Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 323(6): L676-L682, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36218276

RESUMO

The in utero environment is sensitive to toxicant exposure, altering the health and growth of the fetus, and thus sensitive to contaminant exposure. Though recent clinical data suggest that e-cigarette use does no further harm to birth outcomes than a nicotine patch, this does not account for the effects of vaping during pregnancy on the long-term health of offspring. Pregnant mice were exposed to: 1) e-cigarette vapor with nicotine (PV + Nic; 2% Nic in 50:50 propylene glycol: vegetable glycerin), 2) e-cigarette vapor without nicotine [PV; (50:50 propylene glycol:vegetable glycerin)], or 3) HEPA filtered air (FA). Dams were removed from exposure upon giving birth. At 5 mo of age, pulmonary function tests on the offspring revealed female and male mice from the PV group had greater lung stiffness (Ers) and alveolar stiffness (H) compared with the FA group. Furthermore, baseline compliance (Crs) was reduced in female mice from the PV group and in male mice from the PV and PV + Nic groups. Lastly, female mice had decreased forced expiratory volume (FEV0.1) in the PV group, but not in the male groups, compared with the FA group. Lung histology revealed increased collagen deposition around the vessels/airways and in alveolar tissue in PV and PV + Nic groups. Furthermore, goblet hyperplasia was observed in PV male and PV/PV + Nic female mice. Our work shows that in utero exposure to e-cigarette vapor, regardless of nicotine presence, causes lung dysfunction and structural impairments that persist in the offspring to adulthood.


Assuntos
Vapor do Cigarro Eletrônico , Sistemas Eletrônicos de Liberação de Nicotina , Gravidez , Masculino , Feminino , Camundongos , Animais , Vapor do Cigarro Eletrônico/toxicidade , Nicotina/toxicidade , Glicerol , Pulmão , Propilenoglicol/toxicidade
2.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R791-R801, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34524928

RESUMO

Maternal e-cigarette (e-cig) exposure is a pressing perinatal health concern. Emerging evidence reveals its potential adverse impacts on brain development in offspring, yet the underlying mechanisms are poorly understood. The present study tested the hypothesis that fetal e-cig exposure induces an aberrant DNA methylation profile in the developing brain, leading to alteration of autophagic flux signaling and programming of a sensitive phenotype to neonatal hypoxic-ischemic encephalopathy (HIE). Pregnant rats were exposed to chronic intermittent e-cig aerosol. Neonates were examined at the age of 9 days old. Maternal e-cig exposure decreased the body weight and brain weight but enhanced the brain-to-body weight ratio in the neonates. E-cig exposure induced a gender-dependent increase in hypoxic-ischemia-induced brain injury in male neonates associated with enhanced reactive oxygen species (ROS) activity. It differentially altered DNA methyltransferase expression and enhanced both global DNA methylation levels and specific CpG methylation at the autophagy-related gene 5 (ATG5) promoter. In addition, maternal e-cig exposure caused downregulations of ATG5, microtubule-associated protein 1 light chain 3ß, and sirtuin 1 expression in neonatal brains. Of importance, knockdown of ATG5 in neonatal pups exaggerated neonatal HIE. In conclusion, the present study reveals that maternal e-cig exposure downregulates autophagy-related gene expression via DNA hypermethylation, leading to programming of a hypoxic-ischemic sensitive phenotype in the neonatal brain.


Assuntos
Autofagia , Encéfalo/metabolismo , Metilação de DNA , Vapor do Cigarro Eletrônico/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Epigênese Genética , Hipóxia-Isquemia Encefálica/etiologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Animais Recém-Nascidos , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Encéfalo/patologia , Ilhas de CpG , Feminino , Idade Gestacional , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Exposição por Inalação , Exposição Materna , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Gravidez , Regiões Promotoras Genéticas , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo
3.
Toxicol Lett ; 347: 45-57, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33892128

RESUMO

Goblet cell hyperplasia and overproduction of airway mucin are characteristic features of the lung epithelium of smokers and COPD patients. Tobacco heating products (THPs) are a potentially less risky alternative to combustible cigarettes, and through continued use solus THPs may reduce smoking-related disease risk. Using the MucilAir™ in vitro lung model, a 6-week feasibility study was conducted investigating the effect of repeated cigarette smoke (1R6F), THP aerosol and air exposure. Tissues were exposed to nicotine-matched whole aerosol doses 3 times/week. Endpoints assessed were dosimetry, tight-junction integrity, cilia beat frequency (CBF) and active area (AA), cytokine secretion and airway mucin MUC5AC expression. Comparison of incubator and air exposed controls indicated exposures did not have a significant effect on the transepithelial electrical resistance (TEER), CBF and AA of the tissues. Cytokine secretion indicated clear differences in secretion patterns in response to 1R6F and THP exposure. 1R6F exposure resulted in a significant decrease in the TEER and AA (p=0.000 and p=0.000, respectively), and an increase in MUC5AC positive cells (p=0.002). Repeated THP exposure did not result in a significant change in MUC5AC positive cells. This study demonstrates repeated cigarette smoke whole aerosol exposure can induce these morphological changes in vitro.


Assuntos
Vapor do Cigarro Eletrônico/toxicidade , Células Caliciformes/efeitos dos fármacos , Mucina-5AC/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Fumaça/efeitos adversos , Aerossóis , Linhagem Celular , Citocinas/metabolismo , Sistemas Eletrônicos de Liberação de Nicotina , Estudos de Viabilidade , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Humanos , Hiperplasia , Mediadores da Inflamação/metabolismo , Exposição por Inalação , Masculino , Pessoa de Meia-Idade , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Fatores de Tempo , Produtos do Tabaco
4.
Am J Physiol Heart Circ Physiol ; 320(4): H1510-H1525, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33543686

RESUMO

After more than a decade of electronic cigarette (E-cig) use in the United States, uncertainty persists regarding E-cig use and long-term cardiopulmonary disease risk. As all E-cigs use propylene glycol and vegetable glycerin (PG-VG) and generate abundant saturated aldehydes, mice were exposed by inhalation to PG-VG-derived aerosol, formaldehyde (FA), acetaldehyde (AA), or filtered air. Biomarkers of exposure and cardiopulmonary injury were monitored by mass spectrometry (urine metabolites), radiotelemetry (respiratory reflexes), isometric myography (aorta), and flow cytometry (blood markers). Acute PG-VG exposure significantly affected multiple biomarkers including pulmonary reflex (decreased respiratory rate, -50%), endothelium-dependent relaxation (-61.8 ± 4.2%), decreased WBC (-47 ± 7%), and, increased RBC (+6 ± 1%) and hemoglobin (+4 ± 1%) versus air control group. Notably, FA exposure recapitulated the prominent effects of PG-VG aerosol on pulmonary irritant reflex and endothelial dysfunction, whereas AA exposure did not. To attempt to link PG-VG exposure with FA or AA exposure, urinary formate and acetate levels were measured by GC-MS. Although neither FA nor AA exposure altered excretion of their primary metabolite, formate or acetate, respectively, compared with air-exposed controls, PG-VG aerosol exposure significantly increased post-exposure urinary acetate but not formate. These data suggest that E-cig use may increase cardiopulmonary disease risk independent of the presence of nicotine and/or flavorings. This study indicates that FA levels in tobacco product-derived aerosols should be regulated to levels that do not induce biomarkers of cardiopulmonary harm. There remains a need for reliable biomarkers of exposure to inhaled FA and AA.NEW & NOTEWORTHY Use of electronic cigarettes (E-cig) induces endothelial dysfunction (ED) in healthy humans, yet the specific constituents in E-cig aerosols that contribute to ED are unknown. Our study implicates formaldehyde that is formed in heating of E-cig solvents (propylene glycol, PG; vegetable glycerin, VG). Exposure to formaldehyde or PG-VG-derived aerosol alone stimulated ED in female mice. As ED was independent of nicotine and flavorants, these data reflect a "universal flaw" of E-cigs that use PG-VG.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/e-cigarettes-aldehydes-and-endothelial-dysfunction/.


Assuntos
Acetaldeído/toxicidade , Aorta Torácica/efeitos dos fármacos , Vapor do Cigarro Eletrônico/toxicidade , Endotélio Vascular/efeitos dos fármacos , Formaldeído/toxicidade , Glicerol/toxicidade , Pulmão/efeitos dos fármacos , Propilenoglicol/toxicidade , Solventes/toxicidade , Acetaldeído/urina , Aerossóis , Animais , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Biomarcadores/sangue , Biomarcadores/urina , Vapor do Cigarro Eletrônico/urina , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Feminino , Formaldeído/urina , Exposição por Inalação , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Respiração/efeitos dos fármacos , Medição de Risco , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
5.
J Appl Toxicol ; 41(3): 493-505, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33034066

RESUMO

"Pod-based" e-cigarettes such as JUUL are currently the most prevalent electronic nicotine delivery systems (ENDS) in the United States. JUUL-type ENDS utilize nicotine salts protonated with benzoic acid rather than freebase nicotine. However, limited information is available on the cellular effects of these products. Cytoplasmic Ca2+ is a universal second messenger that controls many cellular functions including cell growth and cell death. Of note, dysregulation of cell Ca2+ homeostasis has been linked with several disease processes including autoimmune disease and several types of cancer. We exposed HEK293T cells and THP-1 macrophage-like cells to different JUUL e-liquids. We evaluated their effects on cellular viability and Ca2+ signaling by measuring fluorescence from calcein-AM/propidium iodide and Fluo-4, respectively. E-liquid autofluorescence was used to look for e-liquid permeation into cells. To identify the mechanisms behind the Ca2+ responses, different inhibitors of Ca2+ channels and phospholipase C signaling were used. JUUL e-liquids caused significant cytotoxic effects, with "Mint" flavor being the most cytotoxic. The Mint flavored e-liquid also caused a significant elevation in cytoplasmic Ca2+ . Using autofluorescence, the permeation of JUUL e-liquids into live cells was confirmed, indicating that intracellular organelles are directly exposed to e-liquids. Further studies identified the endoplasmic reticulum as being the source of e-liquid-induced changes in cytoplasmic Ca2+ . Nicotine salt-based e-liquids cause cytotoxicity and elevate cytoplasmic Ca2+ , indicating that they can exert biological effects beyond what would be expected with nicotine alone. These effects are flavor-dependent, and we propose that flavored e-liquids be reassessed for potential lung toxicity.


Assuntos
Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Vapor do Cigarro Eletrônico/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/toxicidade , Nicotina/toxicidade , Humanos , Estados Unidos
6.
Arch Toxicol ; 95(1): 195-205, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33159582

RESUMO

Electronic cigarette (e-cigarette) use has been linked to recent acute lung injury case clusters in over 2000 patients and dozens of deaths in the United States, however, the mechanism leading to lung injury is not certain although ultrafine particles, heavy metals, volatile organic compounds, and other harmful ingredients have been implicated. To systematically evaluate e-cigarette toxicity, we generated e-cigarette aerosols by varying the puff numbers (20-480), nicotine contents (0-24 mg/mL), and collected e-cigarette samples through an impinger system for biological assays. The calculated samples' concentration ranged from 1.96 to 47.06 mg/mL. THP-1 monocyte-differentiated macrophages, BEAS-2B bronchial epithelial cells, wild-type C57BL/6 mice, and NF-κB-luc transgenic mice were used to test the effects of these samples. E-cigarette samples showed cytotoxicity to THP-1 cells and BEAS-2B in vitro, leading to increased oxidative stress, inflammatory cytokine production with or without nicotine, and cell death. Furthermore, aerosol generated from PG is more toxic than VG. The toxicity of e-cigarette samples is at least partially due to the reactive oxygen species and aldehydes, which are generated during the aerosolization processes by the e-cigarette device. After NF-κB-luc mice exposed with e-cigarette samples by oropharyngeal aspiration, NF-κB expressions were observed in a dose-response fashion with or without nicotine. In addition, the e-cigarette samples induced neutrophil infiltration, IL-1ß production, oxidative stress marker heme oxygenase-1 expression in wild-type C57BL/6 mice. These results suggested that oxidative stress, pro-inflammatory NF-κB pathway activation, and cell death are involved in e-cigarette aerosol-induced acute lung inflammation.


Assuntos
Vapor do Cigarro Eletrônico/toxicidade , Pulmão/efeitos dos fármacos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/induzido quimicamente , Aerossóis , Aldeídos/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Exposição por Inalação , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/genética , Infiltração de Neutrófilos/efeitos dos fármacos , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Células THP-1
7.
Toxicol In Vitro ; 69: 105005, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32956835

RESUMO

Human gingival fibroblasts (HGF) play a vital role in wound healing, oral cancer, and are among the first cells being exposed to e-cigarette vapor (eCV) or cigarette smoke (CS) during inhalation. Although the cell-damaging effect of CS has been well studied, the effects of eCV on gingival cells are still unclear. The aim of this in vitro study was to compare the effects of eCV and CS on HGF in terms of proliferation, metabolic activity, cell death, and formation of reactive oxygen species (ROS). After 24 h cell numbers in CS-exposed cells in contrast to eCV-exposed cells were significantly decreased compared to the control. At later points in time, such differences could no longer be observed. Compared to the control, HGF stimulated with eCV showed a significantly higher metabolic activity 1 h, 24 h, and 48 h after exposure. 24 h after exposure, the metabolic activity was increased in both test groups. No caspase 3/7 activation nor significant differences in the amount of apoptosis/necrosis among the groups were seen. Only in CS-exposed cells ROS formation was increased at 1 h, 3 h, and 6 h after exposition. In conclusion, when compared to conventional CS, a less harmful effect of eCV on HGF can be assumed.


Assuntos
Vapor do Cigarro Eletrônico/toxicidade , Fibroblastos/efeitos dos fármacos , Gengiva/citologia , Nicotiana , Fumaça/efeitos adversos , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Necrose/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo
8.
J Am Heart Assoc ; 9(18): e017368, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32896206

RESUMO

E-cigarette or vaping product use-associated lung injury was recognized in the United States in the summer of 2019 and is typified by acute respiratory distress, shortness of breath, chest pain, cough, and fever, associated with vaping. It can mimic many of the manifestations of coronavirus disease 2019 (COVID-19). Some investigators have suggested that E-cigarette or vaping product use-associated lung injury was due to tetrahydrocannabinol or vitamin E acetate oil mixed with the electronic cigarette liquid. In experimental rodent studies initially designed to study the effect of electronic cigarette use on the cardiovascular system, we observed an E-cigarette or vaping product use-associated lung injury-like condition that occurred acutely after use of a nichrome heating element at high power, without the use of tetrahydrocannabinol, vitamin E, or nicotine. Lung lesions included thickening of the alveolar wall with foci of inflammation, red blood cell congestion, obliteration of alveolar spaces, and pneumonitis in some cases; bronchi showed accumulation of fibrin, inflammatory cells, and mucus plugs. Electronic cigarette users should be cautioned about the potential danger of operating electronic cigarette units at high settings; the possibility that certain heating elements may be deleterious; and that E-cigarette or vaping product use-associated lung injury may not be dependent upon tetrahydrocannabinol, vitamin E, or nicotine.


Assuntos
Dronabinol/toxicidade , Vapor do Cigarro Eletrônico/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar/induzido quimicamente , Pulmão/efeitos dos fármacos , Pneumonia/induzido quimicamente , Vaping/efeitos adversos , Vitamina E/toxicidade , Animais , Exposição por Inalação , Pulmão/patologia , Lesão Pulmonar/patologia , Modelos Animais , Óleos , Pneumonia/patologia , Ratos , Medição de Risco
9.
Toxicol In Vitro ; 69: 104997, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32896591

RESUMO

Electronic nicotine delivery systems (ENDS) are a rapidly growing global market advertised as a safer alternative to combustible cigarettes. However, comprehensive investigations of END aerosol physicochemical and toxicological properties have not been fully explored across brands to assess relative safety. In this study, we evaluated aerosols collected from three ENDS - Juul Fruit Medley (5% nicotine), Logic Power (2.4% nicotine), and Mistic (1.8% nicotine). ENDS aerosols were generated using standard machine puffing regimen and collected with a novel fluoropolymer condensation trap. Triple quadrupole-inductively coupled plasma-mass determined the presence of heavy metals in collected aerosols. The toxicological effects of ENDS aerosols on normal human bronchial epithelial cells (NHBE) were investigated using cellular viability, reactive oxygen species, oxidative stress assays, along with DNA damage assessments using the CometChip©. Results indicated the total metal concentrations within collected ENDS aerosols were higher for Mistic and Logic compared to Juul. Logic Power aerosols elicited higher reactive oxygen species levels than Mistic and Juul in NHBE after 24-h exposure. Similar dose-dependent reductions of cellular viability and total glutathione were found for each exposure. However, Logic and Juul aerosols caused greater single stranded DNA damage compared to Mistic. Our study indicates that regardless of brand, ENDS aerosols are toxic to upper airway epithelial cells and may pose a potential respiratory hazard to occasional and frequent users.


Assuntos
Brônquios/citologia , Vapor do Cigarro Eletrônico/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Vapor do Cigarro Eletrônico/análise , Células Epiteliais/metabolismo , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
10.
BMC Cardiovasc Disord ; 20(1): 357, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758132

RESUMO

BACKGROUND: Cigarette smoking is an important risk factor for cardiac diseases. In the current study, we sought to assess the effect of electronic cigarette extract (ECE) and conventional cigarette smoke extract (CSE) on cardiomyocytes. METHODS: iPSCs-derived cardiomyocytes were used in the study to evaluate cellular toxicities. Cells were exposed to either ECE or CSE for two consecutive days as an acute exposure or every other day for 14 days. Concentration of nicotine in both ECE and CSE were measured by Mass-Spectrometry and Q-Exactive-HF was used to identify other ingredients in both extracts. Fluorescent microscopy was used to measure the oxidative stress after ECE and CSE exposure. Motility and beat frequency of cardiomyocytes were determined using the Sisson-Ammons Video Analysis system. Heart failure target panel genes of exposed cardiomyocytes were compared to control unexposed cells. RESULTS: Despite nicotine concentration in CSE being six-fold higher than ECE (50 µg in CSE and 8 µg in ECE), ECE had similar toxic effect on cardiomyocytes. Both CSE and ECE generate significant cellular reactive oxygen species. The Sisson-Ammons Video Analysis (SAVA) analysis showed significant changes in myocyte function with both CSE and ECE slowing beating and increasing cell death. Chronic exposure of both ECE and CSE significantly decreased cardiomyocytes viability long term at all doses. Target panel gene expression profiles of both ECE and CSE exposed cardiomyocytes were different from controls with distinct pattern of genes that involved cell proliferation, inflammation, and apoptosis. CONCLUSION: ECE and CSE produce similar cardiomyocyte toxicities which include generating oxidative stress, negative chronotropic effects, adverse changes in myocardial gene expression and ultimately cell death.


Assuntos
Diferenciação Celular , Vapor do Cigarro Eletrônico/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L585-L595, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726146

RESUMO

In 2019, the United States experienced the emergence of the vaping-associated lung injury (VALI) epidemic. Vaping is now known to result in the development and progression of severe lung disease in the young and healthy. Lack of regulation on electronic cigarettes in the United States has resulted in over 2,000 patients and 68 deaths. We examine the clinical representation of VALI and the delve into the scientific evidence of how deadly exposure to electronic cigarettes can be. E-cigarette vapor is shown to affect numerous cellular processes, cellular metabolism, and cause DNA damage (which has implications for cancer). E-cigarette use is associated with a higher risk of developing crippling lung conditions such as chronic obstructive pulmonary disease (COPD), which would develop several years from now, increasing the already existent smoking-related burden. The role of vaping and virus susceptibility is yet to be determined; however, vaping can increase the virulence and inflammatory potential of several lung pathogens and is also linked to an increased risk of pneumonia. As it has emerged for cigarette smoking, great caution should also be given to vaping in relation to SARS-CoV-2 infection and the COVID-19 pandemic. Sadly, e-cigarettes are continually promoted and perceived as a safer alternative to cigarette smoking. E-cigarettes and their modifiable nature are harmful, as the lungs are not designed for the chronic inhalation of e-cigarette vapor. It is of interest that e-cigarettes have been shown to be of no help with smoking cessation. A true danger lies in vaping, which, if ignored, will lead to disastrous future costs.


Assuntos
Vapor do Cigarro Eletrônico/toxicidade , Doenças Pulmonares Intersticiais/epidemiologia , Lesão Pulmonar/epidemiologia , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Vaping/efeitos adversos , Adolescente , Betacoronavirus , COVID-19 , Infecções por Coronavirus/patologia , Suscetibilidade a Doenças/induzido quimicamente , Sistemas Eletrônicos de Liberação de Nicotina/estatística & dados numéricos , Feminino , Humanos , Doenças Pulmonares Intersticiais/induzido quimicamente , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/mortalidade , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia/epidemiologia , Pneumonia Viral/patologia , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/mortalidade , SARS-CoV-2 , Abandono do Hábito de Fumar/métodos , Estados Unidos/epidemiologia , Vaping/epidemiologia , Vaping/mortalidade
12.
Arch Toxicol ; 94(6): 2163-2177, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32409933

RESUMO

Cigarette smoke (CS) exposure is one of the leading risk factors for human health. Nicotine-containing inhalable products, such as e-cigarettes, can effectively support tobacco harm reduction approaches. However, there are limited comparative data on the effects of the aerosols generated from electronic vapor products (e-vapor) and CS on bone. Here, we report the effects of e-vapor aerosols and CS on bone morphology, structure, and strength in a 6-month inhalation study. Eight-week-old ApoE-/- mice were exposed to aerosols from three different e-vapor formulations-CARRIER (propylene glycol and vegetable glycerol), BASE (CARRIER and nicotine), TEST (BASE and flavor)-to CS from 3R4F reference cigarettes at matched nicotine concentrations (35 µg/L) or to fresh air (Sham) (N = 10 per group). Tibiae were analyzed for bone morphology by µCT imaging, biomechanics by three-point bending, and by histological analysis. CS inhalation caused a significant decrease in cortical and total bone volume fraction and bone density relative to e-vapor aerosols. Additionally, CS exposure caused a decrease in ultimate load and stiffness. In contrast, bone structural and biomechanical parameters were not significantly affected by e-vapor aerosol or Sham exposure. At the dissection time point, there was no significant difference in body weight or tibia bone weight or length among the groups. Histological findings revealed microcracks in cortical bone areas among all exposed groups compared to Sham control. In conclusion, because of the bone-preserving effect of e-vapor aerosols relative to CS exposure, e-vapor products could potentially constitute less harmful alternatives to cigarettes in situations in which bone health is of importance.


Assuntos
Osso e Ossos/efeitos dos fármacos , Fumar Cigarros/efeitos adversos , Vapor do Cigarro Eletrônico/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Fumaça/efeitos adversos , Vaping/efeitos adversos , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Feminino , Exposição por Inalação , Camundongos Knockout para ApoE , Fatores de Tempo , Microtomografia por Raio-X
13.
Arch Toxicol ; 94(6): 2097-2112, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32372213

RESUMO

Dendritic cells (DCs) are professional antigen presenting cells that play a critical role in bridging innate and adaptive immunity. Numerous studies have shown that tobacco constituents present in conventional cigarettes affect the phenotype and function of DCs; however, no studies have examined the effects of vapour from E-cigarettes on human DCs. Here, the effects of E-cigarette vapour extract (ECVE) on the phenotype and function of DCs were investigated by creating an in vitro cell culture model using human monocyte-derived DCs (MoDCs). Immature DCs were generated from peripheral blood monocytes and mature DCs were then produced by treatment with LPS or Poly I:C for 24 h. For LPS-matured DCs, 3% ECVE treatment slightly suppressed HLA-DR and CD86 expression, whereas 1% ECVE treatment enhanced IL-6 production. The overall expression of 29 signalling molecules and other cytoplasmic proteins (mainly associated with DC activation) was significantly upregulated in immature DCs by 1% ECVE, and in LPS-treated DCs by 3% ECVE. In particular, the condition that induced IL-6 production also upregulated MAPK pathway activation. These findings indicate that E-cigarette vapour moderately affects human DCs, but the effects are less pronounced than those reported for tobacco smoke.


Assuntos
Células Dendríticas/efeitos dos fármacos , Vapor do Cigarro Eletrônico/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Vaping/efeitos adversos , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Fenótipo , Transdução de Sinais , Regulação para Cima
14.
Arch Toxicol ; 94(6): 2179-2206, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367274

RESUMO

The use of flavoring substances is an important element in the development of reduced-risk products for adult smokers to increase product acceptance and encourage switching from cigarettes. In a first step towards characterizing the sub-chronic inhalation toxicity of neat flavoring substances, a study was conducted using a mixture of the substances in a base solution of e-liquid, where the standard toxicological endpoints of the nebulized aerosols were supplemented with transcriptomics analysis. The flavor mixture was produced by grouping 178 flavors into 26 distinct chemical groups based on structural similarities and potential metabolic and biological effects. Flavoring substances predicted to show the highest toxicological effect from each group were selected as the flavor group representatives (FGR). Following Organization for Economic Cooperation and Development Testing Guideline 413, rats were exposed to three concentrations of the FGR mixture in an e-liquid composed of nicotine (23 µg/L), propylene glycol (1520 µg/L), and vegetable glycerin (1890 µg/L), while non-flavored and no-nicotine mixtures were included as references to identify potential additive or synergistic effects between nicotine and the flavoring substances. The results indicated that the inhalation of an e-liquid containing the mixture of FGRs caused very minimal local and systemic toxic effects. In particular, there were no remarkable clinical (in-life) observations in flavored e-liquid-exposed rats. The biological effects related to exposure to the mixture of neat FGRs were limited and mainly nicotine-mediated, including changes in hematological and blood chemistry parameters and organ weight. These results indicate no significant additive biological changes following inhalation exposure to the nebulized FGR mixture above the nicotine effects measured in this sub-chronic inhalation study. In a subsequent study, e-liquids with FGR mixtures will be aerosolized by thermal treatment and assessed for toxicity.


Assuntos
Vapor do Cigarro Eletrônico/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/toxicidade , Perfilação da Expressão Gênica , Fígado/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Vaping/efeitos adversos , Animais , Biomarcadores/sangue , Qualidade de Produtos para o Consumidor , Feminino , Exposição por Inalação , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos Sprague-Dawley , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Medição de Risco , Fatores de Tempo , Testes de Toxicidade
15.
Chemosphere ; 249: 126153, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32058129

RESUMO

In this study, we determined DNA damage and chromosome breakage (indicators of genotoxicity) and cell viability (an indicator of cytotoxicity) in human lymphoblastoid TK6 and Chinese hamster ovary (CHO) cells treated with 33 e-liquids using in vitro single cell gel (comet), micronucleus (MN), and trypan blue assays, respectively. We also measured the contents of nicotine, five phthalate esters, and DL-menthol in the e-liquids to examine their effects on DNA damage, chromosome breakage, and cell viability. Our chemical analyses showed that: (1) six e-liquids had nicotine ≥2-fold higher than the manufacture's label claim (2-3.5 mg); (2) both dimethyl- and dibutyl-phthalate levels were >0.1 µg/g, i.e., their threshold limits as additives in cosmetics; and (3) the DL-menthol contents ranged from 0.0003 to 85757.2 µg/g, with those of two e-liquids being >1 mg/g, the threshold limit for trigging sensory irritation. Though all the e-liquids induced DNA damage in TK6 cells, 20 resulted in cell viabilities ≤75%, indicating cytotoxicity, yet the inverse relationship between cell viability and DNA damage (r = -0.628, p = 0.003) might reflect their role as pro-apoptotic and DNA damage inducers. Fifteen e-liquids induced MN% in TK6 cells ≥3-fold that of untreated cells. Some of the increase in %MN might be false due to high cytotoxicity, yet six brands showed acceptable cell viabilities (59-71%), indicating chromosome damage. DNA damage and %MN increased when the TK6 cells were exposed to metabolic activation. The CHO cells were less sensitive to the genotoxic effects of the e-liquids than the TK6 cells. DL-menthol was found to be associated with decreased cell viability and increased DNA damage, even at low levels. We cannot dismiss the presence of other ingredients in e-liquids with cytotoxic/genotoxic properties since out of the 63 different flavors, 47 induced DNA damage (≥3-folds), and 26 reduced cell viability (≤75%) in TK6 cells.


Assuntos
Vapor do Cigarro Eletrônico/química , Ácidos Ftálicos/química , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Dano ao DNA , Dibutilftalato/farmacologia , Vapor do Cigarro Eletrônico/análise , Vapor do Cigarro Eletrônico/toxicidade , Ésteres/química , Humanos , Mentol/química , Mentol/toxicidade , Testes para Micronúcleos/métodos , Nicotina/química , Nicotina/toxicidade
16.
Am J Physiol Heart Circ Physiol ; 318(3): H604-H631, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31975625

RESUMO

Smoking cigarettes is harmful to the cardiovascular system. Considerable attention has been paid to the reduced harm potential of alternative nicotine-containing inhalable products such as e-cigarettes. We investigated the effects of E-vapor aerosols or cigarette smoke (CS) on atherosclerosis progression, cardiovascular function, and molecular changes in the heart and aorta of female apolipoprotein E-deficient (ApoE-/-) mice. The mice were exposed to aerosols from three different E-vapor formulations: 1) carrier (propylene glycol and vegetable glycerol), 2) base (carrier and nicotine), or 3) test (base and flavor) or to CS from 3R4F reference cigarettes for up to 6 mo. Concentrations of CS and base or test aerosols were matched at 35 µg nicotine/L. Exposure to CS, compared with sham-exposed fresh air controls, accelerated atherosclerotic plaque formation, whereas no such effect was seen for any of the three E-vapor aerosols. Molecular changes indicated disease mechanisms related to oxidative stress and inflammation in general, plus changes in calcium regulation, and altered cytoskeletal organization and microtubule dynamics in the left ventricle. While ejection fraction, fractional shortening, cardiac output, and isovolumic contraction time remained unchanged following E-vapor aerosols exposure, the nicotine-containing base and test aerosols caused an increase in isovolumic relaxation time similar to CS. A nicotine-related increase in pulse wave velocity and arterial stiffness was also observed, but it was significantly lower for base and test aerosols than for CS. These results demonstrate that in comparison with CS, E-vapor aerosols induce substantially lower biological responses associated with smoking-related cardiovascular diseases.NEW & NOTEWORTHY Analysis of key urinary oxidative stress markers and proinflammatory cytokines showed an absence of oxidative stress and inflammation in the animals exposed to E-vapor aerosols. Conversely, animals exposed to conventional cigarette smoke had high urinary levels of these markers. When compared with conventional cigarette smoke, E-vapor aerosols induced smaller atherosclerotic plaque surface area and volume. Systolic and diastolic cardiac function, as well as endothelial function, were further significantly less affected by electronic cigarette aerosols than conventional cigarette smoke. Molecular analysis demonstrated that E-vapor aerosols induce significantly smaller transcriptomic dysregulation in the heart and aorta compared with conventional cigarette smoke.


Assuntos
Aerossóis/toxicidade , Aterosclerose/etiologia , Doenças Cardiovasculares/etiologia , Vapor do Cigarro Eletrônico/toxicidade , Coração/efeitos dos fármacos , Fumaça/efeitos adversos , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Progressão da Doença , Feminino , Exposição por Inalação , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos
17.
Respir Res ; 20(1): 267, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31847850

RESUMO

INTRODUCTION: Bacteria have been extensively implicated in the development of smoking related diseases, such as COPD, by either direct infection or bacteria-mediated inflammation. In response to the health risks associated with tobacco exposure, the use of electronic cigarettes (e-cigs) has increased. This study compared the effect of e-cig vapour (ECV) and cigarette smoke (CSE) on the virulence and inflammatory potential of key lung pathogens (Haemophilus influenzae, Streptococcus pneumoniae, Staphylococcus aureus and Pseudomonas aeruginosa). METHODS: Biofilm formation, virulence in the Galleria mellonella infection model, antibiotic susceptibility and IL-8/TNF-α production in A549 cells, were compared between bacteria exposed to ECV, CSE and non-exposed bacteria. RESULTS: Statistically significant increases in biofilm and cytokine secretion were observed following bacterial exposure to either ECV or CSE, compared to non-exposed bacteria; the effect of exposure to ECV on bacterial phenotype and virulence was comparable, and in some cases greater, than that observed following CSE exposure. Treatment of A549 cells with cell signaling pathway inhibitors prior to infection, did not suggest that alternative signaling pathways were being activated following exposure of bacteria to either ECV or CSE. CONCLUSIONS: These findings therefore suggest that ECV and CSE can induce changes in phenotype and virulence of key lung pathogens, which may increase bacterial persistence and inflammatory potential.


Assuntos
Biofilmes/efeitos dos fármacos , Vapor do Cigarro Eletrônico/toxicidade , Haemophilus influenzae/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nicotiana/efeitos adversos , Pneumonia Bacteriana/induzido quimicamente , Pseudomonas aeruginosa/efeitos dos fármacos , Fumaça/efeitos adversos , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Células A549 , Animais , Biofilmes/crescimento & desenvolvimento , Haemophilus influenzae/crescimento & desenvolvimento , Haemophilus influenzae/patogenicidade , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-8/metabolismo , Larva/microbiologia , Pulmão/metabolismo , Pulmão/microbiologia , Mariposas/embriologia , Mariposas/microbiologia , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/patogenicidade , Fator de Necrose Tumoral alfa/metabolismo , Virulência
18.
Intern Emerg Med ; 14(6): 863-883, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30835057

RESUMO

In the context of tobacco harm-reduction strategy, the potential reduced impact of electronic cigarette (EC) exposure should be evaluated relative to the impact of cigarette smoke exposure. We conducted a series of in vitro studies to compare the biological impact of an acute exposure to aerosols of "test mix" (flavors, nicotine, and humectants), "base" (nicotine and humectants), and "carrier" (humectants) formulations using MarkTen® EC devices with the impact of exposure to smoke of 3R4F reference cigarettes, at a matching puff number, using human organotypic air-liquid interface buccal and small airway cultures. We measured the concentrations of nicotine and carbonyls deposited in the exposure chamber after each exposure experiment. The deposited carbonyl concentrations were used as representative measures to assess the reduced exposure to potentially toxic volatile substances. We followed a systems toxicology approach whereby functional biological endpoints, such as histopathology and ciliary beating frequency, were complemented by multiplex and omics assays to measure secreted inflammatory proteins and whole-genome transcriptomes, respectively. Among the endpoints analyzed, the only parameters that showed a significant response to EC exposure were secretion of proteins and whole-genome transcriptomes. Based on the multiplex and omics analyzes, the cellular responses to EC aerosol exposure were tissue type-specific; however, those alterations were much smaller than those following cigarette smoke exposure, even when the EC aerosol exposure under the testing conditions resulted in a deposited nicotine concentration approximately 200 times that in saliva of EC users.


Assuntos
Fumar Cigarros/metabolismo , Vapor do Cigarro Eletrônico/metabolismo , Exposição Ambiental/análise , Vapor do Cigarro Eletrônico/análise , Vapor do Cigarro Eletrônico/toxicidade , Humanos , Mucosa Bucal/metabolismo , Mucosa Bucal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA