Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.438
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Dalton Trans ; 53(19): 8315-8327, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38666341

RESUMO

The development of coordination compounds with antineoplastic therapeutic properties is currently focused on non-covalent interactions with deoxyribonucleic acid (DNA). Additionally, the interaction profiles of these compounds with globular plasma proteins, particularly serum albumin, warrant thorough evaluation. In this study, we report on the interactions between biomolecules and complexes featuring hydrazone-type imine ligands coordinated with vanadium. The potential to enhance the therapeutic efficiency of these compounds through mitochondrial targeting is explored. This targeting is facilitated by the derivatization of ligands with triphenylphosphonium groups. Thus, this work presents the synthesis, characterization, interactions, and cytotoxicity of dioxidovanadium(V) complexes (C1-C5) with a triphenylphosphonium moiety. These VV-species are coordinated to hydrazone-type iminic ligands derived from (3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride ([AH]Cl) and aromatic hydrazides ([H2L1]Cl-[H2L5]Cl). The structures of the five complexes were elucidated through single-crystal X-ray diffraction and vibrational spectroscopies, confirming the presence of dioxidovanadium(V) species in various geometries with degrees of distortion (τ = 0.03-0.50) and highlighting their zwitterionic characteristics. The molecular structural stability of C1-C5 in solution was ascertained using 1H, 19F, 31P, and 51V-nuclear magnetic resonance. Moreover, their interactions with biomolecules were evaluated using diverse spectroscopic methodologies and molecular docking, indicating moderate interactions (Kb ≈ 104 M-1) with calf thymus DNA in the minor groove and with human serum albumin, predominantly in the superficial IB subdomain. Lastly, the cytotoxic potentials of these complexes were assessed in keratinocytes of the HaCaT lineage, revealing that C1-C5 induce a reduction in metabolic activity and cell viability through apoptotic pathways.


Assuntos
Antineoplásicos , Complexos de Coordenação , DNA , Compostos Organofosforados , Vanádio , Humanos , Vanádio/química , Vanádio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , DNA/metabolismo , DNA/química , Sobrevivência Celular/efeitos dos fármacos , Hidrazinas/química , Hidrazinas/farmacologia , Animais , Simulação de Acoplamento Molecular , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Estrutura Molecular , Ligantes , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais
2.
Int J Biol Macromol ; 268(Pt 1): 131768, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663706

RESUMO

Copper(L2Cu) and vanadium(L2VOCl) complexes of N-p-tolylbenzohydroxamic acid (LH) ligand have been investigated for DNA binding efficacy by multiple analytical, spectral, and computational techniques. The results revealed that complexes as groove binders as evidenced by UV absorption. Fluorescence studies including displacement assay using classical intercalator ethidium bromide as fluorescent probe also confirmed as groove binders. The viscometric analysis too supports the inferences as strong groove binders for both the complexes. Molecular docking too exposed DNA as a target to the complexes which precisely binds L2Cu, in the minor groove region while L2VOCl in major groove region. Molecular dynamic simulation performed on L2Cu complex revealing the interaction of complex with DNA within 20 ns time. The complex stacked into the nitrogen bases of oligonucleotides and the bonding features were intrinsically preserved for longer simulation times. In-vitro cytotoxicity study was undertaken employing MTT assay against the breast cancer cell line (MCF-7). Potential cytotoxic activities were observed for L2Cu and L2VOCl complexes with IC50 values of showing 71 % and 74 % of inhibition respectively.


Assuntos
Antineoplásicos , Cobre , DNA , Ácidos Hidroxâmicos , Simulação de Acoplamento Molecular , Vanádio , Humanos , Cobre/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Células MCF-7 , DNA/química , DNA/metabolismo , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Vanádio/química , Vanádio/farmacologia , Simulação de Dinâmica Molecular , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Ligantes
3.
Talanta ; 275: 126110, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631264

RESUMO

Considering that cancer has become the second leading cause of death in humans, it is essential to develop an analytical approach that can sensitively detect tumor markers for early detection. We report an attenuated photoelectrochemical (PEC) immunoassay based on the organic-inorganic heterojunction 10MIL-88B(FeV)/ZnIn2S4 (10M88B(FeV)/ZIS) as a photoactive material for monitoring carcinoembryonic antigen (CEA). The 10M88B(FeV)/ZIS heterojunctions have excellent light-harvesting properties and high electrical conductivity, which are attributed to the advantages of both organic and inorganic semiconductors, namely, remarkable photogenerated carrier separation efficiency and long photogenerated carrier lifetime. Horseradish peroxidase (HRP) in the presence of H2O2 can catalyze 3,3'-diaminofenamide (DAB) producing brown precipitates (oxDAB), which is then loaded onto the 10M88B(FeV)/ZIS heterojunction to reduce the photocurrent and enable the quantitative detection of CEA. Under optimal conditions, the photocurrent values of the PEC biosensor are linearly related to the logarithm of the CEA concentrations, ranging from 0.01 ng mL-1 to 100 ng mL-1 with a detection limit (LOD) of 4.0 pg mL-1. Notably, the accuracy of the PEC biosensor is in agreement with that of the human CEA enzyme-linked immunosorbent assay (ELISA) kit.


Assuntos
Biomarcadores Tumorais , Análise Química do Sangue , Imunoensaio , Estruturas Metalorgânicas , Vanádio , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/ultraestrutura , Vanádio/química , Fotoquímica/instrumentação , Técnicas Eletroquímicas/instrumentação , Imunoensaio/instrumentação , Imunoensaio/métodos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue , Antígeno Carcinoembrionário/análise , Antígeno Carcinoembrionário/sangue , Humanos , Análise Química do Sangue/instrumentação , Análise Química do Sangue/métodos , Limite de Detecção
4.
Anal Chem ; 96(14): 5677-5685, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38533607

RESUMO

Reactive oxygen species (ROS) are closely associated with the redox balance of the physiological environment, and monitoring ROS can aid in the early diagnosis of many diseases, including cancer. In this study, chiral vanadium trioxide/vanadium nitride (V2O3/VN) nanoparticles (NPs) modified with an organic dye (cyanine 3 [Cy3]) were prepared for ROS sensing. Chiral V2O3/VN NPs were prepared with the "ligand-induced chirality" strategy and showed a g-factor of up to 0.12 at a wavelength of 512 nm. To the best of our knowledge, this g-factor is the highest value of all chiral ceramic nanomaterials. The very high g-factor of the nanoprobe confers very high sensitivity, because the higher g-factor, the higher sensitivity. In the presence of ROS, V3+ in the chiral V2O3/VN nanoprobe undergoes a redox reaction to form V2O5, reducing the circular dichroism and absorbance signals, whereas the fluorescence signal of Cy3 is restored. With this nanoprobe, the limits of detection for the circular dichroic and fluorescence signals in living cells are 0.0045 nmol/106 and 0.018 nmol/106 cells, respectively. This chiral nanoprobe can also monitor ROS levels in vivo by fluorescence. This strategy provides an innovative approach to the detection of ROS and is expected to promote the wider application of chiral nanomaterials for biosensing.


Assuntos
Nanopartículas , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Vanádio
5.
Inorg Chem ; 63(11): 4997-5011, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38428015

RESUMO

We study active-site models of nonheme iron hydroxylases and their vanadium-based mimics using density functional theory to determine if vanadyl is a faithful structural mimic. We identify crucial structural and energetic differences between ferryl and vanadyl isomers owing to the differences in their ground electronic states, i.e., high spin (HS) for Fe and low spin (LS) for V. For the succinate cofactor bound to the ferryl intermediate, we predict facile interconversion between monodentate and bidentate coordination isomers for ferryl species but difficult rearrangement for vanadyl mimics. We study isomerization of the oxo intermediate between axial and equatorial positions and find the ferryl potential energy surface to be characterized by a large barrier of ca. 10 kcal/mol that is completely absent for the vanadyl mimic. This analysis reveals even starker contrasts between Fe and V in hydroxylases than those observed for this metal substitution in nonheme halogenases. Analysis of the relative bond strengths of coordinating carboxylate ligands for Fe and V reveals that all of the ligands show stronger binding to V than Fe owing to the LS ground state of V in contrast to the HS ground state of Fe, highlighting the limitations of vanadyl mimics of native nonheme iron hydroxylases.


Assuntos
Ferro , Vanádio , Vanadatos , Eletrônica , Oxigenases de Função Mista
6.
Chem Biol Interact ; 394: 110977, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548214

RESUMO

The applications of magnetic nanoparticles (MNPs) as biocatalysts in different biomedical areas have been evolved very recently. One of the main challenges in this field is to design affective MNPs surfaces with catalytically active atomic centres, while producing minimal toxicological side effects on the hosting cell or tissues. MNPs of vanadium spinel ferrite (VFe2O4) are a promising material for mimicking the action of natural enzymes in degrading harmful substrates due to the presence of active V5+ centres. However, the toxicity of this material has not been yet studied in detail enough to grant biomedical safety. In this work, we have extensively measured the structural, compositional, and magnetic properties of a series of VxFe3-xO4 spinel ferrite MNPs to assess the surface composition and oxidation state of V atoms, and also performed systematic and extensive in vitro cytotoxicity and genotoxicity testing required to assess their safety in potential clinical applications. We could establish the presence of V5+ at the particle surface even in water-based colloidal samples at pH 7, as well as different amounts of V2+ and V3+ substitution at the A and B sites of the spinel structure. All samples showed large heating efficiency with Specific Loss Power values up to 400 W/g (H0 = 30 kA/m; f = 700 kHz). Samples analysed for safety in human hepatocellular carcinoma (HepG2) cell line with up to 24h of exposure showed that these MNPs did not induce major genomic abnormalities such as micronuclei, nuclear buds, or nucleoplasmic bridges (MNIs, NBUDs, and NPBs), nor did they cause DNA double-strand breaks (DSBs) or aneugenic effects-types of damage considered most harmful to cellular genetic material. The present study is an essential step towards the use of these type of nanomaterials in any biomedical or clinical application.


Assuntos
Compostos Férricos , Humanos , Compostos Férricos/química , Compostos Férricos/toxicidade , Células Hep G2 , Dano ao DNA/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Temperatura Alta , Vanádio/química , Vanádio/toxicidade , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Calefação , Nanopartículas/química , Nanopartículas/toxicidade
7.
Anal Chem ; 96(12): 4825-4834, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38364099

RESUMO

Immunochromatographic assays (ICAs) have been widely used in the field detection of mycotoxin contaminants. Nevertheless, the lack of multisignal readout capability and the ability of signaling tags to maintain their biological activity while efficiently loading antibodies remain a great challenge in satisfying diverse testing demands. Herein, we proposed a novel three-in-one multifunctional hollow vanadium nanomicrosphere (high brightness-catalytic-photothermal properties)-mediated triple-readout ICA (VHMS-ICA) for sensitive detection of T-2. As the key to this biosensing strategy, vanadium was used as the catalytic-photothermal characterization center, and natural polyphenols were utilized as the bridging ligands for coupling with the antibody while self-assembling with formaldehyde cross-linking into a hollow nanocage-like structure, which offers the possibility of realizing a three-signal readout strategy and improving the coupling efficiency to the antibody while preserving its biological activity. The constructed sensors showed a detection limit (LOD) of 2 pg/mL for T-2, which was about 345-fold higher than that of conventional gold nanoparticle-based ICA (0.596 ng/mL). As anticipated, the detection range of VHMS-ICA was extended about 8-fold compared with the colorimetric signal alone. Ultimately, the proposed immunosensor performed well in maize and oat samples, with satisfactory recoveries. Owing to the synergistic and complementary interactions between distinct signaling modes, the establishment of multimodal immunosensors with multifunctional tags is an efficient strategy to satisfy diversified detection demands.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Imunoensaio , Colorimetria , Ouro/química , Vanádio , Anticorpos , Limite de Detecção
8.
Molecules ; 29(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398551

RESUMO

Bis(acetylacetonato)oxidovanadium(IV) [(VO(acac)2], generally known as vanadyl acetylacetonate, has been shown to be preferentially sequestered in malignant tissue. Vanadium-48 (48V) generated with a compact medical cyclotron has been used to label VO(acac)2 as a potential radiotracer in positron emission tomography (PET) imaging for the detection of cancer, but requires lengthy synthesis. Current literature protocols for the characterization of VO(acac)2 require macroscale quantities of reactants and solvents to identify products by color and to enable crystallization that are not readily adaptable to the needs of radiotracer synthesis. We present an improved method to produce vanadium-48-labeled VO(acac)2, [48V]VO(acac)2, and characterize it using high-performance liquid chromatography (HPLC) with radiation detection in combination with UV detection. The approach is suitable for radiotracer-level quantities of material. These methods are readily applicable for production of [48V]VO(acac)2. Preliminary results of preclinical, small-animal PET studies are presented.


Assuntos
Hidroxibutiratos , Neoplasias , Pentanonas , Radioisótopos , Vanádio , Animais , Cromatografia Líquida de Alta Pressão , Vanádio/química , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
9.
J Biol Inorg Chem ; 29(1): 139-158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38175299

RESUMO

The aim to access linked tetravanadate [V4O12]4- anion with mixed copper(II) complexes, using α-amino acids and phenanthroline-derived ligands, resulted in the formation of four copper(II) complexes [Cu(dmb)(Gly)(OH2)]2[Cu(dmb)(Gly)]2[V4O12]·9H2O (1) [Cu(dmb)(Lys)]2[V4O12]·8H2O (2), [Cu(dmp)2][V4O12]·C2H5OH·11H2O (3), and [Cu(dmp)(Gly)Cl]·2H2O (4), where dmb = 4,4'-dimethioxy-2,2'-bipyridine; Gly = glycine; Lys = lysine; and dmp = 2,9-dimethyl-1,10-phenanthroline. The [V4O12]4- anion is functionalized with mixed copper(II) units in 1 and 2; while in 3, it acts as a counterion of two [Cu(dmp)]2+ units. Compound 4 crystallized as a unit that did not incorporate the vanadium cluster. All compounds present magnetic couplings arising from Cu⋯O/Cu⋯Cu bridges. Stability studies of water-soluble 3 and 4 by UV-Vis spectroscopy in cell culture medium confirmed the robustness of 3, while 4 appears to undergo ligand scrambling over time, resulting partially in the stable species [Cu(dmp)2]+ that was also identified by electrospray ionization mass spectrometry at m/z = 479. The in vitro cytotoxicity activity of 3 and 4 was determined in six cancer cell lines; the healthy cell line COS-7 was also included for comparative purposes. MCF-7 cells were more sensitive to compound 3 with an IC50 value of 12 ± 1.2 nmol. The tested compounds did not show lipid peroxidation in the TBARS assay, ruling out a mechanism of action via reactive oxygen species formation. Both compounds inhibited cell migration at 5 µM in wound-healing assays using MCF-7, PC-3, and SKLU-1 cell lines, opening a new window to study the anti-metastatic effect of mixed vanadium-copper(II) systems.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Cobre/farmacologia , Cobre/química , Antineoplásicos/química , Fenantrolinas/química , Vanádio/farmacologia , DNA/química , Células MCF-7 , Ânions , Fenômenos Magnéticos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Ligantes
10.
Mikrochim Acta ; 191(2): 112, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286966

RESUMO

For the first time, a tumour hypoxia marker detection has been developed using two-dimensional layered composite modified electrodes in biological and environmental samples. The concept of TaB2 and V4C3-based MXene composite materials is not reported hitherto using ball-milling and thermal methods and it remains the potentiality of the present work. The successful formation is confirmed through various characterisation techniques like X-ray crystallography, scanning electron microscopy photoelectron, and impedance spectroscopy. A reliable and repeatable electrochemical sensor based on TaB2@V4C3/SPCE was developed for quick and extremely sensitive detection of pimonidazole by various electroanalytical methods. It has been shown that the modified electrode intensifies the reduction peak current and causes a decrease in the potential for reduction, in comparison with the bare electrode. The proposed sensor for pimonidazole reduction has strong electrocatalytic activity and high sensitivity, as demonstrated by the cyclic voltammetry approach. Under the optimal experimental circumstances, differential pulse voltammetry techniques were utilised for generating the wide linear range (0.02 to 928.51 µM) with a detection limit of 0.0072 µM. The resultant data demonstrates that TaB2@V4C3/SPCE nano-sensor exhibits excellent stability, reliability, and repeatability in the determination of pimonidazole. Additionally, the suggested sensor was successfully used to determine the presence of pimonidazole in several real samples, such as human blood serum, urine, water, and drugs.


Assuntos
Carbono , Nitroimidazóis , Tantálio , Humanos , Carbono/química , Vanádio , Reprodutibilidade dos Testes , Limite de Detecção , Eletrodos , Compostos de Boro
11.
J Trace Elem Med Biol ; 83: 127381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38211406

RESUMO

BACKGROUND: Fungi absorb and solubilize a broad spectrum of heavy metals such as vanadium (V), which makes them a main route of its entry into the biosphere. V as vanadate (V5+) is a potential medical agent due to its many metabolic actions such as interaction with phosphates in the cell, and especially its insulin-mimetic activity. Antidiabetic activity of V-enriched fungi has been studied in recent years, but the biological and chemical bases of vanadium action and status in fungi in general are poorly understood, with almost no information on edible fungi. METHODS: This manuscript gives a deeper insight into the interaction of V5+ with Coprinellus truncorum, an edible autochthonous species widely distributed in Europe and North America. Vanadium uptake and accumulation as V5+ was studied by 51V NMR, while the reducing abilities of the mycelium were determined by EPR. 31P NMR was used to determine its effects on the metabolism of phosphate compounds, with particular focus on phosphate sugars identified using HPLC. RESULTS: Vanadate enters the mycelium in monomeric form and shows no immediate detrimental effects on intracellular pH or polyphosphate (PPc) levels, even when applied at physiologically high concentrations (20 mM Na3VO4). Once absorbed, it is partially reduced to less toxic vanadyl (V4+) with notable unreduced portion, which leads to a large increase in phosphorylated sugar levels, especially glucose-1-phosphate (G1P) and fructose-6-phosphate (F6P). CONCLUSIONS: Preservation of pH and especially PPc reflects maintenance of the energy status of the mycelium, i.e., its tolerance to high V5+ concentrations. Rise in G1P and F6P levels implies that the main targets of V5+ are most likely phosphoglucomutase and phosphoglucokinase(s), enzymes involved in early stages of G6P transformation in glycolysis and glycogen metabolism. This study recommends C. truncorum for further investigation as a potential antidiabetic agent.


Assuntos
Agaricales , Vanadatos , Vanádio , Vanádio/análise , Vanadatos/química , Biomassa , Fosfatos/análise , Micélio/metabolismo
12.
Prep Biochem Biotechnol ; 54(2): 127-149, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37530797

RESUMO

In the modern era, inorganic nanoparticles have received profound attention as they possess boundless applications in various fields. Among these, vanadium-based nanoparticles (VNPs) are highly remarkable due to their inherent physiological and biological properties with many therapeutic and other applications, such as drug delivery systems for diseases like cancer, environmental remediation, energy storage, energy conversion, and photocatalysis. Moreover, physically, and chemically synthesized VNPs are very versatile, however, these synthesis routes cause concern to health and the environment due to the highly savage reaction conditions, using highly toxic and harsh chemicals, which compel the researchers to develop an eco-friendly, greener, and sustainable route for synthesis. In this outlook, to avoid the innumerable limitations, a bio approach is used over chemical and physical methods. This present review emphasis on the role of various biological components in the synthesis, especially Phyto-molecules that acts as capping and reducing agent, and solvent system for the nanoparticles synthesis. Furthermore, the influence of various factors on the biogenic synthesized nanoparticles has also been discussed. Finally, potential applications of as-synthesized VNPs, principally as an antimicrobial agent and their role as a nanomedicine, energy applications as a supercapacitor, and photocatalytic agents, have been discussed.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Vanádio , Química Verde , Nanomedicina , Compostos Fitoquímicos , Extratos Vegetais/química
13.
Appl Biochem Biotechnol ; 196(1): 50-67, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37097404

RESUMO

The present work focused on the synthesis of Vinca rosea leaf extract derived ZnO and vanadium-doped ZnO nanoparticles (V-ZnO NPs). The chemical composition, structural, and morphology of ZnO and vanadium-doped ZnO NPs were examined by FTIR, XRD, and SEM-EDX. The FTIR confirmed the presence of functional groups corresponding to ZnO and vanadium-doped ZnO NPs. SEM-EDX clearly indicated the morphology of synthesised NPs; the hexagonal crystal of NPs was confirmed from XRD. In addition, the cytotoxic effect of ZnO and V-ZnO NPs was estimated against the breast cancer (MCF-7) cell line. From the assay, Vinca rosea (V. rosea) capped ZnO NPs have shown improved cytotoxic activity than that of Vinca rosea capped V-ZnO NPs. ZnO and vanadium-doped ZnO NPs showed the strongest antibacterial activity against Enterococcus, Escherichia coli, Candida albicans, and Aspergillus niger. The α-amylase inhibition assays demonstrated antidiabetic activity of synthesised NPs. From the assay test, results obtained Vinca rosea capped ZnO nanoparticles prepared using the green approach showed high effective antioxidant, antidiabetic activity, and anticancer activity than vanadium-doped ZnO NPs.


Assuntos
Antineoplásicos , Catharanthus , Nanopartículas Metálicas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Catharanthus/metabolismo , Nanopartículas Metálicas/química , Vanádio , Antibacterianos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Hipoglicemiantes , Folhas de Planta/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Environ Pollut ; 343: 123126, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38092336

RESUMO

The metal vanadium has superior physical and chemical properties and has a wide range of applications in many fields of modern industry. The increasing demand for vanadium worldwide has led to the need to guarantee sustainable vanadium production. The smelting process of vanadium and titanium magnetite produces vanadium-bearing steel slag, a key material for vanadium extraction. Herein, vanadium production, consumption, and steel slag properties are discussed. A detailed review of methods for extracting vanadium from vanadium-bearing steel slag is presented, including the most commonly used roasting and leaching method, and direct leaching, bioleaching and enhanced leaching methods are also described. Finally, the rules and regulations of steel slag management are introduced. In general, it is necessary to further develop environmentally friendly vanadium extraction methods and technologies from vanadium containing solid wastes. This study provides research directions for the technology of vanadium extraction from steel slag.


Assuntos
Resíduos Industriais , Vanádio , Vanádio/análise , Resíduos Industriais/análise , Aço , Reciclagem , Titânio
15.
Adv Mater ; 36(2): e2307115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37732568

RESUMO

Taking the significance of the special microenvironment for tumor cell survival into account, disrupting tumor redox homeostasis is highly prospective for improving therapeutic efficacy. Herein, a multifunctional 2D vanadium-based MXene nanoplatform, V4 C3 /atovaquone@bovine albumin (V4 C3 /ATO@BSA, abbreviated as VAB) has been elaborately constructed for ATO-enhanced nanozyme catalytic/photothermal therapy. The redox homeostasis within the tumor cells is eventually disrupted, showing a remarkable anti-tumor effect. The VAB nanoplatform with mixed vanadium valence states can induce a cascade of catalyzed reactions in the tumor microenvironment, generating plenty of reactive oxygen species (ROS) with effective glutathione consumption to amplify oxidative stress. Meanwhile, the stable and strong photothermal effect of VAB under near-infrared irradiation not only causes the necrosis of tumor cells, but also improves its peroxidase-like activity. In addition, the release of ATO can effectively alleviate endogenous oxygen consumption to limit triphosadenine formation and inhibit mitochondrial respiration. As a result, the expression of heat shock proteins is effectively suppressed to overcome thermoresistance and the production of ROS can be further promoted due to mitochondrial injury. Moreover, VAB also presents high photoacoustic and photothermal imaging performances. In brief, the multifunctional nanoplatform can provide ATO-enhanced nanozyme catalytic/photothermal therapy with broadening the biomedical applications of vanadium-based MXene.


Assuntos
Neoplasias , Nitritos , Terapia Fototérmica , Elementos de Transição , Animais , Bovinos , Vanádio , Estudos Prospectivos , Espécies Reativas de Oxigênio , Homeostase , Oxirredução , Neoplasias/terapia , Catálise , Microambiente Tumoral , Linhagem Celular Tumoral , Peróxido de Hidrogênio
16.
Int J Phytoremediation ; 26(6): 873-881, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37897245

RESUMO

The efficacy of the lesser duckweed, Lemna aequinoctialis (Welw.), to remediate varying concentrations of cadmium, chromium, lead, and vanadium from an organo-metallic contaminated media was tested in artificial surface wetland mesocosm experiment. A 100 g of fresh-weight duckweed was introduced into each of the mesocosm, except for the control setup and monitored for 120 days while the metals removal rate was quantified using an atomic absorption spectrometer. A time-dependent and partial sorption of metals was observed with the highest removal rate recorded for cadmium (71.96%), followed by lead (69.23%), vanadium (55.22%), and chromium (41.64%). The uptake and bioaccumulation of metals were reflected in the increased plant biomass (p < 0.05, F = 97.12) and relative growth rate (p < 0.05, F = 1214.35) in duckweed. A coefficient (r2) of 0.951, 0.919, 0.970, and 0.967 was recorded for cadmium, chromium, lead, and vanadium respectively, indicating that the remediation of metals followed the first-order kinetic rate model. This study highlights the efficacy of the lesser duckweed to preferentially remediate metals in an organo-metallic complex medium for potential wastewater treatment in the petrochemical industry.


Appling ecological or nature-based solutions for the treatment of complex wastewater from the petrochemical industry in Africa remains a challenge due to the paucity of evidence-based science to support the implementation that is acceptable to regulators and the industry. Although laboratory and field-based demonstration of phytoremediation studies has shown the potential of macrophytes for the treatment of organic and inorganic pollutants, studies on the application of duckweed for complex organo-metallic wastewater treatment for heavy metals are few. This study demonstrates the efficacy of the lesser duckweed, Lemna aequinoctialis in the sorption of cadmium, chromium, lead, and vanadium from an organo-metallic complex with potential application in the petrochemical industry.


Assuntos
Araceae , Metais Pesados , Cádmio , Cromo , Vanádio , Áreas Alagadas , Biodegradação Ambiental , Chumbo , Metais Pesados/análise
17.
Inorg Chem ; 63(1): 714-729, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38150362

RESUMO

Ligands derived from 2-(1-phenylhydrazinyl)pyridine and salicylaldehyde (HL1), 3-methoxysalicylaldehyde (HL2), 5-bromosalicylaldehyde (HL3), and 3,5-di-tert-butylsalicylaldehyde (HL4) react with [VIVO(acac)2] in MeOH followed by aerial oxidation to give [VVO2(L1)] (1), [VVO2(L2)] (2), [VVO2(L3)] (3), and [VVO2(L4)] (4). Complex [VIVO(acac)(L1)] (5) is also isolable from [VIVO(acac)2] and HL1 in dry MeOH. Structures of all complexes were confirmed by single-crystal X-ray and spectroscopic studies. They efficiently catalyze benzyl alcohol and its derivatives' oxidation in the presence of H2O2 to their corresponding aldehydes. Under optimized reaction conditions using 1 as a catalyst precursor, conversion of benzyl alcohol follows the order: 4 (93%) > 2 (90%) > 1 (86%) > 3 (84%) ≈ 5 (84%). These complexes were also evaluated for antifungal and antiproliferative activities. Complex 3 with MIC50 = 16 µg/mL, 4 with MIC50 = 12 µg/mL, and 5 with MIC50 = 16 µg/mL are efficient toward planktonic cells of Candida albicans and Candida tropicalis. On Michigan cancer foundation-7 (MCF-7) cells, they show comparable cytotoxic effects and exhibit IC50 in the 27.3-33.5 µg/mL range, and among these, 4 exhibits the highest cytotoxicity. A similar study on human embryonic kidney cells (HEK293) confirms their less toxicity at lower concentrations (4 to 16 µg/mL) compared to MCF-7.


Assuntos
Antifúngicos , Vanádio , Humanos , Vanádio/química , Antifúngicos/farmacologia , Peróxido de Hidrogênio/química , Células HEK293 , Álcoois Benzílicos , Ligantes
18.
Front Endocrinol (Lausanne) ; 14: 1265310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075040

RESUMO

Introduction: The prevalence of obesity is rising globally, with negative effects on the socioeconomic system. As a result of its drivers which include low-grade chronic inflammation, oxidative stress, and fatty acid metabolism, this phenotype develops metabolic anomalies that exacerbate its pathogenesis. It has been discovered that metals and metalloids have substantial effects on both the immune system and metabolism and are influenced by factors connected to obesity. Although there is a known connection between metals, obesity, and related metabolic disorders, it is still under research. Methods: We determined the plasma levels of 16 metals and metalloids in 76 individuals with obesity and investigated the relationships with inflammatory and oxidative stress biomarkers in order to clarify the processes by which metals/metalloids exhibit their effects. Results: After adjusting for age, gender, BMI, physical activity level, smoking, the existence of metabolic abnormalities, and dietary intake of the corresponding metal, regression analysis revealed the following statistically significant associations; vanadium was negatively associated with oxLDL (Beta ± SE= -0.014 ± 0.005, p=0.007), zinc was negatively associated with leptin (Beta ± SE= -12.390 ± 5.226, p=0.025), cobalt was associated negatively with adiponectin (Beta ± SE= -0.030 ± 0.012, p=0.001) and positively with MPO (Beta ± SE= 0.002 ± 0.001, p=0.023), and rubidium was negatively associated with oxLDL (Beta ± SE= -1.139 ± 0.411, p=0.008) and positively with MPO (Beta ± SE= 0.324 ± 0.102, p=0.003). Discussion: The aforementioned associations highlight the need for further research, demonstrating the importance of inflammation and oxidative stress in the association between metals/metalloids and obesity-related metabolic abnormalities.


Assuntos
Metaloides , Rubídio , Humanos , Vanádio , Zinco , Cobalto , Grécia/epidemiologia , Obesidade/complicações , Inflamação/complicações , Estresse Oxidativo
19.
Int J Biol Macromol ; 253(Pt 5): 127875, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37924912

RESUMO

In this article, the implications of binding competition of vanadates(V) with dodecyl sulfates for bovine serum albumin on cytotoxicity of vanadium(V) species against prostate cancer cells have been investigated. The pH- and SDS-dependent vanadate(V)-BSA interactions were observed. At pH 5, there is only one site capable of binding ten vanadates(V) ions (logK(ITC)1 = 4.96 ± 0.06; ΔH(ITC)1 = -1.04 ± 0.03 kcal mol-1), whereas at pH 7 two distinctive binding sites on protein were found, saturated with two and seven V(V) ions, respectively (logK(ITC)1 = 6.11 ± 0.06; ΔH(ITC)1 = 0.78 ± 0.12 kcal mol-1; logK(ITC)2 = 4.80 ± 0.02; ΔH(ITC)2 = - 4.95 ± 0.14 kcal mol-1). SDS influences the stoichiometry and the stability of the resulting V(V)-BSA complexes. Finally, the cytotoxicity of vanadates(V) against prostate cancer cells (PC3 line) was examined in the presence and absence of SDS in the culture medium. In the case of a 24-h incubation with 100 µM vanadate(V), a ca. 20 % reduction in viability of PC3 cells was observed in the presence of SDS. However, in other considered cases (various concentrations and time of incubation) SDS does not affect the dose-dependent action of vanadates(V) on the investigated prostate cancer cells.


Assuntos
Neoplasias da Próstata , Vanadatos , Humanos , Masculino , Vanadatos/farmacologia , Vanadatos/química , Vanádio/farmacologia , Vanádio/metabolismo , Soroalbumina Bovina , Técnicas de Cultura de Células
20.
Inorg Chem ; 62(43): 17804-17817, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37858311

RESUMO

Limited stability of most transition-metal complexes in biological media has hampered their medicinal applications but also created a potential for novel cancer treatments, such as intratumoral injections of cytotoxic but short-lived anticancer drugs. Two related V(V) complexes, [VO(Hshed)(dtb)] (1) and [VO(Hshed)(cat)] (2), where H2shed = N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine, H2dtb = 3,5-di-tert-butylcatechol, and H2cat = 1,2-catechol, decomposed within minutes in cell culture medium at 310 K (t1/2 = 43 and 9 s for 1 and 2, respectively). Despite this, both complexes showed high antiproliferative activities in triple-negative human breast cancer (MDA-MB-231) cells, but the mechanisms of their activities were radically different. Complex 1 formed noncovalent adducts with human serum albumin, rapidly entered cells via passive diffusion, and was nearly as active in a short-term treatment (IC50 = 1.9 ± 0.2 µM at 30 min) compared with a long-term treatment (IC50 = 1.3 ± 0.2 µM at 72 h). The activity of 1 decreased about 20-fold after its decomposition in cell culture medium for 30 min at 310 K. Complex 2 showed similar activities (IC50 ≈ 12 µM at 72 h) in both fresh and decomposed solutions and was inactive in a short-term treatment. The activity of 2 was mainly due to the reactions among V(V) decomposition products, free catechol, and O2 in cell culture medium. As a result, the activity of 1 was less sensitive than that of 2 to the effects of hypoxic conditions that are characteristic of solid tumors and to the presence of apo-transferrin that acts as a scavenger of V(V/IV) decomposition products in blood serum. In summary, complex 1, but not 2, is a suitable candidate for further development as an anticancer drug delivered via intratumoral injections. These results demonstrate the importance of fine-tuning the ligand properties for the optimization of biological activities of metal complexes.


Assuntos
Complexos de Coordenação , Compostos Organometálicos , Humanos , Complexos de Coordenação/farmacologia , Vanádio/farmacologia , Compostos Organometálicos/farmacologia , Transferrina , Albuminas , Hipóxia , Catecóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA