Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Cancer Prev Res (Phila) ; 16(3): 163-173, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36534786

RESUMO

Chronic hepatitis C can lead to cirrhosis and hepatocellular carcinoma. We studied the safety and immunogenicity of a novel therapeutic hepatitis C virus (HCV) genotype 1a/1b consensus DNA vaccine, INO-8000, encoding HCV NS3, NS4A, NS4B, and NS5A proteins alone or co-administered with DNA-encoding IL12 (INO-9012), a human cytokine that stimulates cellular immune function, in individuals with chronic hepatitis C. This was a phase I, multisite dose-escalation trial with an expansion cohort evaluating doses of 0, 0.3, 1.0, and 3.0 mg of INO-9012 (IL12 DNA) as an addition to 6.0 mg of (INO-8000; HCV DNA vaccine). Vaccines were administered by intramuscular injection followed by electroporation at study entry and at weeks 4, 12, and 24. HCV-specific CD4+ and CD8+ T-cell immune responses were measured by IFNγ ELISpot and flow cytometry-based assays. Transient, mild-to-moderate injection site reactions unrelated to IL12 DNA dose were common. Increases in HCV-specific IFNγ production occurred in 15/20 (75%) participants. Increases in the frequency of HCV-specific CD4+ and CD8+ T cells occurred at all dose levels, with the greatest increases seen at 1.0 mg of INO-9012. HCV-specific CD8+ and CD4+ T-cell activities increased in 16/18 (89%) and 14/17 (82%) participants with available data, respectively. The vaccine regimen was safe and induced HCV-specific CD4+ and CD8+ cellular immune responses of modest magnitude in most HCV-infected participants. The addition of 1.0 mg of IL12 DNA provided the best enhancement of immune responses. The vaccine regimen had little effect on controlling HCV viremia. PREVENTION RELEVANCE: The administration of IL12 DNA along with a hepatitis C viral antigen DNA vaccine enhanced the HCV-specific immune responses induced by the vaccine in individuals with chronic hepatitis C, an important cause of hepatocellular carcinoma. IL12 could be an effective adjuvant in vaccines targeting HCV and other oncogenic viruses.


Assuntos
Carcinoma Hepatocelular , Hepatite C Crônica , Hepatite C , Neoplasias Hepáticas , Vacinas de DNA , Humanos , Vacinas de DNA/efeitos adversos , Vacinas de DNA/genética , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Carcinoma Hepatocelular/prevenção & controle , Proteínas não Estruturais Virais/genética , Neoplasias Hepáticas/prevenção & controle , Hepatite C/prevenção & controle , Hepacivirus/genética , DNA , Interleucina-12
2.
Mol Ther ; 31(3): 788-800, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36575794

RESUMO

The COVID-19 pandemic and the need for additional safe, effective, and affordable vaccines gave new impetus into development of vaccine genetic platforms. Here we report the findings from the phase 1, first-in-human, dose-escalation study of COVID-eVax, a DNA vaccine encoding the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Sixty-eight healthy adults received two doses of 0.5, 1, or 2 mg 28 days apart, or a single 2-mg dose, via intramuscular injection followed by electroporation, and they were monitored for 6 months. All participants completed the primary safety and immunogenicity assessments after 8 weeks. COVID-eVax was well tolerated, with mainly mild to moderate solicited adverse events (tenderness, pain, bruising, headache, and malaise/fatigue), less frequent after the second dose, and it induced an immune response (binding antibodies and/or T cells) at all prime-boost doses tested in up to 90% of the volunteers at the highest dose. However, the vaccine did not induce neutralizing antibodies, while particularly relevant was the T cell-mediated immunity, with a robust Th1 response. This T cell-skewed immunological response adds significant information to the DNA vaccine platform and should be assessed in further studies for its protective capacity and potential usefulness also in other therapeutic areas, such as oncology.


Assuntos
COVID-19 , Vacinas de DNA , Adulto , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Método Duplo-Cego , Pandemias/prevenção & controle , SARS-CoV-2 , Vacinas de DNA/efeitos adversos
3.
JAMA Oncol ; 9(1): 71-78, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326756

RESUMO

Importance: High levels of ERBB2 (formerly HER2)-specific type 1 T cells in the peripheral blood are associated with favorable clinical outcomes after trastuzumab therapy; however, only a minority of patients develop measurable ERBB2 immunity after treatment. Vaccines designed to increase ERBB2-specific T-helper cells could induce ERBB2 immunity in a majority of patients. Objective: To determine the safety and immunogenicity of 3 doses (10, 100, and 500 µg) of a plasmid-based vaccine encoding the ERBB2 intracellular domain (ICD). Design, Setting, and Participants: Single-arm phase 1 trial including 66 patients with advanced-stage ERBB2-positive breast cancer treated in an academic medical center between 2001 and 2010 with 10-year postvaccine toxicity assessments. Data analysis was performed over 2 periods: January 2012 to March 2013 and July 2021 to August 2022. Interventions: Patients were sequentially enrolled to the 3 dose arms. The vaccine was administered intradermally once a month with soluble granulocyte-macrophage colony-stimulating factor as an adjuvant for 3 immunizations. Toxicity evaluations occurred at set intervals and yearly. Peripheral blood mononuclear cells were collected for evaluation of immunity. Biopsy of vaccine sites at weeks 16 and 36 measured DNA persistence. Main Outcomes and Measures: Safety was graded by Common Terminology Criteria for Adverse Events, version 3.0, and ERBB2 ICD immune responses were measured by interferon-γ enzyme-linked immunosorbent spot. Secondary objectives determined if vaccine dose was associated with immunity and evaluated persistence of plasmid DNA at the vaccine site. Results: A total of 66 patients (median [range] age, 51 [34-77] years) were enrolled. The majority of vaccine-related toxic effects were grade 1 and 2 and not significantly different between dose arms. Patients in arm 2 (100 µg) and arm 3 (500 µg) had higher magnitude ERBB2 ICD type 1 immune responses at most time points than arm 1 (10 µg) (arm 2 compared with arm 1, coefficient, 181 [95% CI, 60-303]; P = .003; arm 3 compared with arm 1, coefficient, 233 [95% CI, 102-363]; P < .001) after adjusting for baseline factors. ERBB2 ICD immunity at time points after the end of immunizations was significantly lower on average in patients with DNA persistence at week 16 compared with those without persistence. The highest vaccine dose was associated with the greatest incidence of persistent DNA at the injection site. Conclusions and Relevance: In this phase 1 nonrandomized clinical trial, immunization with the 100-µg dose of the ERBB2 ICD plasmid-based vaccine was associated with generation of ERBB2-specific type 1 T cells in most patients with ERBB2-expressing breast cancer, and it is currently being evaluated in randomized phase 2 trials. Trial Registration: ClinicalTrials.gov Identifier: NCT00436254.


Assuntos
Neoplasias da Mama , Vacinas de DNA , Humanos , Pessoa de Meia-Idade , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Vacinas de DNA/efeitos adversos , Vacinas de DNA/genética , Leucócitos Mononucleares/patologia , DNA/uso terapêutico , Plasmídeos , Receptor ErbB-2/genética
4.
Clin Cancer Res ; 28(22): 4885-4892, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36129459

RESUMO

PURPOSE: To evaluate the safety, immunogenicity and efficacy of a therapeutic DNA vaccine VB10.16, using a unique modular vaccine technology that is based on linking antigens to CCL3L1 targeting module, in women with HPV16-positive high-grade cervical intraepithelial neoplasia (CIN). PATIENTS AND METHODS: We conducted a first-in-human, open-label, phase I/IIa clinical trial of VB10.16 in subjects with confirmed HPV16-positive CIN 2/3. The primary endpoint was the proportion of participants with adverse events, including dose-limiting toxicities. Secondary outcome measures included measuring the E6/E7-specific cellular immune response. In the Expansion cohort HPV16 clearance, regression of CIN lesion size and grading were assessed during a 12-month follow-up period. RESULTS: A total of 34 women were enrolled: 16 in two dose cohorts and 18 in the expansion cohort. No serious adverse events or dose-limiting toxicities were observed, and none of the subjects discontinued treatment with VB10.16 due to an adverse event. Mild to moderate injection site reactions were the most commonly reported adverse event (79%). HPV16-specific T-cell responses were observed after vaccination in the majority of the subjects. In the expansion cohort, HPV16 clearance was seen in 8 of 17 evaluable subjects (47%). Reductions in lesion size were seen in 16 subjects (94%) and 10 subjects (59%) had regression to CIN 0/1. Correlation between strong IFNγ T-cell responses and lesion size reduction was statistically significant (P < 0.001). CONCLUSIONS: The novel therapeutic DNA vaccine VB10.16 was well tolerated and showed promising evidence of efficacy and strong HPV16-specific T-cell responses in subjects with high-grade CIN.


Assuntos
Vacinas Anticâncer , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Vacinas de DNA , Feminino , Humanos , Células Apresentadoras de Antígenos , Vacinas Anticâncer/efeitos adversos , Papillomavirus Humano 16/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Vacinas de DNA/efeitos adversos , Displasia do Colo do Útero/tratamento farmacológico
5.
Elife ; 112022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35084333

RESUMO

To fight the COVID-19 pandemic caused by the RNA virus SARS-CoV-2, a global vaccination campaign is in progress to achieve the immunization of billions of people mainly with adenoviral vector- or mRNA-based vaccines, all of which encode the SARS-CoV-2 Spike protein. In some rare cases, cerebral venous sinus thromboses (CVST) have been reported as a severe side effect occurring 4-14 days after the first vaccination and were often accompanied by thrombocytopenia. Besides CVST, splanchnic vein thromboses (SVT) and other thromboembolic events have been observed. These events only occurred following vaccination with adenoviral vector-based vaccines but not following vaccination with mRNA-based vaccines. Meanwhile, scientists have proposed an immune-based pathomechanism and the condition has been coined vaccine-induced immune thrombotic thrombocytopenia (VITT). Here, we describe an unexpected mechanism that could explain thromboembolic events occurring with DNA-based but not with RNA-based vaccines. We show that DNA-encoded mRNA coding for Spike protein can be spliced in a way that the transmembrane anchor of Spike is lost, so that nearly full-length Spike is secreted from cells. Secreted Spike variants could potentially initiate severe side effects when binding to cells via the ACE2 receptor. Avoiding such splicing events should become part of a rational vaccine design to increase safety of prospective vaccines.


Assuntos
Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Trombose dos Seios Intracranianos/etiologia , Trombocitopenia/etiologia , Vacinas de DNA/efeitos adversos , ChAdOx1 nCoV-19/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Humanos , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Síndrome , Vacinação/efeitos adversos , Trombose Venosa/etiologia
6.
PLoS One ; 16(9): e0256980, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495988

RESUMO

BACKGROUND: A DNA-prime/human adenovirus serotype 5 (HuAd5) boost vaccine encoding Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP) and Pf apical membrane antigen-1 (PfAMA1), elicited protection in 4/15 (27%) of subjects against controlled human malaria infection (CHMI) that was statistically associated with CD8+ T cell responses. Subjects with high level pre-existing immunity to HuAd5 were not protected, suggesting an adverse effect on vaccine efficacy (VE). We replaced HuAd5 with chimpanzee adenovirus 63 (ChAd63), and repeated the study, assessing both the two-antigen (CSP, AMA1 = CA) vaccine, and a novel three-antigen (CSP, AMA1, ME-TRAP = CAT) vaccine that included a third pre-erythrocytic stage antigen [malaria multiple epitopes (ME) fused to the Pf thrombospondin-related adhesive protein (TRAP)] to potentially enhance protection. METHODOLOGY: This was an open label, randomized Phase 1 trial, assessing safety, tolerability, and VE against CHMI in healthy, malaria naïve adults. Forty subjects (20 each group) were to receive three monthly CA or CAT DNA priming immunizations, followed by corresponding ChAd63 boost four months later. Four weeks after the boost, immunized subjects and 12 infectivity controls underwent CHMI by mosquito bite using the Pf3D7 strain. VE was assessed by determining the differences in time to parasitemia as detected by thick blood smears up to 28-days post CHMI and utilizing the log rank test, and by calculating the risk ratio of each treatment group and subtracting from 1, with significance calculated by the Cochran-Mantel-Haenszel method. RESULTS: In both groups, systemic adverse events (AEs) were significantly higher after the ChAd63 boost than DNA immunizations. Eleven of 12 infectivity controls developed parasitemia (mean 11.7 days). In the CA group, 15 of 16 (93.8%) immunized subjects developed parasitemia (mean 12.0 days). In the CAT group, 11 of 16 (63.8%) immunized subjects developed parasitemia (mean 13.0 days), indicating significant protection by log rank test compared to infectivity controls (p = 0.0406) and the CA group (p = 0.0229). VE (1 minus the risk ratio) in the CAT group was 25% compared to -2% in the CA group. The CA and CAT vaccines induced robust humoral (ELISA antibodies against CSP, AMA1 and TRAP, and IFA responses against sporozoites and Pf3D7 blood stages), and cellular responses (IFN-γ FluoroSpot responses to CSP, AMA1 and TRAP) that were not associated with protection. CONCLUSIONS: This study demonstrated that the ChAd63 CAT vaccine exhibited significant protective efficacy, and confirmed protection was afforded by adding a third antigen (T) to a two-antigen (CA) formulation to achieve increased VE. Although the ChAd63-CAT vaccine was associated with increased frequencies of systemic AEs compared to the CA vaccine and, historically, compared to the HuAd5 vectored malaria vaccine encoding CSP and AMA1, they were transient and associated with increased vector dosing.


Assuntos
Vacinas contra Adenovirus/imunologia , Adenovirus dos Símios/imunologia , Antígenos de Protozoários/imunologia , DNA de Protozoário/imunologia , DNA Recombinante/imunologia , Imunização Secundária/métodos , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Vacinas de DNA/imunologia , Vacinas contra Adenovirus/administração & dosagem , Vacinas contra Adenovirus/efeitos adversos , Adenovirus dos Símios/genética , Adulto , Antígenos de Protozoários/genética , Linfócitos T CD8-Positivos/imunologia , DNA de Protozoário/genética , Epitopos/genética , Epitopos/imunologia , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Voluntários Saudáveis , Humanos , Imunogenicidade da Vacina/imunologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Proteínas de Membrana/genética , Proteínas de Protozoários/genética , Resultado do Tratamento , Vacinas de DNA/administração & dosagem , Vacinas de DNA/efeitos adversos , Adulto Jovem
7.
Elife ; 102021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533134

RESUMO

A gene signature was previously found to be correlated with mosaic adenovirus 26 vaccine protection in simian immunodeficiency virus and simian-human immunodeficiency virus challenge models in non-human primates. In this report, we investigated the presence of this signature as a correlate of reduced risk in human clinical trials and potential mechanisms of protection. The absence of this gene signature in the DNA/rAd5 human vaccine trial, which did not show efficacy, strengthens our hypothesis that this signature is only enriched in studies that demonstrated protection. This gene signature was enriched in the partially effective RV144 human trial that administered the ALVAC/protein vaccine, and we find that the signature associates with both decreased risk of HIV-1 acquisition and increased vaccine efficacy (VE). Total RNA-seq in a clinical trial that used the same vaccine regimen as the RV144 HIV vaccine implicated antibody-dependent cellular phagocytosis (ADCP) as a potential mechanism of vaccine protection. CITE-seq profiling of 53 surface markers and transcriptomes of 53,777 single cells from the same trial showed that genes in this signature were primarily expressed in cells belonging to the myeloid lineage, including monocytes, which are major effector cells for ADCP. The consistent association of this transcriptome signature with VE represents a tool both to identify potential mechanisms, as with ADCP here, and to screen novel approaches to accelerate the development of new vaccine candidates.


Assuntos
Vacinas contra a AIDS/uso terapêutico , Perfilação da Expressão Gênica , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Monócitos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Transcriptoma , Vacinas de DNA/uso terapêutico , Vacinas contra a AIDS/efeitos adversos , Ensaios Clínicos como Assunto , Bases de Dados Genéticas , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Imunogenicidade da Vacina , Monócitos/imunologia , Monócitos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA-Seq , Análise de Célula Única , Fatores de Tempo , Resultado do Tratamento , Vacinação , Vacinas de DNA/efeitos adversos
8.
Sci Rep ; 11(1): 371, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432084

RESUMO

Vaccines and therapeutics using in vitro transcribed mRNA hold enormous potential for human and veterinary medicine. Transfection agents are widely considered to be necessary to protect mRNA and enhance transfection, but they add expense and raise concerns regarding quality control and safety. We found that such complex mRNA delivery systems can be avoided when transfecting epithelial cells by aerosolizing the mRNA into micron-sized droplets. In an equine in vivo model, we demonstrated that the translation of mRNA into a functional protein did not depend on the addition of a polyethylenimine (PEI)-derived transfection agent. We were able to safely and effectively transfect the bronchial epithelium of foals using naked mRNA (i.e., mRNA formulated in a sodium citrate buffer without a delivery vehicle). Endoscopic examination of the bronchial tree and histology of mucosal biopsies indicated no gross or microscopic adverse effects of the transfection. Our data suggest that mRNA administered by an atomization device eliminates the need for chemical transfection agents, which can reduce the cost and the safety risks of delivering mRNA to the respiratory tract of animals and humans.


Assuntos
Cavalos , Sprays Nasais , RNA Mensageiro/administração & dosagem , Mucosa Respiratória , Animais , Animais Recém-Nascidos , Células Cultivadas , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/efeitos adversos , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/veterinária , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Nebulizadores e Vaporizadores/veterinária , Polietilenoimina/administração & dosagem , Polietilenoimina/química , RNA Mensageiro/efeitos adversos , RNA Mensageiro/farmacocinética , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Transcrição Gênica , Transfecção/métodos , Transfecção/veterinária , Vacinas de DNA/administração & dosagem , Vacinas de DNA/efeitos adversos , Vacinas de DNA/farmacocinética
9.
Lancet Oncol ; 21(12): 1653-1660, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33271094

RESUMO

BACKGROUND: Survival outcomes for patients with recurrent or advanced cervical cancer are poor. Pembrolizumab has been approved for the treatment of recurrent or metastatic cervical cancer, with an overall response rate of 14·3%. GX-188E vaccination has been shown to induce human papillomavirus (HPV) E6-specific and E7-specific T-cell responses and cervical lesion regression in patients with cervical precancer. We aimed to investigate whether a combination of GX-188E therapeutic DNA vaccine plus pembrolizumab showed antitumour activity against recurrent or advanced cervical cancer. METHODS: In this open-label, single-arm, phase 2 trial, patients with recurrent or advanced, inoperable cervical cancer, who were aged 18 years or older with Eastern Cooperative Oncology Group performance status of 0 or 1 and histologically confirmed recurrent or advanced HPV-positive (HPV-16 or HPV-18) cervical cancer, and who had progressed after available standard-of-care therapy were recruited from seven hospitals in South Korea. Patients received intramuscular 2 mg GX-188E at weeks 1, 2, 4, 7, 13, and 19, with one optional dose at week 46 that was at the investigator's discretion, and intravenous pembrolizumab 200 mg every 3 weeks for up to 2 years or until disease progression. The primary endpoint was the overall response rate within 24 weeks assessed by the investigator using Response Evaluation Criteria in Solid Tumors version 1.1 in patients who received at least 45 days of treatment 45 days of treatment with at least one post-baseline tumour assessment, and this is the report of a planned interim analysis. This trial is registered with ClinicalTrials.gov, NCT03444376. FINDINGS: Between June 19, 2018, and March 20, 2020, 36 patients were enrolled and received at least one dose of the study treatment. 26 patients were evaluable for interim activity assessment, with at least one post-baseline tumour assessment at week 10. At the data cutoff date on March 30, 2020, median follow-up duration was 6·2 months (IQR 3·5-8·1). At 24 weeks, 11 (42%; 95% CI 23-63) of 26 patients achieved an overall response; four (15%) had a complete response and seven (27%) had a partial response. 16 (44%) of 36 patients had treatment-related adverse events of any grade and four (11%) had grade 3-4 treatment-related adverse events. Grade 3 increased aspartate aminotransferase, syncope, pericardial effusion, and hyperkalaemia, and grade 4 increased alanine aminotransferase were reported in one patient each. No treatment-related deaths were reported. INTERPRETATION: Treatment with GX-188E therapeutic vaccine plus pembrolizumab for patients with recurrent or advanced cervical cancer was safe and treatment-related adverse events were manageable. This combination therapy showed preliminary antitumour activity in this interim analysis, which could represent a new potential treatment option for this patient population. This trial is ongoing. FUNDING: National OncoVenture.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 18/imunologia , Infecções por Papillomavirus/tratamento farmacológico , Vacinas contra Papillomavirus/administração & dosagem , Neoplasias do Colo do Útero/tratamento farmacológico , Vacinas de DNA/administração & dosagem , Adulto , Anticorpos Monoclonais Humanizados/efeitos adversos , Antineoplásicos Imunológicos/efeitos adversos , Feminino , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/virologia , Vacinas contra Papillomavirus/efeitos adversos , Estudos Prospectivos , República da Coreia , Fatores de Tempo , Resultado do Tratamento , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Vacinas de DNA/efeitos adversos
10.
Clin Cancer Res ; 26(19): 5162-5171, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32513836

RESUMO

PURPOSE: Preclinical studies demonstrated that a DNA vaccine (pTVG-AR, MVI-118) encoding the androgen receptor ligand-binding domain (AR LBD) augmented antigen-specific CD8+ T cells, delayed prostate cancer progression and emergence of castration-resistant disease, and prolonged survival of tumor-bearing mice. This vaccine was evaluated in a multicenter phase I trial. PATIENTS AND METHODS: Patients with metastatic castration-sensitive prostate cancer (mCSPC) who had recently begun androgen deprivation therapy were randomly assigned to receive pTVG-AR on one of two treatment schedules over one year, and with or without GM-CSF as a vaccine adjuvant. Patients were followed for 18 months. Primary objectives were safety and immune response. Secondary objectives included median time to PSA progression, and 18-month PSA-PFS (PPFS). RESULTS: Forty patients were enrolled at three centers. Twenty-seven patients completed treatment and 18 months of follow-up. Eleven patients (28%) had a PSA progression event before the 18-month time point. No grade 3 or 4 adverse events were observed. Of 30 patients with samples available for immune analysis, 14 (47%) developed Th1-type immunity to the AR LBD, as determined by IFNγ and/or granzyme B ELISPOT. Persistent IFNγ immune responses were observed irrespective of GM-CSF adjuvant. Patients who developed T-cell immunity had a significantly prolonged PPFS compared with patients without immunity (HR = 0.01; 95% CI, 0.0-0.21; P = 0.003). CONCLUSIONS: pTVG-AR was safe and immunologically active in patients with mCSPC. Association between immunity and PPFS suggests that treatment may delay the time to castration resistance, consistent with preclinical findings, and will be prospectively evaluated in future trials.See related commentary by Shenderov and Antonarakis, p. 5056.


Assuntos
Antagonistas de Androgênios/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/genética , Vacinas de DNA/administração & dosagem , Idoso , Antagonistas de Androgênios/efeitos adversos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Humanos , Interferon gama/genética , Ligantes , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Intervalo Livre de Progressão , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ligação Proteica/genética , Receptores Androgênicos/efeitos dos fármacos , Vacinas de DNA/efeitos adversos
11.
Int J Radiat Oncol Biol Phys ; 107(3): 487-498, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32151670

RESUMO

PURPOSE: This study assessed the safety and tolerability of therapeutic immunization against the human papillomavirus (HPV) viral oncoproteins E6 and E7 in patients with cervical cancer after chemoradiation. METHODS AND MATERIALS: MEDI0457 (INO-3112) is a DNA-based vaccine targeting E6 and E7 of HPV-16/18 that is coinjected with an IL-12 plasmid followed by electroporation with the CELLECTRA 5P device. At 2 to 4 weeks after chemoradiation, patients with newly diagnosed stage IB1-IVA (cohort 1) or persistent/recurrent (cohort 2) cervical cancers were treated with 4 immunizations of MEDI0457 every 4 weeks. The primary endpoints were incidence of adverse events and injection site reactions. Immune responses against HPV antigens were measured by ELISpot for interferon-γ (IFNγ), enzyme-linked immunosorbent assay for antibody responses and multiplexed immunofluorescence for immune cells in cervical biopsy specimens. RESULTS: Ten patients (cohort 1, n = 7; cohort 2, n = 3) with HPV16 (n = 7) or HPV18 (n = 3) cervical cancers received MEDI0457 after chemoradiation. Treatment-related adverse events were all grade 1, primarily related to the injection site. Eight of 10 patients had detectable cellular or humoral immune responses against HPV antigens after chemoradiation and vaccination: 6 of 10 patients generated anti-HPV antibody responses and 6 of 10 patients generated IFNγ-producing T cell responses. At the completion of chemoradiation and vaccination, cervical biopsy specimens had detectable CD8+ T cells and decreased PD-1+CD8+, PD-L1+CD8+, and PD-L1+CD68+ subpopulations. All patients cleared detectable HPV DNA in cervical biopsies by completion of chemoradiation and vaccination. CONCLUSIONS: Adjuvant MEDI0457 is safe and well tolerated after chemoradiation for locally advanced or recurrent cervical cancers, supporting further investigation into combining tumor-specific vaccines with radiation therapy.


Assuntos
Quimiorradioterapia , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 18/imunologia , Segurança , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/virologia , Vacinas de DNA/efeitos adversos , Adulto , Proteínas de Ligação a DNA/imunologia , Feminino , Papillomavirus Humano 16/efeitos dos fármacos , Papillomavirus Humano 16/fisiologia , Papillomavirus Humano 16/efeitos da radiação , Papillomavirus Humano 18/efeitos dos fármacos , Papillomavirus Humano 18/fisiologia , Papillomavirus Humano 18/efeitos da radiação , Humanos , Pessoa de Meia-Idade , Proteínas Oncogênicas Virais/imunologia , Proteínas E7 de Papillomavirus/imunologia , Proteínas Repressoras/imunologia , Neoplasias do Colo do Útero/prevenção & controle
12.
Expert Rev Vaccines ; 18(12): 1229-1242, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31779496

RESUMO

Introduction: Ebolaviruses are non-segmented negative-strand RNA viruses in the Filoviridae family that cause a neglected infectious disease designated as Ebola virus disease (EVD). The most prominent member is the Ebola virus (EBOV), representing the Zaire ebolavirus species that has been responsible for the largest reported EVD outbreaks including the West African epidemic and the current outbreak in the Democratic Republic of the Congo. Today, the most advanced EVD vaccine approaches target EBOV and multiple phase 1-4 human trials have been performed over the past few years. The most advanced platforms include vectored vaccines based on vesicular stomatitis virus (VSV-EBOV), distinct human (Ad5 and Ad26) and chimpanzee (ChAd3) adenoviruses and modified vaccinia Ankara (MVA) as well as DNA-based vaccines administered as a prime-only or homologous or combined prime-boost immunization.Areas covered: Here, we review and discuss human trials with a focus on vaccine safety and immunogenicity.Expert opinion: Despite obvious progress and promising success in EBOV vaccine development, many shortcomings and challenges remain to be tackled in the future.


Assuntos
Vacinas contra Ebola/efeitos adversos , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Adenoviridae/genética , Ensaios Clínicos como Assunto , Portadores de Fármacos , Vacinas contra Ebola/administração & dosagem , Vetores Genéticos , Humanos , Vacinas de DNA/administração & dosagem , Vacinas de DNA/efeitos adversos , Vacinas de DNA/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/imunologia , Vaccinia virus/genética , Vesiculovirus/genética
13.
PLoS One ; 13(5): e0197299, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29772028

RESUMO

BACKGROUND: The failure of DNA vaccination in humans, in contrast to its efficacy in some species, is unexplained. Observational and interventional experimental evidence suggests that DNA immunogenicity may be prevented by binding of human serum amyloid P component (SAP). SAP is the single normal DNA binding protein in human plasma. The drug (R)-1-[6-[(R)-2-carboxypyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC, miridesap), developed for treatment of systemic amyloidosis and Alzheimer's disease, depletes circulating SAP by 95-99%. The proof-of-concept HIV-CORE 003 clinical trial tested whether SAP depletion by CPHPC would enhance the immune response in human volunteers to DNA vaccination delivering the HIVconsv immunogen derived from conserved sub-protein regions of HIV-1. METHODS: Human volunteers received 3 intramuscular immunizations with an experimental DNA vaccine (DDD) expressing HIV-1-derived immunogen HIVconsv, with or without prior depletion of SAP by CPHPC. All subjects were subsequently boosted by simian (chimpanzee) adenovirus (C)- and poxvirus MVA (M)-vectored vaccines delivering the same immunogen. After administration of each vaccine modality, the peak total magnitudes, kinetics, functionality and memory subsets of the T-cell responses to HIVconsv were thoroughly characterized. RESULTS: No differences were observed between the CPHPC treated and control groups in any of the multiple quantitative and qualitative parameters of the T-cell responses to HIVconsv, except that after SAP depletion, there was a statistically significantly greater breadth of T-cell specificities, that is the number of recognized epitopes, following the DDDC vaccination. CONCLUSIONS: The protocol used here for SAP depletion by CPHPC prior to DNA vaccination produced only a very modest suggestion of enhanced immunogenicity. Further studies will be required to determine whether SAP depletion might have a practical value in DNA vaccination for other plasmid backbones and/or immunogens. TRIAL REGISTRATION: Clinicaltrials.gov NCT02425241.


Assuntos
Vacinas contra a AIDS/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Componente Amiloide P Sérico/análise , Linfócitos T/imunologia , Vacinas de DNA/imunologia , Vacinas contra a AIDS/efeitos adversos , Adulto , Infecções por HIV/imunologia , Humanos , Imunogenicidade da Vacina , Injeções Intramusculares , Masculino , Estudo de Prova de Conceito , Vacinação , Vacinas de DNA/efeitos adversos , Adulto Jovem
14.
Microb Biotechnol ; 11(1): 248-256, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29205848

RESUMO

DNA vaccines, the third-generation vaccines, were extensively studied. The attenuated Salmonella choleraesuis (S. choleraesuis) was widely focused as a carrier to deliver DNA vaccines in the chromosome-plasmid balanced-lethal system. The efficacy of inhibin DNA vaccine delivered by attenuated S. choleraesuis was proved in mice and cows in our previous studies. In this study, the efficacy of inhibin DNA vaccine was confirmed in rhesus monkeys. To further study the biodistribution and safety, the mice were immunized under laboratory conditions. The results of the rhesus monkeys showed the plasma IgA and IgG titres against inhibin were elevated, and the oestradiol (E2 ) and progesterone (P4 ) levels were increased with immunizing inhibin DNA vaccine. The biodistribution and safety assessment displayed the body weight, pathological change and haematology indexes where there is no significant difference between vaccinated mice and control. And the genomics analysis showed there was no integration of the inhibin gene into the mouse genome 2 months after immunization. This study indicated the inhibin DNA vaccine delivered by attenuated S. choleraesuis was safe. And this vaccine was a potential means to improve their reproductive traits in primates and other animals.


Assuntos
Portadores de Fármacos , Imunoterapia/métodos , Infertilidade/terapia , Inibinas/imunologia , Salmonella arizonae/genética , Vacinas de DNA/efeitos adversos , Vacinas de DNA/imunologia , Animais , Estradiol/sangue , Imunidade Humoral , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoterapia/efeitos adversos , Inibinas/genética , Macaca mulatta , Camundongos , Progesterona/sangue , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/farmacocinética , Vacinas de DNA/administração & dosagem , Vacinas de DNA/farmacocinética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
15.
Biomed Res Int ; 2017: 1295038, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28875149

RESUMO

Toxoplasma gondii can infect all warm-blooded animals including human beings. T. gondii dense granule protein 16 (TgGRA16) as a crucial virulence factor could modulate the host gene expression. Here, a DNA vaccine expressing TgGRA16 was constructed to explore the protective efficacy against T. gondii infection in Kunming mice. The immune responses induced by pVAX-GRA16 were also evaluated. Mice immunized with pVAX-GRA16 could elicit higher levels of specific IgG antibody and strong cellular response compared to those in controls. The DNA vaccination significantly increased the levels of cytokines (IFN-γ, IL-2, IL-4, and IL-10) and the percentages of CD4+ and CD8+ T cells in mice. After lethal challenge, mice immunized with pVAX-GRA16 (8.4 ± 0.78 days) did not show a significant longer survival time than that in controls (7.1 ± 0.30 days) (p > 0.05). However, in chronic toxoplasmosis model (administration of 10 brain cysts of PRU strain orally), numbers of tissue cysts in mice immunized with pVAX-GRA16 were significantly reduced compared to those in controls (p < 0.05) and the rate of reduction could reach 43.89%. The results indicated that the TgGRA16 would be a promising vaccine candidate for further development of effective epitope-based vaccines against chronic T. gondii infection in mice.


Assuntos
Antígenos de Protozoários/genética , Resistência a Medicamentos/efeitos dos fármacos , Proteínas de Protozoários/genética , Toxoplasmose Animal/prevenção & controle , Vacinas de DNA/administração & dosagem , Animais , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/uso terapêutico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Resistência a Medicamentos/genética , Resistência a Medicamentos/imunologia , Interações Hospedeiro-Parasita/genética , Humanos , Camundongos , Vacinas Protozoárias/administração & dosagem , Vacinas Protozoárias/efeitos adversos , Vacinas Protozoárias/imunologia , Toxoplasma/genética , Toxoplasma/patogenicidade , Toxoplasmose Animal/genética , Toxoplasmose Animal/parasitologia , Vacinas de DNA/efeitos adversos , Vacinas de DNA/imunologia
16.
Theranostics ; 7(10): 2593-2605, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28819449

RESUMO

The strong immunogenicity induction is the powerful weapon to prevent the virus infections. This study demonstrated that one-step synthesis of DNA polyplex vaccine in microneedle (MN) patches can induce high immunogenicity through intradermal vaccination and increase the vaccine stability for storage outside the cold chain. More negative charged DNA vaccine was entrapped into the needle region of MNs followed by DNA polyplex formation with branched polyethylenimine (bPEI) pre-coated in the cavities of polydimethylsiloxane (PDMS) molds that can deliver more DNA vaccine to immune-cell rich epidermis with high transfection efficiency. Our data in this study support the safety and immunogenicity of the MN-based vaccine; the MN patch delivery system induced an immune response 3.5-fold as strong as seen with conventional intramuscular administration; the DNA polyplex formulation provided excellent vaccine stability at high temperature (could be stored at 45ºC for at least 4 months); the DNA vaccine is expected to be manufactured at low cost and not generate sharps waste. We think this study is significant to public health because there is a pressing need for an effective vaccination in developing countries.


Assuntos
Circovirus/imunologia , Sistemas de Liberação de Medicamentos/métodos , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Linhagem Celular , Circovirus/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Injeções Intradérmicas , Camundongos , Vacinas de DNA/efeitos adversos , Vacinas de DNA/genética , Vacinas Virais/efeitos adversos , Vacinas Virais/genética
17.
PLoS One ; 12(7): e0179597, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28727817

RESUMO

BACKGROUND: A phase 1 trial of a clade B HIV vaccine in HIV-uninfected adults evaluated the safety and immunogenicity of a DNA prime co-expressing GM-CSF (Dg) followed by different numbers and intervals of modified vaccinia Ankara Boosts (M). Both vaccines produce virus-like particles presenting membrane-bound Env. METHODS: Four US sites randomized 48 participants to receiving 1/10th the DNA dose as DgDgMMM given at 0, 2, 4, 6 and 8 months, or full dose DgDgM_M or DgDgMM_M regimens, given at 0, 2, 4, and 8 months, and 0, 2, 4, 6, and 10 months, respectively. Peak immunogenicity was measured 2 weeks post-last vaccination. RESULTS: All regimens were well tolerated and safe. Full dose DgDgM_M and DgDgMM_M regimens generated Env-specific IgG to HIV-1 Env in >90%, IgG3 in >80%, and IgA in <20% of participants. Responses to gp140 and gp41 targets were more common and of higher magnitude than to gp120 and V1V2. The gp41 antibody included reactivity to the conserved immunodominant region with specificities known to mediate virus capture and phagocytosis and did not cross-react with a panel of intestinal flora antigens. The 3rd dose of MVA increased the avidity of elicited antibody (7.5% to 39%), the ADCC response to Bal gp120 (14% to 64%), and the one-year durability of the IgG3 responses to gp41 by 4-fold (13% vs. 3.5% retention of peak response). The co-expressed GM-CSF did not enhance responses over those in trials testing this vaccine without GM-CSF. CONCLUSION: This DNA/MVA prime-boost regimen induced durable, functional humoral responses that included ADCC, high antibody avidity, and Env IgG1 and IgG3 binding responses to the immunodominant region of gp41. The third, spaced MVA boost improved the overall quality of the antibody response. These products without co-expressed GM-CSF but combined with protein boosts will be considered for efficacy evaluation. TRIAL REGISTRATION: ClinicalTrials.gov NCT01571960.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV , Vacinas de DNA/imunologia , Vacinas contra a AIDS/efeitos adversos , Adolescente , Adulto , Método Duplo-Cego , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Masculino , Pessoa de Meia-Idade , Vacinação/métodos , Vacinas de DNA/efeitos adversos , Adulto Jovem
18.
Hum Vaccin Immunother ; 13(12): 2804-2813, 2017 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-28605294

RESUMO

Japanese Red Cedar (JRC) pollen induced allergy affects one third of Japanese and the development of effective therapies remains an unachieved challenge. We designed a DNA vaccine encoding CryJ2 allergen from the JRC pollen and Lysosomal Associated Membrane Protein 1 (LAMP-1) to treat JRC allergy. These Phase IA and IB trials assessed safety and immunological effects of the investigational CryJ2-LAMP DNA vaccine in both non-sensitive and sensitive Japanese expatriates living in Honolulu, Hawaii. In the Phase IA trial, 6 JRC non-sensitive subjects and 9 JRC and/or Mountain Cedar (MC) sensitive subjects were given 4 vaccine doses (each 4mg/1ml) intramuscularly (IM) at 14-day intervals. Nine JRC and/or MC sensitive subjects were given 4 doses (2 mg/0.5 ml) IM at 14-day intervals. The safety and functional biomarkers were followed for 132 d. Following this, 17 of 24 subjects were recruited into the IB trial and received one booster dose (2 mg/0.5 ml) IM approximately 300 d after the first vaccination dose to which they were randomized in the first phase of the trial. All safety endpoints were met and all subjects tolerated CryJ2-LAMP vaccinations well. At the end of the IA trial, 10 out of 12 JRC sensitive and 6 out of 11 MC sensitive subjects experienced skin test negative conversion, possibly related to the CryJ2-LAMP vaccinations. Collectively, these data suggested that the CryJ2-LAMP DNA vaccine is safe and may be immunologically effective in treating JRC induced allergy.


Assuntos
Alérgenos/imunologia , Hipersensibilidade/terapia , Proteínas de Plantas/imunologia , Vacinas de DNA/efeitos adversos , Vacinas de DNA/imunologia , Adulto , Alérgenos/genética , Povo Asiático , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Feminino , Havaí , Humanos , Esquemas de Imunização , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Proteínas de Plantas/genética , Resultado do Tratamento , Vacinas de DNA/administração & dosagem , Adulto Jovem
19.
Curr Opin Virol ; 23: 59-67, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28432975

RESUMO

The epidemic emergence of Zika virus (ZIKV) in 2015-2016 has been associated with congenital malformations and neurological sequela. Current efforts to develop a ZIKV vaccine build on technologies that successfully reduced infection or disease burden against closely related flaviviruses or other RNA viruses. Subunit-based (DNA plasmid and modified mRNA), viral vectored (adeno- and measles viruses) and inactivated viral vaccines are already advancing to clinical trials in humans after successful mouse and non-human primate studies. Among the greatest challenges for the rapid implementation of immunogenic and protective ZIKV vaccines will be addressing the potential for exacerbating Dengue virus infection or causing Guillain-Barré syndrome through production of cross-reactive immunity targeting related viral or host proteins. Here, we review vaccine strategies under development for ZIKV and the issues surrounding their usage.


Assuntos
Vacinas de DNA/imunologia , Vacinas de DNA/isolamento & purificação , Vacinas Virais/imunologia , Vacinas Virais/isolamento & purificação , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Ensaios Clínicos como Assunto , Dengue/epidemiologia , Avaliação Pré-Clínica de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Síndrome de Guillain-Barré/epidemiologia , Humanos , Camundongos , Vacinas de DNA/efeitos adversos , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/isolamento & purificação , Vacinas de Subunidades Antigênicas/efeitos adversos , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/isolamento & purificação , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação , Vacinas Virais/efeitos adversos
20.
Int J Mol Sci ; 18(3)2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28304339

RESUMO

DNA-based vaccine strategy is increasingly realized as a viable cancer treatment approach. Strategies to enhance immunogenicity utilizing tumor associated antigens have been investigated in several pre-clinical and clinical studies. The promising outcomes of these studies have suggested that DNA-based vaccines induce potent T-cell effector responses and at the same time cause only minimal side-effects to cancer patients. However, the immune evasive tumor microenvironment is still an important hindrance to a long-term vaccine success. Several options are currently under various stages of study to overcome immune inhibitory effect in tumor microenvironment. Some of these approaches include, but are not limited to, identification of neoantigens, mutanome studies, designing fusion plasmids, vaccine adjuvant modifications, and co-treatment with immune-checkpoint inhibitors. In this review, we follow a Porter's analysis analogy, otherwise commonly used in business models, to analyze various immune-forces that determine the potential success and sustainable positive outcomes following DNA vaccination using non-viral tumor associated antigens in treatment against cancer.


Assuntos
Vacinas Anticâncer/imunologia , Imunização/métodos , Neoplasias/terapia , Vacinas de DNA/imunologia , Animais , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/efeitos adversos , Humanos , Evasão da Resposta Imune , Neoplasias/imunologia , Linfócitos T/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA