Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163282

RESUMO

The relevance of vasopressin (AVP) of magnocellular origin to the regulation of the endocrine stress axis and related behaviour is still under discussion. We aimed to obtain deeper insight into this process. To rescue magnocellular AVP synthesis, a vasopressin-containing adeno-associated virus vector (AVP-AAV) was injected into the supraoptic nucleus (SON) of AVP-deficient Brattleboro rats (di/di). We compared +/+, di/di, and AVP-AAV treated di/di male rats. The AVP-AAV treatment rescued the AVP synthesis in the SON both morphologically and functionally. It also rescued the peak of adrenocorticotropin release triggered by immune and metabolic challenges without affecting corticosterone levels. The elevated corticotropin-releasing hormone receptor 1 mRNA levels in the anterior pituitary of di/di-rats were diminished by the AVP-AAV-treatment. The altered c-Fos synthesis in di/di-rats in response to a metabolic stressor was normalised by AVP-AAV in both the SON and medial amygdala (MeA), but not in the central and basolateral amygdala or lateral hypothalamus. In vitro electrophysiological recordings showed an AVP-induced inhibition of MeA neurons that was prevented by picrotoxin administration, supporting the possible regulatory role of AVP originating in the SON. A memory deficit in the novel object recognition test seen in di/di animals remained unaffected by AVP-AAV treatment. Interestingly, although di/di rats show intact social investigation and aggression, the SON AVP-AAV treatment resulted in an alteration of these social behaviours. AVP released from the magnocellular SON neurons may stimulate adrenocorticotropin secretion in response to defined stressors and might participate in the fine-tuning of social behaviour with a possible contribution from the MeA.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Núcleo Supraóptico/metabolismo , Vasopressinas/metabolismo , Hormônio Adrenocorticotrópico/genética , Animais , Núcleo Basal de Meynert/metabolismo , Encéfalo/metabolismo , Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Brattleboro , Comportamento Social , Vasopressinas/fisiologia
2.
Best Pract Res Clin Endocrinol Metab ; 34(5): 101449, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32792133

RESUMO

Most cases of acquired central diabetes insipidus are caused by destruction of the neurohypophysis by: 1) anatomic lesions that destroy the vasopressin neurons by pressure or infiltration, 2) damage to the vasopressin neurons by surgery or head trauma, and 3) autoimmune destruction of the vasopressin neurons. Because the vasopressin neurons are located in the hypothalamus, lesions confined to the sella turcica generally do not cause diabetes insipidus because the posterior pituitary is simply the site of the axon terminals that secrete vasopressin into the bloodstream. In addition, the capacity of the neurohypophysis to synthesize vasopressin is greatly in excess of the body's needs, and destruction of 80-90% of the hypothalamic vasopressin neurons is required to produce diabetes insipidus. As a result, even large lesions in the sellar and suprasellar area generally are not associated with impaired water homeostasis until they are surgically resected. Regardless of the etiology of central diabetes insipidus, deficient or absent vasopressin secretion causes impaired urine concentration with resultant polyuria. In most cases, secondary polydipsia is able to maintain water homeostasis at the expense of frequent thirst and drinking. However, destruction of the osmoreceptors in the anterior hypothalamus that regulate vasopressin neuronal activity causes a loss of thirst as well as vasopressin section, leading to severe chronic dehydration and hyperosmolality. Vasopressin deficiency also leads to down-regulation of the synthesis of aquaporin-2 water channels in the kidney collecting duct principal cells, causing a secondary nephrogenic diabetes insipidus. As a result, several days of vasopressin administration are required to achieve maximal urine concentration in patients with CDI. Consequently, the presentation of patients with central diabetes insipidus can vary greatly, depending on the size and location of the lesion, the magnitude of trauma to the neurohypophysis, the degree of destruction of the vasopressin neurons, and the presence of other hormonal deficits from damage to the anterior pituitary.


Assuntos
Diabetes Insípido Neurogênico/etiologia , Doenças da Hipófise/complicações , Neuro-Hipófise/patologia , Aquaporina 2/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/epidemiologia , Lesões Encefálicas Traumáticas/terapia , Diabetes Insípido Nefrogênico/etiologia , Diabetes Insípido Nefrogênico/metabolismo , Diabetes Insípido Neurogênico/diagnóstico , Diabetes Insípido Neurogênico/epidemiologia , Diabetes Insípido Neurogênico/terapia , Homeostase/fisiologia , Humanos , Neurofisinas/fisiologia , Doenças da Hipófise/diagnóstico , Doenças da Hipófise/epidemiologia , Doenças da Hipófise/terapia , Polidipsia/diagnóstico , Polidipsia/epidemiologia , Polidipsia/etiologia , Polidipsia/terapia , Poliúria/diagnóstico , Poliúria/epidemiologia , Poliúria/etiologia , Poliúria/terapia , Precursores de Proteínas/fisiologia , Vasopressinas/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia
3.
Eur J Endocrinol ; 183(2): R29-R40, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32580146

RESUMO

For an endocrinologist, nephrogenic diabetes insipidus (NDI) is an end-organ disease, that is the antidiuretic hormone, arginine-vasopressin (AVP) is normally produced but not recognized by the kidney with an inability to concentrate urine despite elevated plasma concentrations of AVP. Polyuria with hyposthenuria and polydipsia are the cardinal clinical manifestations of the disease. For a geneticist, hereditary NDI is a rare disease with a prevalence of five per million males secondary to loss of function of the vasopressin V2 receptor, an X-linked gene, or loss of function of the water channel AQP2. These are small genes, easily sequenced, with a number of both recurrent and private mutations described as disease causing. Other inherited disorders with mild, moderate or severe inability to concentrate urine include Bartter's syndrome and cystinosis. MAGED2 mutations are responsible for a transient form of Bartter's syndrome with severe polyhydramnios. The purpose of this review is to describe classical phenotype findings that will help physicians to identify early, before dehydration episodes with hypernatremia, patients with familial NDI. A number of patients are still diagnosed late with repeated dehydration episodes and large dilations of the urinary tract leading to a flow obstructive nephropathy with progressive deterioration of glomerular function. Families with ancestral X-linked AVPR2 mutations could be reconstructed and all female heterozygote patients identified with subsequent perinatal genetic testing to recognize affected males within 2 weeks of birth. Prevention of dehydration episodes is of critical importance in early life and beyond and decreasing solute intake will diminish total urine output.


Assuntos
Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/fisiopatologia , Desidratação/prevenção & controle , Diabetes Insípido Nefrogênico/terapia , Feminino , Triagem de Portadores Genéticos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Testes Genéticos , Humanos , Hipernatremia , Recém-Nascido , Glomérulos Renais/fisiopatologia , Masculino , Mutação , Neurofisinas/sangue , Neurofisinas/fisiologia , Concentração Osmolar , Gravidez , Diagnóstico Pré-Natal , Precursores de Proteínas/sangue , Precursores de Proteínas/fisiologia , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/fisiologia , Vasopressinas/sangue , Vasopressinas/fisiologia
4.
J Neuroendocrinol ; 31(12): e12806, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31677199

RESUMO

Physiological circadian rhythms are orchestrated by the hypothalamic suprachiasmatic nucleus (SCN). The activity of SCN cells is synchronised by environmental signals, including light information from retinal ganglion cells (RGCs). We recently described a population of vasopressin-expressing RGCs (VP-RGC) that send axonal projections to the SCN. To determine how these VP-RGCs influence the activity of cells in the SCN, we used optogenetic tools to specifically activate their axon terminals within the SCN. Rats were intravitreally injected with a recombinant adeno-associated virus to express the channelrhodopsin-2 and the red fluorescent protein mCherry under the vasopressin promoter (VP-ChR2mCherry). In vitro recordings in acute brain slices showed that approximately 30% of ventrolateral SCN cells responded to optogenetic stimulation with an increase in firing rate that progressively increased during the first 200 seconds of stimulation and which persisted after the end of stimulation. Finally, application of a vasopressin V1A receptor antagonist dampened the response to optogenetic stimulation. Our data suggest that optogenetic stimulation of VP-RGC axons within the SCN influences the activity of SCN cells in a vasopressin-dependent manner.


Assuntos
Neurônios/fisiologia , Optogenética , Células Ganglionares da Retina/fisiologia , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/fisiologia , Vasopressinas/fisiologia , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Channelrhodopsins/genética , Feminino , Masculino , Ratos , Ratos Transgênicos , Receptores de Vasopressinas/efeitos dos fármacos
5.
J Neuroendocrinol ; 31(12): e12808, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31715034

RESUMO

Myocardial infarction (MI) is a leading cause of death worldwide. For those who survive the acute insult, the progressive dilation of the ventricle associated with chronic heart failure is driven by an adverse increase in circulating levels of the antidiuretic hormone, vasopressin, which is secreted from hypothalamic supraoptic (SON) and paraventricular nuclei (PVN) nerve terminals. Although increased vasopressin neuronal activity has been demonstrated in the latter stages of chronic heart failure, we hypothesised that vasopressin neurones become activated immediately following an acute MI. Male Sprague-Dawley rats were anaesthetised and an acute MI was induced by ligation of the left anterior descending coronary artery. After 90 minutes of myocardial ischaemia, brains were collected. Dual-label immunohistochemistry was used to quantify the expression of Fos protein, a marker of neuronal activation, within vasopressin- or oxytocin-labelled neurones of the hypothalamic PVN and SON. Fos protein and tyrosine hydroxylase within the brainstem were also quantified. The results obtained show that the expression of Fos in both vasopressin and oxytocin neurones of the PVN and SON was significantly elevated as soon as 90 minutes post-MI compared to sham rats. Moreover, Fos protein was also elevated in tyrosine hydroxylase neurones in the nucleus tractus solitarius and rostral ventrolateral medulla of MI rats than sham rats. We conclude that magnocellular vasopressin and oxytocin neuronal activation occurs immediately following acute MI, rather than in the later stages of chronic heart failure. Therefore, prompt vasopressin antagonist therapy as an adjunct treatment for acute MI may impede the progression of ventricular dilatation, which remains a key adverse hallmark of chronic heart failure.


Assuntos
Infarto do Miocárdio/fisiopatologia , Neurônios/fisiologia , Ocitocina/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Núcleo Supraóptico/fisiologia , Vasopressinas/fisiologia , Animais , Tronco Encefálico/fisiologia , Oclusão Coronária/fisiopatologia , Masculino , Proteínas Proto-Oncogênicas c-fos/biossíntese , Ratos , Tirosina 3-Mono-Oxigenase/metabolismo
6.
J Biol Rhythms ; 34(6): 622-633, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31530063

RESUMO

The timing of the preovulatory surge of luteinizing hormone (LH), which occurs on the evening of proestrus in female mice, is determined by the circadian system. The identity of cells that control the phase of the LH surge is unclear: evidence supports a role of arginine vasopressin (AVP) cells of the suprachiasmatic nucleus (SCN), but it is not known whether vasopressinergic neurons are necessary or sufficient to account for circadian control of ovulation. Among other cell types, evidence also suggests important roles of circadian function of kisspeptin cells of the anteroventral periventricular nucleus (AvPV) and gonadotropin-releasing hormone (GnRH) neurons of the preoptic area (POA), whose discharge is immediately responsible for the discharge of LH from the anterior pituitary. The present studies used an ovariectomized, estradiol-treated preparation to determine critical cell types whose clock function is critical to the timing of LH secretion. As expected, the LH surge occurred at or shortly after ZT12 in control mice. In further confirmation of circadian control, the surge was advanced by 2 h in tau mutant animals. The timing of the surge was altered to varying degrees by conditional deletion of Bmal1 in AVPCre, KissCreBAC, and GnRHCreBAC mice. Excision of the mutant Cnsk1e (tau) allele in AVP neurons resulted in a reversion of the surge to the ZT12. Conditional deletion of Bmal1 in Kiss1 or GnRH neurons had no noticeable effect on locomotor rhythms, but targeting of AVP neurons produced variable effects on circadian period that did not always correspond to changes in the phase of LH secretion. The results indicate that circadian function in multiple cell types is necessary for proper timing of the LH surge.


Assuntos
Ritmo Circadiano , Hormônio Luteinizante/fisiologia , Neurônios/fisiologia , Ovulação , Núcleo Supraquiasmático/citologia , Animais , Arginina Vasopressina/fisiologia , Feminino , Hormônio Liberador de Gonadotropina/fisiologia , Kisspeptinas/fisiologia , Camundongos , Mutação , Núcleo Supraquiasmático/fisiologia , Vasopressinas/fisiologia , Proteínas tau/genética
7.
J Neuroendocrinol ; 31(4): e12712, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30887585

RESUMO

Vasopressinergic neurones of the supraoptic (SON) and paraventricular (PVN) nuclei express oestrogen receptor (ER)ß and receive afferent projections from osmosensitive neurones that express ERα. However, which subtype of these receptors mediates the effects of oestradiol on vasopressin (AVP) secretion induced by hydromineral challenge has not yet been demonstrated in vivo. Moreover, AVP secretion induced by hyperosmolality is known to involve activation of TRPV1 (transient receptor potential vanilloid, member 1) in magnocellular neurones, although whether oestradiol modulates expression of this receptor is unknown. Thus, the present study aimed to clarify the mechanisms involved in the modulation exerted by oestradiol on AVP secretion, specifically investigating the involvement of ERß, ERα and TRPV1 receptors in response to water deprivation (WD). We observed that treatment with an ERß agonist potentiated AVP secretion and vasopressinergic neuronal activation induced by WD. This increase in AVP secretion induced by WD was reversed by an ERß antagonist. By contrast to ERß, the ERα agonist did not alter plasma AVP concentrations or activation of AVP neurones in the SON and PVN. Additionally, Fos expression in the subfornical organ was not altered by the ERα agonist. TRPV1 mRNA expression was increased by WD in the SON, although this response was not altered by any treatment. The results of the present study suggest that ERß mediates the effects of oestradiol on AVP secretion in response to WD, indicating that the effects of oestradiol occur directly in AVP neurones without affecting TRPV1.


Assuntos
Estradiol/farmacologia , Receptor beta de Estrogênio/fisiologia , Neurônios/fisiologia , Vasopressinas/fisiologia , Privação de Água/fisiologia , Animais , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/antagonistas & inibidores , Feminino , Concentração Osmolar , Núcleo Hipotalâmico Paraventricular/química , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Wistar , Elastômeros de Silicone , Núcleo Supraóptico/química , Núcleo Supraóptico/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/fisiologia , Vasopressinas/análise , Vasopressinas/sangue
8.
G Ital Nefrol ; 35(6)2018 Dec.
Artigo em Italiano | MEDLINE | ID: mdl-30550035

RESUMO

ADH is a hormone secreted by neurohypophysis that plays different roles based on the target organ. At the renal level, this peptide is capable of causing electrolyte-free water absorption, thus playing a key role in the hydro-electrolytic balance. There are pathologies and disorders that jeopardize this balance and, in this field, ADH receptor inhibitors such as Vaptans could play a key role. By inhibiting the activation pathway of vasopressin, they are potentially useful in euvolemic and hypervolemic hypotonic hyponatremia. However, clinical trials in heart failure have not given favourable results on clinical outcomes. Even in SIADH, despite their wide use, there is no agreement by experts on their use. Since vaptans inhibit the cAMP pathway in tubular cells, their use has been proposed to inhibit cystogenesis. A clinical trial has shown favourable effects on ADPKD progression. Because vaptans have been shown to be effective in models of renal cysts disorders other than ADPKD, their use has been proposed in diseases such as nephronophthisis and recessive autosomal polycystic disease. Other possible uses of vaptans could be in kidney transplantation and cardiorenal syndrome. Due to the activity of ADH in coagulation and haemostasis, ADH's activation pathway by Desmopressin Acetate could be a useful strategy to reduce the risk of bleeding in biopsies in patients with haemorrhagic risk.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos/uso terapêutico , Nefropatias/tratamento farmacológico , Terapia de Alvo Molecular , Neurofisinas/agonistas , Neurofisinas/antagonistas & inibidores , Precursores de Proteínas/agonistas , Precursores de Proteínas/antagonistas & inibidores , Receptores de Vasopressinas/efeitos dos fármacos , Vasopressinas/agonistas , Vasopressinas/antagonistas & inibidores , Desequilíbrio Hidroeletrolítico/tratamento farmacológico , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Cadáver , AMP Cíclico/fisiologia , Previsões , Humanos , Hiponatremia/tratamento farmacológico , Hiponatremia/fisiopatologia , Nefropatias/fisiopatologia , Doenças Renais Císticas/tratamento farmacológico , Transplante de Rim , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/fisiologia , Neurofisinas/fisiologia , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/fisiopatologia , Precursores de Proteínas/fisiologia , Receptores de Vasopressinas/agonistas , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Doadores de Tecidos , Vasopressinas/fisiologia
9.
J Neuroendocrinol ; 30(12): e12660, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30422333

RESUMO

A population of kisspeptin neurones located in the hypothalamic arcuate nucleus (ARN) very likely represent the gonadotrophin-releasing hormone pulse generator responsible for driving pulsatile luteinising hormone secretion in mammals. As such, it has become important to understand the neural inputs that modulate the activity of ARN kisspeptin (ARNKISS ) neurones. Using a transgenic GCaMP6 mouse model allowing the intracellular calcium levels ([Ca2+ ]i ) of individual ARNKISS neurones to be assessed simultaneously, we examined whether the circadian neuropeptides vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP) modulated the activity of ARNKISS neurones directly. To validate this methodology, we initially evaluated the effects of neurokinin B (NKB) on [Ca2+ ]i in kisspeptin neurones residing within the rostral, middle and caudal ARN subregions of adult male and female mice. All experiments were undertaken in the presence of tetrodotoxin and ionotropic amino acid antagonists. NKB was found to evoke an abrupt increase in [Ca2+ ]i in 95%-100% of kisspeptin neurones throughout the ARN of both sexes. By contrast, both VIP and AVP were found to primarily activate kisspeptin neurones located in the caudal ARN of female mice. Although 58% and 59% of caudal ARN kisspeptin neurones responded to AVP and VIP, respectively, in female mice, only 0%-8% of kisspeptin neurones located in other ARN subregions responded in females and 0%-12% of cells in any subregion in males (P < 0.05). These observations demonstrate unexpected sex differences and marked heterogeneity in functional neuropeptide receptor expression amongst ARNKISS neurones organised on a rostro-caudal basis. The functional significance of this unexpected influence of VIP and AVP on ARNKISS neurones remains to be established.


Assuntos
Núcleo Arqueado do Hipotálamo/citologia , Kisspeptinas/metabolismo , Neurônios/metabolismo , Caracteres Sexuais , Peptídeo Intestinal Vasoativo/fisiologia , Vasopressinas/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Cálcio/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurocinina B/farmacologia , Neurônios/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/farmacologia , Vasopressinas/farmacologia
10.
Math Biosci ; 305: 29-41, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30075152

RESUMO

The neuroendocrine systems of the hypothalamus are critical for survival and reproduction, and are highly conserved throughout vertebrate evolution. Their roles in controlling body metabolism, growth and body composition, stress, electrolyte balance and reproduction have been intensively studied, and have yielded a rich crop of original and challenging insights into neuronal function, insights that circumscribe a vision of the brain that is quite different from conventional views. Despite the diverse physiological roles of pituitary hormones, most are secreted in a pulsatile pattern, but arising through a variety of mechanisms. An important exception is vasopressin which uses bursting neural activity, but produces a graded secretion response to osmotic pressure, a sustained robust linear response constructed from noisy, nonlinear components. Neuroendocrine systems have many features such as multiple temporal scales and nonlinearity that make their underlying mechanisms hard to understand without mathematical modelling. The models presented here cover the wide range of temporal scales involved in these systems, including models of single cell electrical activity and calcium dynamics, receptor signalling, gene expression, coordinated activity of neuronal networks, whole-organism hormone dynamics and feedback loops, and the menstrual cycle. Many interesting theoretical approaches have been applied to these systems, but important problems remain, at the core the question of what is the true advantage of pulsatility.


Assuntos
Modelos Neurológicos , Neuroendocrinologia , Sistemas Neurossecretores/fisiologia , Hormônio Adrenocorticotrópico/fisiologia , Animais , Feminino , Gonadotropinas Hipofisárias/fisiologia , Hormônio do Crescimento/fisiologia , Humanos , Hipotálamo/fisiologia , Masculino , Conceitos Matemáticos , Ejeção Láctea/fisiologia , Neurossecreção/fisiologia , Ocitocina/fisiologia , Hipófise/fisiologia , Gravidez , Prolactina/fisiologia , Tireotropina/fisiologia , Vasopressinas/fisiologia
11.
Ann Nutr Metab ; 72 Suppl 2: 33-38, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29925070

RESUMO

Polycystic kidney disease (PKD) is a group of monogenetic conditions characterised by the progressive accumulation of multiple renal cysts and hypertension. One of the earliest features of PKD is a reduction in urinary concentrating capacity that impairs extracellular fluid conservation. Urinary concentrating impairment predisposes PKD patients to periods of hypohydration when fluid loss is not adequately compensated by fluid intake. The hypohydrated state provides a blood hyperosmotic stimulus for vasopressin release to minimise further water loss. However, over-activation of renal V2 receptors contributes to cyst expansion. Although suppressing vasopressin release with high water intake has been shown to impair disease progression in rodent models, whether this approach is efficacious in patients remains uncertain. The neural osmoregulatory pathway that controls vasopressin secretion also exerts a stimulatory action on vasomotor sympathetic activity and blood pressure during dehydration. Recurrent dehydration leads to a worsening of hypertension in rodents and cross-sectional data suggests that reduced urinary concentrating ability may contribute to hypertension development in the clinical PKD population. Experimental studies are required to evaluate this hypothesis and to determine the underlying mechanism.


Assuntos
Hipertensão/fisiopatologia , Osmorregulação , Doenças Renais Policísticas/fisiopatologia , Animais , Progressão da Doença , Ingestão de Líquidos , Humanos , Hipertensão/complicações , Doenças Renais Policísticas/complicações , Receptores de Vasopressinas/fisiologia , Urina/química , Vasopressinas/fisiologia
12.
Biomedica ; 37(1): 8-10, 2017 Jan 24.
Artigo em Espanhol | MEDLINE | ID: mdl-28527242

RESUMO

We report the case of a patient presenting with multiple severe electrolyte disturbances who was subsequently found to have small cell lung cancer. Upon further evaluation, she demonstrated three distinct paraneoplastic processes, including the syndrome of inappropriate antidiuretic hormone, Fanconi syndrome, and an inappropriate elevation in fibroblast growth factor-23 (FGF23). The patient underwent one round of chemotherapy, but she was found to have progressive disease. After 36 days of hospitalization, the patient made the decision to enter hospice care and later she expired.


Assuntos
Neoplasias Pulmonares/etiologia , Neurofisinas/fisiologia , Síndromes Paraneoplásicas/etiologia , Precursores de Proteínas/fisiologia , Carcinoma de Pequenas Células do Pulmão/complicações , Vasopressinas/fisiologia , Fator de Crescimento de Fibroblastos 23 , Humanos , Neoplasias Pulmonares/patologia , Neurofisinas/química , Neurofisinas/genética , Precursores de Proteínas/química , Precursores de Proteínas/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Vasopressinas/química , Vasopressinas/genética
13.
Clin Nephrol ; 88(8): 112-116, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28372632

RESUMO

A 38-year-old Japanese man who had undergone clipping surgery for a ruptured aneurysm of the anterior communicating artery 2 days prior, suddenly developed refractory hypernatremia (serum sodium (Na) 156 - 162 mmol/L). Symptoms included low plasma vasopressin, fluctuating urine osmolality (120 - 710 mOsm/kg) and lack of thirst, all suggesting adipsic diabetes insipidus (ADI). Hypernatremia was corrected by scheduled water intake with desmopressin administration. During 1-year follow-up after the surgery, his serum Na level normalized despite the suspension of desmopressin, but neither thirst nor osmolality-dependent vasopressin release recovered. Meanwhile, his urine osmolality shifted to a constant high level. The present case suggests that renal compensatory adaptation, apparently independent of the circulating vasopressin level, plays a major role in water handling in longitudinal ADI.
.


Assuntos
Adaptação Fisiológica , Aneurisma Roto/fisiopatologia , Água Corporal/metabolismo , Diabetes Insípido/fisiopatologia , Aneurisma Intracraniano/complicações , Rim/fisiopatologia , Adulto , Humanos , Masculino , Vasopressinas/fisiologia
14.
Biomédica (Bogotá) ; 37(1): 8-10, ene.-feb. 2017.
Artigo em Inglês | LILACS | ID: biblio-888437

RESUMO

Abstracts We report the case of a patient presenting with multiple severe electrolyte disturbances who was subsequently found to have small cell lung cancer. Upon further evaluation, she demonstrated three distinct paraneoplastic processes, including the syndrome of inappropriate antidiuretic hormone, Fanconi syndrome, and an inappropriate elevation in fibroblast growth factor-23 (FGF23). The patient underwent one round of chemotherapy, but she was found to have progressive disease. After 36 days of hospitalization, the patient made the decision to enter hospice care and later she expired.


Resumen Se reporta el caso de una paciente que ingresó al hospital para evaluación de múltiples trastornos electrolíticos y, posteriormente, se le hizo el diagnóstico de cáncer de pulmón de células pequeñas. Tras la evaluación médica, se detectaron tres síndromes paraneoplásicos: síndrome de secreción inadecuada de hormona antidiurética, síndrome de Fanconi y elevación inapropiada del factor 23 de crecimiento de fibroblastos. Se le administró quimioterapia sin éxito, por lo cual se decidió darle tratamiento paliativo y, un tiempo después, falleció.


Assuntos
Humanos , Síndromes Paraneoplásicas/etiologia , Precursores de Proteínas/fisiologia , Neurofisinas/fisiologia , Vasopressinas/fisiologia , Carcinoma de Pequenas Células do Pulmão/complicações , Neoplasias Pulmonares/etiologia , Precursores de Proteínas/genética , Precursores de Proteínas/química , Neurofisinas/genética , Neurofisinas/química , Vasopressinas/genética , Vasopressinas/química , Carcinoma de Pequenas Células do Pulmão/patologia , Fator de Crescimento de Fibroblastos 23 , Neoplasias Pulmonares/patologia
15.
Biol Psychiatry ; 81(3): 231-242, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27129413

RESUMO

BACKGROUND: The neuropeptides vasopressin and corticotropin-releasing factor facilitate, while serotonin inhibits, aggression. How the brain is wired to coordinate interactions between these functionally opposed neurotransmitters to control behavioral states is poorly understood. METHODS: Pair-bonded male prairie voles (Microtus ochrogaster) were infused with a retrograde tracer, Fluoro-Gold, and tested for affiliation and aggression toward a female partner or novel female subject. Subsequent immunocytochemical experiments examined neuronal activation using Fos and neurochemical/neuroreceptor profiles on brain areas involved in these social behaviors. Finally, a series of behavioral pharmacologic and real-time in vivo brain microdialysis experiments were performed on male prairie voles displaying affiliation or aggression. RESULTS: We localized a subpopulation of excitatory vasopressin neurons in the anterior hypothalamus that may gate corticotropin-releasing factor output from the amygdala to the anterior hypothalamus and then the lateral septum to modulate aggression associated with mate guarding. Conversely, we identified a subset of inhibitory serotonergic projection neurons in the dorsal raphe that project to the anterior hypothalamus and may mediate the spatiotemporal release of neuropeptides and their interactions in modulating aggression and affiliation. CONCLUSIONS: Together, this study establishes the medial extended amygdala as a major neural substrate regulating the switch between positive and negative affective states, wherein several neurochemicals converge and interact to coordinate divergent social behaviors.


Assuntos
Agressão/fisiologia , Encéfalo/fisiologia , Hormônio Liberador da Corticotropina/fisiologia , Serotonina/fisiologia , Comportamento Social , Vasopressinas/fisiologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Arvicolinae , Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Núcleo Dorsal da Rafe/fisiologia , Feminino , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Masculino , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptor 5-HT1A de Serotonina/fisiologia , Núcleos Septais/metabolismo , Núcleos Septais/fisiologia , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/fisiologia , Serotonina/metabolismo , Vasopressinas/metabolismo
16.
BMC Nephrol ; 17(1): 196, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27899079

RESUMO

BACKGROUND: In this study, we examined the relative usefulness of serum copeptin levels as a surrogate marker of vasopressin (AVP) in adult polycystic kidney disease (ADPKD) by correlating it with baseline and longitudinal changes in markers of both renal function and common CVD manifestations (hypertensive vascular disease, atherosclerosis and endothelial dysfunction) that accompany the progression of this disease. METHODS: We studied a cohort of young and otherwise healthy ADPKD patients (n = 235) and measured cardiovascular function using flow-mediation dilatation (FMD), carotid intima media thickness (cIMT) and pulse wave velocity (PWV), as well as serum copeptin (commercial ELISA, a stable marker of AVP activity). The same analyses were carried out at baseline and after 3 years of follow-up. RESULTS: At baseline, median eGFR was 69 mL/min./1.73 m2, mean FMD 6.9 ± 0.9%, cIMT 0.7 ± 0.1 mm, and PWV 8.1 ± 1.2 m/s. At follow-up, equivalent values were 65 (44-75) mL/min./1.73 m2, 5.8 ± 0.9%, 0.8 ± 0.1 mm. and 8.2 ± 1.3 m/s. with all changes statistically significant. Plasma copeptin also rose from 0.62 ± 0.12 to 0.94 ± 0.19 ng/mL and this change correlated with ΔeGFR (-0.33, p < 0.001), ΔFMD (0.599, p < 0.001), ΔcIMT (0.562, p < 0.001) and ΔPWV (0.27, p < 0.001) also after linear regression modeling to correct for confounders. Finally, ROC analysis was done for a high baseline copeptin with ΔeGFR [cut-off:≤59], ΔFMD [cut-off: ≤7.08], ΔcIMT [cut-off:>0.76], and ΔPWV [cut-off:≤7.80]. CONCLUSIONS: Vascular dysfunction as reflected by FMD and cIMT, but not PWV or an altered cardiac geometry, precede most other signs of disease in ADPKD but is predicted by elevated levels of the circulating AVP-marker copeptin.


Assuntos
Endotélio/fisiopatologia , Taxa de Filtração Glomerular , Glicopeptídeos/sangue , Doenças Renais Policísticas/sangue , Adulto , Biomarcadores/sangue , Espessura Intima-Media Carotídea , Ecocardiografia , Feminino , Seguimentos , Ventrículos do Coração/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Renais Policísticas/fisiopatologia , Análise de Onda de Pulso , Volume Sistólico , Vasodilatação , Vasopressinas/fisiologia
17.
Lab Invest ; 96(11): 1147-1155, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27571215

RESUMO

The neurohypophysial hormone arginine vasopressin (AVP) acts by three distinct receptor subtypes: V1a, V1b, and V2. In the liver, AVP is involved in ureogenesis, glycogenolysis, neoglucogenesis and regeneration. No data exist about the presence of AVP in the biliary epithelium. Cholangiocytes are the target cells in a number of animal models of cholestasis, including bile duct ligation (BDL), and in several human pathologies, such as polycystic liver disease characterized by the presence of cysts that bud from the biliary epithelium. In vivo, liver fragments from normal and BDL mice and rats as well as liver samples from normal and ADPKD patients were collected to evaluate: (i) intrahepatic bile duct mass by immunohistochemistry for cytokeratin-19; and (ii) expression of V1a, V1b and V2 by immunohistochemistry, immunofluorescence and real-time PCR. In vitro, small and large mouse cholangiocytes, H69 (non-malignant human cholangiocytes) and LCDE (human cholangiocytes from the cystic epithelium) were stimulated with vasopressin in the absence/presence of AVP antagonists such as OPC-31260 and Tolvaptan, before assessing cellular growth by MTT assay and cAMP levels. Cholangiocytes express V2 receptor that was upregulated following BDL and in ADPKD liver samples. Administration of AVP increased proliferation and cAMP levels of small cholangiocytes and LCDE cells. We found no effect in the proliferation of large mouse cholangiocytes and H69 cells. Increases were blocked by preincubation with the AVP antagonists. These results showed that AVP and its receptors may be important in the modulation of the proliferation rate of the biliary epithelium.


Assuntos
Ductos Biliares Intra-Hepáticos/fisiologia , Cistos/fisiopatologia , Epitélio/crescimento & desenvolvimento , Hepatopatias/fisiopatologia , Vasopressinas/fisiologia , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Cistos/metabolismo , Humanos , Queratina-19/metabolismo , Hepatopatias/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Ratos Endogâmicos F344 , Receptores de Vasopressinas/metabolismo
18.
Am J Physiol Renal Physiol ; 311(2): F411-23, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27306979

RESUMO

The antidiuretic hormone vasopressin (AVP) regulates renal salt and water reabsorption along the distal nephron and collecting duct system. These effects are mediated by vasopressin 2 receptors (V2R) and release of intracellular Gs-mediated cAMP to activate epithelial transport proteins. Inactivating mutations in the V2R gene lead to the X-linked form of nephrogenic diabetes insipidus (NDI), which has chiefly been related with impaired aquaporin 2-mediated water reabsorption in the collecting ducts. Previous work also suggested the AVP-V2R-mediated activation of Na(+)-K(+)-2Cl(-)-cotransporters (NKCC2) along the thick ascending limb (TAL) in the context of urine concentration, but its individual contribution to NDI or, more generally, to overall renal function was unclear. We hypothesized that V2R-mediated effects in TAL essentially determine its reabsorptive function. To test this, we reevaluated V2R expression. Basolateral membranes of medullary and cortical TAL were clearly stained, whereas cells of the macula densa were unreactive. A dominant-negative, NDI-causing truncated V2R mutant (Ni3-Glu242stop) was then introduced into the rat genome under control of the Tamm-Horsfall protein promoter to cause a tissue-specific AVP-signaling defect exclusively in TAL. Resulting Ni3-V2R transgenic rats revealed decreased basolateral but increased intracellular V2R signal in TAL epithelia, suggesting impaired trafficking of the receptor. Rats displayed significant baseline polyuria, failure to concentrate the urine in response to water deprivation, and hypercalciuria. NKCC2 abundance, phosphorylation, and surface expression were markedly decreased. In summary, these data indicate that suppression of AVP-V2R signaling in TAL causes major impairment in renal fluid and electrolyte handling. Our results may have clinical implications.


Assuntos
Rim/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Vasopressinas/genética , Vasopressinas/fisiologia , Animais , Proteínas de Transporte/metabolismo , AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/metabolismo , Diabetes Insípido Nefrogênico/genética , Epitélio/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Sistema Justaglomerular/metabolismo , Rim/ultraestrutura , Córtex Renal/metabolismo , Medula Renal/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores de Vasopressinas/genética , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
19.
J Neuroendocrinol ; 28(4)2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26791475

RESUMO

The present study aimed to investigate the potential physiological role of vasopressin and the incretin hormone of the gastrointestinal tract (glucagon-like peptide-1; GLP-1) in the regulation of the water-salt balance in a hyperosmolar state as a result of sodium loadings. In rats, the administration of hypertonic NaCl solution resulted in a significant increase in natriuresis, which correlated with the vasopressin excretion rate. Natriuresis following an i.p. NaCl load (23.2 ± 1.4 µmol/min/kg) was enhanced by inhibition of V2 receptors (51.6 ± 3.7 µmol/min/kg, P < 0.05) and was reduced by a V1a antagonist injection (6.3 ± 1.1 µmol/min/kg, P < 0.05). Compared to i.p. salt administration, oral NaCl loading induced a significant increase in the plasma GLP-1 level within 5 min and resulted in more prominent natriuresis and a smaller increase in blood sodium concentration. It was hypothesised that the basis for the fast elimination of excess sodium following an oral NaCl load could be the involvement of GLP-1 in osmoregulation combined with vasopressin. It was demonstrated that GLP-1 mimetic exenatide (1.5 nmol/kg) produced a significant decrease in proximal reabsorption and an increase in fractional sodium excretion (from 0.15 ± 0.04% to 9 ± 1%). It was also shown that vasopressin at doses of 1-10 µg/kg and the selective V1a agonist (1 µg/kg) induced an increase in sodium fractional excretion to 10 ± 2% and 8 ± 2%, respectively. Combined administration of exenatide and V1a agonist revealed their cumulative natriuretic effect, and sodium fractional excretion increased by up to 18 ± 2%. These data suggest that GLP-1 combined with vasopressin could be involved in the regulation of sodium balance in the hyperosmolar state as a result of NaCl loading. Vasopressin regulates the reabsorption of a significant portion of filtered sodium in the distal segment of the nephron and modulates the natriuretic effect of GLP-1.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/fisiologia , Rim/metabolismo , Natriurese/fisiologia , Sódio/metabolismo , Vasopressinas/fisiologia , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Exenatida , Feminino , Peptídeo 1 Semelhante ao Glucagon/sangue , Rim/efeitos dos fármacos , Natriurese/efeitos dos fármacos , Concentração Osmolar , Peptídeos/farmacologia , Ratos , Receptores de Vasopressinas/agonistas , Solução Salina Hipertônica/farmacologia , Sódio/sangue , Peçonhas/farmacologia
20.
J Reprod Dev ; 62(1): 17-27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26460689

RESUMO

In the rat, induction of maternal behavior depends on the parity of the female. For example, nulliparous (NP) females need longer exposure to pups than multiparous (MP) or lactating (L) females to exhibit similar maternal behavior. In this study, we investigated the role of brain oxytocin in the approaching behavior of these female rats. Olfactory preferences for pup odors were examined for 8 consecutive days. Each preference test was followed by direct overnight exposure to pups. On the 8th day, MP and L, but not NP females showed robust pup-odor preferences. After the behavioral test, half of the females were exposed to pups for 2 h, whereas the other half were not. The females were then sacrificed to analyze brain oxytocin (OXT) and vasopressin (AVP) activities by cFos immunohistochemistry and to quantify their receptor mRNA expression using real-time PCR. In the paraventricular nucleus (PVN), the percentage of cFos-positive OXT neurons was significantly larger in MP and L females than in NP females after pup exposure. No significant differences were found in cFos expression in OXT neurons of the supraoptic nucleus (SON) or in AVP neurons of either the PVN or SON. Expression of OXT receptor mRNA in the medial preoptic area and amygdala of the control groups was also higher in MP females than in NP females. Finally, we demonstrated that infusion of OXT into the lateral ventricle of NP females promoted preferences for pup odors. These results indicate that puerperal and parental experiences enhance the responsiveness of OXT neurons in the PVN to pup stimuli and establish olfactory preferences for these odors in a parity-dependent manner.


Assuntos
Odorantes , Ocitocina/fisiologia , Animais , Comportamento Animal , Encéfalo/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Lactação , Comportamento Materno , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Gravidez , Prenhez , Proteínas Proto-Oncogênicas c-fos/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans , Olfato , Núcleo Supraóptico/metabolismo , Vasopressinas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA