais , Antígenos de Superfície/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Epitopos/imunologia , Cobaias , Hepacivirus/genética , Hepacivirus/imunologia , Antígenos de Superfície da Hepatite B/química , Hepatite C/imunologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia
5.
Gastroenterology ; 162(2): 562-574, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34655573

RESUMO

BACKGROUND & AIMS: Development of a prophylactic hepatitis C virus (HCV) vaccine will require accurate and reproducible measurement of neutralizing breadth of vaccine-induced antibodies. Currently available HCV panels may not adequately represent the genetic and antigenic diversity of circulating HCV strains, and the lack of standardization of these panels makes it difficult to compare neutralization results obtained in different studies. Here, we describe the selection and validation of a genetically and antigenically diverse reference panel of 15 HCV pseudoparticles (HCVpps) for neutralization assays. METHODS: We chose 75 envelope (E1E2) clones to maximize representation of natural polymorphisms observed in circulating HCV isolates, and 65 of these clones generated functional HCVpps. Neutralization sensitivity of these HCVpps varied widely. HCVpps clustered into 15 distinct groups based on patterns of relative sensitivity to 7 broadly neutralizing monoclonal antibodies. We used these data to select a final panel of 15 antigenically representative HCVpps. RESULTS: Both the 65 and 15 HCVpp panels span 4 tiers of neutralization sensitivity, and neutralizing breadth measurements for 7 broadly neutralizing monoclonal antibodies were nearly equivalent using either panel. Differences in neutralization sensitivity between HCVpps were independent of genetic distances between E1E2 clones. CONCLUSIONS: Neutralizing breadth of HCV antibodies should be defined using viruses spanning multiple tiers of neutralization sensitivity rather than panels selected solely for genetic diversity. We propose that this multitier reference panel could be adopted as a standard for the measurement of neutralizing antibody potency and breadth, facilitating meaningful comparisons of neutralization results from vaccine studies in different laboratories.


Assuntos
Variação Antigênica/imunologia , Antígenos Virais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Hepacivirus/imunologia , Testes de Neutralização/métodos , Proteínas do Envelope Viral/imunologia , Variação Antigênica/genética , Antígenos Virais/genética , Linhagem Celular Tumoral , Hepacivirus/genética , Hepatite C/prevenção & controle , Humanos , Imunogenicidade da Vacina , Reprodutibilidade dos Testes , Desenvolvimento de Vacinas , Proteínas do Envelope Viral/genética , Vacinas contra Hepatite Viral/imunologia
6.
Sci Rep ; 11(1): 21856, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750487

RESUMO

Hepatitis C is a major threat to public health for which an effective treatment is available, but a prophylactic vaccine is still needed to control this disease. We designed a vaccine based on chimeric HBV-HCV envelope proteins forming subviral particles (SVPs) that induce neutralizing antibodies against HCV in vitro. Here, we aimed to increase the neutralizing potential of those antibodies, by using HBV-HCV SVPs bearing apolipoprotein E (apoE). These particles were produced by cultured stable mammalian cell clones, purified and characterized. We found that apoE was able to interact with both chimeric HBV-HCV (E1-S and E2-S) proteins, and with the wild-type HBV S protein. ApoE was also detected on the surface of purified SVPs and improved the folding of HCV envelope proteins, but its presence lowered the incorporation of E2-S protein. Immunization of New Zealand rabbits resulted in similar anti-S responses for all rabbits, whereas anti-E1/-E2 antibody titers varied according to the presence or absence of apoE. Regarding the neutralizing potential of these anti-E1/-E2 antibodies, it was higher in rabbits immunized with apoE-bearing particles. In conclusion, the association of apoE with HCV envelope proteins may be a good strategy for improving HCV vaccines based on viral envelope proteins.


Assuntos
Apolipoproteínas E/administração & dosagem , Apolipoproteínas E/imunologia , Hepacivirus/imunologia , Vírus da Hepatite B/imunologia , Vacinas contra Hepatite Viral/administração & dosagem , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/sangue , Apresentação de Antígeno/imunologia , Linhagem Celular , Feminino , Hepatite C/imunologia , Hepatite C/prevenção & controle , Anticorpos Anti-Hepatite C/biossíntese , Anticorpos Anti-Hepatite C/sangue , Humanos , Evasão da Resposta Imune , Coelhos , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/imunologia , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/imunologia
7.
Viruses ; 13(7)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34372558

RESUMO

Thirty years after its discovery, the hepatitis C virus (HCV) remains a leading cause of liver disease worldwide. Given that many countries continue to experience high rates of transmission despite the availability of potent antiviral therapies, an effective vaccine is seen as critical for the elimination of HCV. The recent failure of the first vaccine efficacy trial for the prevention of chronic HCV confirmed suspicions that this virus will be a challenging vaccine target. Here, we examine the published data from this first efficacy trial along with the earlier clinical and pre-clinical studies of the vaccine candidate and then discuss three key research directions expected to be important in ongoing and future HCV vaccine development. These include the following: 1. design of novel immunogens that generate immune responses to genetically diverse HCV genotypes and subtypes, 2. strategies to elicit broadly neutralizing antibodies against envelope glycoproteins in addition to cytotoxic and helper T cell responses, and 3. consideration of the unique immunological status of individuals most at risk for HCV infection, including those who inject drugs, in vaccine platform development and early immunogenicity trials.


Assuntos
Hepacivirus/genética , Hepatite C/prevenção & controle , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Antígenos da Hepatite C/imunologia , Humanos , Proteínas do Envelope Viral/genética , Vacinas contra Hepatite Viral/farmacologia
8.
PLoS One ; 16(8): e0256816, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34449828

RESUMO

BACKGROUND: Around 30% of the HCV infected patients can spontaneously clear the virus. Cumulative evidence suggests the role of neutralizing antibodies in such spontaneous resolution. Understanding the epitope specificity of such antibodies will inform the rational vaccine design as such information is limited to date. In addition to conformational epitope targeted antibodies, linear epitope specific antibodies have been identified that are broadly cross reactive against diverse HCV strains. In this study, we have characterized the potential role of three conserved linear epitopes in the spontaneous clearance of HCV. METHODS: We tested the reactivity of sera from chronic patients (CP) and spontaneous resolvers (SR) with linear peptides corresponding to three conserved regions of HCV envelope protein E2 spanning amino acids 412-423, 523-532 and 432-443 using ELISA. Subsequently, we characterized the dependency of HCV neutralization by the reactive serum samples on the antibodies specific for these epitopes using pseudoparticle-based neutralization assay. In ELISA most of the CP sera showed reactivity to multiple peptides while most of the SR samples were reactive to a single peptide suggesting presence of more specific antibodies in the SR sera. In most of the HCVpp neutralizing sera of particular peptide reactivity the neutralization was significantly affected by the presence of respective peptide. HCV neutralization by CP sera was affected by multiple peptides while 75% of the HCVpp neutralizing SR sera were competed by the 432 epitope. CONCLUSIONS: These findings suggest that individuals who spontaneously resolve HCV infection at the acute phase, can produce antibodies specific for conserved linear epitopes, and those antibodies can potentially play a role in the spontaneous viral clearance. The epitope present in the 432-443 region of E2 was identified as the primary neutralizing epitope with potential role in spontaneous viral clearance and this epitope potentiates for the design of immunogen for prophylactic vaccine.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/prevenção & controle , Vacinas contra Hepatite Viral/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/genética , Reações Cruzadas/genética , Reações Cruzadas/imunologia , Epitopos/genética , Genótipo , Hepacivirus/genética , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Hepatite C/genética , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/genética , Humanos , Testes de Neutralização , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/genética
9.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206987

RESUMO

Hepatitis C virus (HCV) is one of the main triggers of chronic liver disease. Despite tremendous progress in the HCV field, there is still no vaccine against this virus. Potential vaccines can be based on its recombinant proteins. To increase the humoral and, especially, cellular immune response to them, more effective adjuvants are needed. Here, we evaluated a panel of compounds as potential adjuvants using the HCV NS5B protein as an immunogen. These compounds included inhibitors of polyamine biosynthesis and urea cycle, the mTOR pathway, antioxidants, and cellular receptors. A pronounced stimulation of cell proliferation and interferon-γ (IFN-γ) secretion in response to concanavalin A was shown for antioxidant N-acetylcysteine (NAC), polyamine biosynthesis inhibitor 2-difluoromethylornithine (DFMO), and TLR9 agonist CpG ODN 1826 (CpG). Their usage during the immunization of mice with the recombinant NS5B protein significantly increased antibody titers, enhanced lymphocyte proliferation and IFN-γ production. NAC and CpG decreased relative Treg numbers; CpG increased the number of myeloid-derived suppressor cells (MDSCs), whereas neither NAC nor DFMO affected MDSC counts. NAC and DFMO suppressed NO and interleukin 10 (IL-10) production by splenocytes, while DFMO increased the levels of IL-12. This is the first evidence of immunomodulatory activity of NAC and DFMO during prophylactic immunization against infectious diseases.


Assuntos
Acetilcisteína/farmacologia , Adjuvantes Imunológicos/farmacologia , Eflornitina/farmacologia , Hepatite C/imunologia , Imunidade Ativa/efeitos dos fármacos , Proteínas não Estruturais Virais/imunologia , Animais , Proliferação de Células , Células Cultivadas , Feminino , Imunogenicidade da Vacina/efeitos dos fármacos , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos DBA , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Óxido Nítrico/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Vacinas contra Hepatite Viral/imunologia
10.
PLoS One ; 16(7): e0255336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34329365

RESUMO

Yearly, about 1.5 million people become chronically infected with hepatitis C virus (HCV) and for the 71 million with chronic HCV infection about 400,000 die from related morbidities, including liver cirrhosis and cancer. Effective treatments exist, but challenges including cost-of-treatment and wide-spread undiagnosed infection, necessitates the development of vaccines. Vaccines should induce neutralizing antibodies (NAbs) against the HCV envelope (E) transmembrane glycoprotein 2, E2, which partly depends on its interaction partner, E1, for folding. Here, we generated three soluble HCV envelope protein antigens with the transmembrane regions deleted (i.e., fused peptide backbones), termed sE1E2 (E1 followed by E2), sE2E1 (E2 followed by E1), and sE21E (E2 followed by inverted E1). The E1 inversion for sE21E positions C-terminal residues of E1 near C-terminal residues of E2, which is in analogy to how they likely interact in native E1/E2 complexes. Probing conformational E2 epitope binding using HCV patient-derived human monoclonal antibodies, we show that sE21E was superior to sE2E1, which was consistently superior to sE1E2. This correlated with improved induction of NAbs by sE21E compared with sE2E1 and especially compared with sE1E2 in female BALB/c mouse immunizations. The deletion of the 27 N-terminal amino acids of E2, termed hypervariable region 1 (HVR1), conferred slight increases in antigenicity for sE2E1 and sE21E, but severely impaired induction of antibodies able to neutralize in vitro viruses retaining HVR1. Finally, comparing sE21E with sE2 in mouse immunizations, we show similar induction of heterologous NAbs. In summary, we find that C-terminal E2 fusion of E1 or 1E is superior to N-terminal fusion, both in terms of antigenicity and the induction of heterologous NAbs. This has relevance when designing HCV E1E2 vaccine antigens.


Assuntos
Antígenos Virais , Hepacivirus , Anticorpos Anti-Hepatite C/imunologia , Proteínas do Envelope Viral , Vacinas contra Hepatite Viral , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/farmacologia , Avaliação de Medicamentos , Feminino , Células HEK293 , Hepacivirus/genética , Hepacivirus/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Solubilidade , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/farmacologia , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/imunologia , Vacinas contra Hepatite Viral/farmacologia
11.
Viruses ; 13(5)2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063143

RESUMO

A hepatitis C virus (HCV) vaccine is a critical yet unfulfilled step in addressing the global disease burden of HCV. While decades of research have led to numerous clinical and pre-clinical vaccine candidates, these efforts have been hindered by factors including HCV antigenic variability and immune evasion. Structure-based and rational vaccine design approaches have capitalized on insights regarding the immune response to HCV and the structures of antibody-bound envelope glycoproteins. Despite successes with other viruses, designing an immunogen based on HCV glycoproteins that can elicit broadly protective immunity against HCV infection is an ongoing challenge. Here, we describe HCV vaccine design approaches where immunogens were selected and optimized through analysis of available structures, identification of conserved epitopes targeted by neutralizing antibodies, or both. Several designs have elicited immune responses against HCV in vivo, revealing correlates of HCV antigen immunogenicity and breadth of induced responses. Recent studies have elucidated the functional, dynamic and immunological features of key regions of the viral envelope glycoproteins, which can inform next-generation immunogen design efforts. These insights and design strategies represent promising pathways to HCV vaccine development, which can be further informed by successful immunogen designs generated for other viruses.


Assuntos
Hepacivirus/química , Hepacivirus/imunologia , Antígenos da Hepatite C/química , Antígenos da Hepatite C/imunologia , Desenvolvimento de Vacinas/métodos , Animais , Anticorpos Neutralizantes/imunologia , Ensaios Clínicos como Assunto , Anticorpos Anti-Hepatite C/imunologia , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia
12.
Viruses ; 13(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946211

RESUMO

Direct-acting antiviral agents have proven highly effective at treating existing hepatitis C infections but despite their availability most countries will not reach the World Health Organization targets for elimination of HCV by 2030. A prophylactic vaccine remains a high priority. Whilst early vaccines focused largely on generating T cell immunity, attention is now aimed at vaccines that generate humoral immunity, either alone or in combination with T cell-based vaccines. High-resolution structures of hepatitis C viral glycoproteins and their interaction with monoclonal antibodies isolated from both cleared and chronically infected people, together with advances in vaccine technologies, provide new avenues for vaccine development.


Assuntos
Bioengenharia , Hepacivirus/imunologia , Hepatite C/imunologia , Hepatite C/prevenção & controle , Interações Hospedeiro-Patógeno/imunologia , Imunidade Humoral , Vacinas contra Hepatite Viral/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos Virais/química , Antígenos Virais/imunologia , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Modelos Moleculares , Pesquisa , Relação Estrutura-Atividade , Vacinologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/classificação
13.
Protein Expr Purif ; 183: 105864, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33677084

RESUMO

In this study, we describe an optimized method of obtaining virus-like particles (VLPs) of the recombinant hepatitis C virus (HCV) core protein (HCcAg) expressed in yeast cells (Pichia pastoris), which can be used for the construction of diagnostic test systems and vaccine engineering. The described simplified procedure was developed to enable in vitro self-assembly of HCcAg molecules into VLPs during protein purification. In brief, the HCcAg protein was precipitated from yeast cell lysates with ammonium sulfate and renatured by gel filtration on Sephadex G-25 under reducing conditions. VLPs were self-assembled after the removal of the reducing agent by gel filtration on Sephadex G-25. Protein purity and specificity were evaluated by SDS-PAGE and immunoblotting analysis. The molecular mass of VLPs and their relative quantity were measured by HPLC, followed by confirmation of VLPs production and estimation of their shape and size by transmission electron microscopy. As a result, we obtained recombinant HCcAg preparation (with ~90% purity) in the form of VLPs and monomers, which has been used to produce hybridomas secreting monoclonal antibodies (mAbs) against HCcAg.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Hepacivirus , Anticorpos Anti-Hepatite C/imunologia , Saccharomycetales , Vacinas de Partículas Semelhantes a Vírus , Proteínas do Core Viral , Vacinas contra Hepatite Viral , Animais , Feminino , Hepacivirus/genética , Hepacivirus/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Saccharomycetales/genética , Saccharomycetales/metabolismo , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Proteínas do Core Viral/biossíntese , Proteínas do Core Viral/genética , Proteínas do Core Viral/imunologia , Proteínas do Core Viral/isolamento & purificação , Vacinas contra Hepatite Viral/biossíntese , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/imunologia , Vacinas contra Hepatite Viral/isolamento & purificação
14.
PLoS Pathog ; 17(3): e1009391, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33735321

RESUMO

There is an urgent need for a vaccine to prevent chronic infection by hepatitis C virus (HCV) and its many genetic variants. The first human vaccine trial, using recombinant viral vectors that stimulate pan-genotypic T cell responses against HCV non-structural proteins, failed to demonstrate efficacy despite significant preclinical promise. Understanding the factors that govern HCV T cell vaccine success is necessary for design of improved immunization strategies. Using a rat model of chronic rodent hepacivirus (RHV) infection, we assessed the impact of antigenic variation and immune escape upon success of a conceptually analogous RHV T cell vaccine. Naïve Lewis rats were vaccinated with a recombinant human adenovirus expressing RHV non-structural proteins (NS)3-5B and later challenged with a viral variant containing immune escape mutations within major histocompatibility complex (MHC) class I-restricted epitopes (escape virus). Whereas 7 of 11 (64%) rats cleared infection caused by wild-type RHV, only 3 of 12 (25%) were protected against heterologous challenge with escape virus. Uncontrolled replication of escape virus was associated with durable CD8 T cell responses targeting escaped epitopes alone. In contrast, clearance of escape virus correlated with CD4 T cell helper immunity and maintenance of CD8 T cell responses against intact viral epitopes. Interestingly, clearance of wild-type RHV infection after vaccination conferred enhanced protection against secondary challenge with escape virus. These results demonstrate that the efficacy of an RHV T cell vaccine is reduced when challenge virus contains escape mutations within MHC class I-restricted epitopes and that failure to sustain CD8 T cell responses against intact epitopes likely underlies immune failure in this setting. Further investigation of the immune responses that yield protection against diverse RHV challenges in this model may facilitate design of broadly effective HCV vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Hepacivirus/genética , Hepatite C Crônica/imunologia , Hepatite C Crônica/virologia , Vacinas contra Hepatite Viral/imunologia , Adenoviridae , Animais , Linfócitos T CD4-Positivos/imunologia , Vetores Genéticos , Hepatite C Crônica/prevenção & controle , Mutação , Ratos , Ratos Endogâmicos Lew , Proteínas não Estruturais Virais/genética
15.
J Immunol Res ; 2021: 3108157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33532506

RESUMO

Currently, no vaccine to prevent hepatitis C virus (HCV) infection is available. A major challenge in developing an HCV vaccine is the high diversity of HCV sequences. The purpose of immunization with viral glycoproteins is to induce a potent and long-lasting cellular and humoral immune response. However, this strategy only achieves limited protection, and antigen selection plays a crucial role in vaccine design. In this study, we investigated the humoral immune responses induced by intraperitoneal injection of keyhole limpet hemocyanin conjugated with 4 highly conserved peptides, including amino acids [aa]317-325 from E1 and aa418-429, aa502-518, and aa685-693 from E2, or 3 peptides from hypervariable region 1 (HVR1) of E2, including the N terminus of HVR1 (N-HVR1, aa384-396), C terminus of HVR1 (C-HVR1, aa397-410), and HVR1 in BALB/c mice. The neutralizing activity against HCV genotypes 1-6 was assessed using the cell culture HCV (HCVcc) system. The results showed that the 4 conserved peptides efficiently induced antibodies with potent neutralizing activity against 3 or 4 genotypes. Antibodies induced by aa685-693 conferred potent protection (>50%) against genotypes 2, 4, and 5. Peptide N-HVR1 elicited antibodies with the most potent neutralization activities against 3 HCV genotypes: TNcc(1a), S52(3a), and ED43(4a). These findings suggested that peptides within HCV glycoproteins could serve as potent immunogens for vaccine design and development.


Assuntos
Anticorpos Neutralizantes/imunologia , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia , Adjuvantes Imunológicos , Sequência de Aminoácidos , Animais , Linhagem Celular , Feminino , Genótipo , Hemocianinas , Hepacivirus/genética , Humanos , Soros Imunes/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Peptídeos/química , Peptídeos/imunologia , Vacinas Conjugadas/imunologia
16.
Emerg Microbes Infect ; 10(1): 365-375, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33583360

RESUMO

Concerns about vaccine safety are an important reason for vaccine hesitancy, however, limited information is available on whether common adverse reactions following vaccination affect the immune response. Data from three clinical trials of recombinant vaccines were used in this post hoc analysis to assess the correlation between inflammation-related solicited adverse reactions (ISARs, including local pain, redness, swelling or induration and systematic fever) and immune responses after vaccination. In the phase III trial of the bivalent HPV-16/18 vaccine (Cecolin®), the geometric mean concentrations (GMCs) for IgG anti-HPV-16 and -18 (P<0.001) were significantly higher in participants with any ISAR following vaccination than in those without an ISAR. Local pain, induration, swelling and systemic fever were significantly correlated with higher GMCs for IgG anti-HPV-16 and/or anti-HPV-18, respectively. Furthermore, the analyses of the immunogenicity bridging study of Cecolin® and the phase III trial of a hepatitis E vaccine yielded similar results. Based on these results, we built a scoring model to quantify the inflammation reactions and found that the high score of ISAR indicates the strong vaccine-induced antibody level. In conclusion, this study suggests inflammation-related adverse reactions following vaccination potentially indicate a stronger immune response.


Assuntos
Hepatite E/imunologia , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 18/imunologia , Infecções por Papillomavirus/imunologia , Vacinas contra Papillomavirus/imunologia , Vacinas Sintéticas/imunologia , Vacinas contra Hepatite Viral/imunologia , Adolescente , Adulto , Idoso , Anticorpos Antivirais/imunologia , Feminino , Hepatite E/prevenção & controle , Hepatite E/virologia , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Humanos , Imunidade , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/virologia , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/efeitos adversos , Vacinas contra Papillomavirus/genética , Vacinação/efeitos adversos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas contra Hepatite Viral/administração & dosagem , Vacinas contra Hepatite Viral/efeitos adversos , Vacinas contra Hepatite Viral/genética , Adulto Jovem
17.
N Engl J Med ; 384(6): 541-549, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33567193

RESUMO

BACKGROUND: A safe and effective vaccine to prevent chronic hepatitis C virus (HCV) infection is a critical component of efforts to eliminate the disease. METHODS: In this phase 1-2 randomized, double-blind, placebo-controlled trial, we evaluated a recombinant chimpanzee adenovirus 3 vector priming vaccination followed by a recombinant modified vaccinia Ankara boost; both vaccines encode HCV nonstructural proteins. Adults who were considered to be at risk for HCV infection on the basis of a history of recent injection drug use were randomly assigned (in a 1:1 ratio) to receive vaccine or placebo on days 0 and 56. Vaccine-related serious adverse events, severe local or systemic adverse events, and laboratory adverse events were the primary safety end points. The primary efficacy end point was chronic HCV infection, defined as persistent viremia for 6 months. RESULTS: A total of 548 participants underwent randomization, with 274 assigned to each group. There was no significant difference in the incidence of chronic HCV infection between the groups. In the per-protocol population, chronic HCV infection developed in 14 participants in each group (hazard ratio [vaccine vs. placebo], 1.53; 95% confidence interval [CI], 0.66 to 3.55; vaccine efficacy, -53%; 95% CI, -255 to 34). In the modified intention-to-treat population, chronic HCV infection developed in 19 participants in the vaccine group and 17 in placebo group (hazard ratio, 1.66; 95% CI, 0.79 to 3.50; vaccine efficacy, -66%; 95% CI, -250 to 21). The geometric mean peak HCV RNA level after infection differed between the vaccine group and the placebo group (152.51×103 IU per milliliter and 1804.93×103 IU per milliliter, respectively). T-cell responses to HCV were detected in 78% of the participants in the vaccine group. The percentages of participants with serious adverse events were similar in the two groups. CONCLUSIONS: In this trial, the HCV vaccine regimen did not cause serious adverse events, produced HCV-specific T-cell responses, and lowered the peak HCV RNA level, but it did not prevent chronic HCV infection. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT01436357.).


Assuntos
Anticorpos Anti-Hepatite C/sangue , Hepatite C Crônica/prevenção & controle , Imunogenicidade da Vacina , Vacinas contra Hepatite Viral/imunologia , Adenovirus dos Símios/genética , Adolescente , Adulto , Animais , Método Duplo-Cego , Feminino , Vetores Genéticos , Hepatite C Crônica/epidemiologia , Hepatite C Crônica/imunologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Pan troglodytes , Abuso de Substâncias por Via Intravenosa , Linfócitos T/imunologia , Vacinas Sintéticas/imunologia , Vacinas contra Hepatite Viral/efeitos adversos , Adulto Jovem
18.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431677

RESUMO

Hepatitis C virus (HCV) is a major worldwide health burden, and a preventive vaccine is needed for global control or eradication of this virus. A substantial hurdle to an effective HCV vaccine is the high variability of the virus, leading to immune escape. The E1E2 glycoprotein complex contains conserved epitopes and elicits neutralizing antibody responses, making it a primary target for HCV vaccine development. However, the E1E2 transmembrane domains that are critical for native assembly make it challenging to produce this complex in a homogenous soluble form that is reflective of its state on the viral envelope. To enable rational design of an E1E2 vaccine, as well as structural characterization efforts, we have designed a soluble, secreted form of E1E2 (sE1E2). As with soluble glycoprotein designs for other viruses, it incorporates a scaffold to enforce assembly in the absence of the transmembrane domains, along with a furin cleavage site to permit native-like heterodimerization. This sE1E2 was found to assemble into a form closer to its expected size than full-length E1E2. Preservation of native structural elements was confirmed by high-affinity binding to a panel of conformationally specific monoclonal antibodies, including two neutralizing antibodies specific to native E1E2 and to its primary receptor, CD81. Finally, sE1E2 was found to elicit robust neutralizing antibodies in vivo. This designed sE1E2 can both provide insights into the determinants of native E1E2 assembly and serve as a platform for production of E1E2 for future structural and vaccine studies, enabling rational optimization of an E1E2-based antigen.


Assuntos
Hepacivirus/efeitos dos fármacos , Anticorpos Anti-Hepatite C/biossíntese , Hepatite C/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Neutralizantes/biossíntese , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Feminino , Expressão Gênica , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Hepatite C/imunologia , Hepatite C/patologia , Hepatite C/virologia , Humanos , Imunogenicidade da Vacina , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas/métodos , Multimerização Proteica , Receptores Virais/genética , Receptores Virais/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Solubilidade , Tetraspanina 28/genética , Tetraspanina 28/imunologia , Vacinação , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Vacinas contra Hepatite Viral/administração & dosagem , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/genética
19.
Mol Pharm ; 18(2): 726-734, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32530637

RESUMO

Two well-defined synthetic polyphosphazene immunoadjuvants, PCPP and PCEP, were studied for their ability to potentiate the immune response to the hepatitis C virus (HCV) E2 glycoprotein antigen in vivo. We report that PCEP induced significantly higher serum neutralization and HCV-specific IgG titers in mice compared to other adjuvants used in the study: PCPP, Alum, and Addavax. PCEP also shifted the response toward the desirable balanced Th1/Th2 immunity, as evaluated by the antibody isotype ratio (IgG2a/IgG1). The in vivo results were analyzed in the context of antigen-adjuvant molecular interactions in the system and in vitro immunostimulatory activity of formulations. Asymmetric flow field flow fractionation (AF4) and dynamic light scattering (DLS) analysis showed that both PCPP and PCEP spontaneously self-assemble with the E2 glycoprotein with the formation of multimeric water-soluble complexes, which demonstrates the role of polyphosphazene macromolecules as vaccine delivery vehicles. Intrinsic in vitro immunostimulatory activity of polyphosphazene adjuvants, which was assessed using a mouse macrophage cell line, revealed comparable activities of both polymers and did not provide an explanation of their in vivo performance. However, PCEP complexes with E2 displayed greater stability against agglomeration and improved in vitro immunostimulatory activity compared to those of PCPP, which is in line with superior in vivo performance of PCEP. The results emphasize the importance of often neglected antigen-polyphosphazene self-assembly mechanisms in formulations, which can provide important insights on their in vivo behavior and facilitate the establishment of a structure-activity relationship for this important class of immunoadjuvants.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos da Hepatite C/administração & dosagem , Hepatite C/prevenção & controle , Proteínas do Envelope Viral/administração & dosagem , Vacinas contra Hepatite Viral/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Feminino , Hepacivirus/imunologia , Hepatite C/imunologia , Hepatite C/virologia , Antígenos da Hepatite C/imunologia , Antígenos da Hepatite C/ultraestrutura , Humanos , Imunogenicidade da Vacina , Camundongos , Modelos Animais , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/imunologia , Polímeros/administração & dosagem , Polímeros/química , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/ultraestrutura , Relação Estrutura-Atividade , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/isolamento & purificação , Proteínas do Envelope Viral/ultraestrutura , Vacinas contra Hepatite Viral/imunologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-32341067

RESUMO

Antibody responses in hepatitis C virus (HCV) have been a rather mysterious research topic for many investigators working in the field. Chronic HCV infection is often associated with dysregulation of immune functions particularly in B cells, leading to abnormal lymphoproliferation or the production of autoantibodies that exacerbate inflammation and extrahepatic diseases. When considering the antiviral function of antibody, it was difficult to endorse its role in HCV protection, whereas T-cell response has been shown unequivocally critical for natural recovery. Recent breakthroughs in the study of HCV and antigen-specific antibody responses provide important insights into viral vulnerability to antibodies and the immunogenetic and structural properties of the neutralizing antibodies. The new knowledge reinvigorates HCV vaccine research by illuminating a new path for the rational design of vaccine antigens to elicit broadly neutralizing antibodies for protection.


Assuntos
Hepacivirus/imunologia , Hepatite C/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos , Linfócitos B/imunologia , Linfócitos B/virologia , Modelos Animais de Doenças , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Antígenos da Hepatite C/imunologia , Hepatite C Crônica/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA