Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Cell Mol Life Sci ; 80(12): 366, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985518

RESUMO

The lymphatic vasculature plays a crucial role in fluid clearance and immune responses in peripheral organs by connecting them to distal lymph nodes. Recently, attention has been drawn to the lymphatic vessel network surrounding the brain's border tissue (Aspelund et al. in J Exp Med 212:991-999, 2015. https://doi.org/10.1084/jem.20142290 ; Louveau et al. in Nat Neurosci 21:1380-1391, 2018. https://doi.org/10.1038/s41593-018-0227-9 ), which guides immune cells in mediating protection against tumors (Song et al. in Nature 577:689-694, 2020. https://doi.org/10.1038/s41586-019-1912-x ) and pathogens Li et al. (Nat Neurosci 25:577-587, 2022. https://doi.org/10.1038/s41593-022-01063-z ) while also contributing to autoimmunity (Louveau et al. 2018) and neurodegeneration (Da Mesquita et al. in Nature 560:185-191, 2018. https://doi.org/10.1038/s41586-018-0368-8 ). New studies have highlighted the integral involvement of meningeal lymphatic vessels in neuropathology. However, our limited understanding of spinal cord meningeal lymphatics and immunity hinders efforts to protect and heal the spinal cord from infections, injury, and other immune-mediated diseases. This review aims to provide a comprehensive overview of the state of spinal cord meningeal immunity, highlighting its unique immunologically relevant anatomy, discussing immune cells and lymphatic vasculature, and exploring the potential impact of injuries and inflammatory disorders on this intricate environment.


Assuntos
Sistema Nervoso Central , Vasos Linfáticos , Meninges , Sistema Linfático , Medula Espinal , Vasos Linfáticos/fisiologia
2.
Adv Biol (Weinh) ; 7(5): e2200158, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36792967

RESUMO

Fibrosis occurs in many chronic diseases with lymphatic vascular insufficiency (e.g., kidney disease, tumors, and lymphedema). New lymphatic capillary growth can be triggered by fibrosis-related tissue stiffening and soluble factors, but questions remain for how related biomechanical, biophysical, and biochemical cues affect lymphatic vascular growth and function. The current preclinical standard for studying lymphatics is animal modeling, but in vitro and in vivo outcomes often do not align. In vitro models can also be limited in their ability to separate vascular growth and function as individual outcomes, and fibrosis is not traditionally included in model design. Tissue engineering provides an opportunity to address in vitro limitations and mimic microenvironmental features that impact lymphatic vasculature. This review discusses fibrosis-related lymphatic vascular growth and function in disease and the current state of in vitro lymphatic vascular models while highlighting relevant knowledge gaps. Additional insights into the future of in vitro lymphatic vascular models demonstrate how prioritizing fibrosis alongside lymphatics will help capture the complexity and dynamics of lymphatics in disease. Overall, this review aims to emphasize that an advanced understanding of lymphatics within a fibrotic disease-enabled through more accurate preclinical modeling-will significantly impact therapeutic development toward restoring lymphatic vessel growth and function in patients.


Assuntos
Vasos Linfáticos , Neoplasias , Animais , Linfangiogênese/fisiologia , Vasos Linfáticos/patologia , Vasos Linfáticos/fisiologia , Sistema Linfático/patologia , Sistema Linfático/fisiologia , Fibrose , Biologia
3.
Adv Biol (Weinh) ; 7(5): e2200041, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35751460

RESUMO

Blood and lymphatic vessels are regulators of physiological processes, including oxygenation and fluid transport. Both vessels are ubiquitous throughout the body and are critical for sustaining tissue homeostasis. The complexity of each vessel's processes has limited the understanding of exactly how the vessels maintain their functions. Both vessels have been shown to be involved in the pathogenesis of many diseases, including cancer metastasis, and it is crucial to probe further specific mechanisms involved. In vitro models are developed to better understand blood and lymphatic physiological functions and their mechanisms. In this review, blood and lymphatic in vitro model systems, including 2D and 3D designs made using Transwells, microfluidic devices, organoid cultures, and various other methods, are described. Models studying endothelial cell-extracellular matrix interactions, endothelial barrier properties, transendothelial transport and cell migration, lymph/angiogenesis, vascular inflammation, and endothelial-cancer cell interactions are particularly focused. While the field has made significant progress in modeling and understanding lymphatic and blood vasculature, more models that include coculture of multiple cell types, complex extracellular matrix, and 3D morphologies, particularly for models mimicking disease states, will help further the understanding of the role of blood and lymphatic vasculature in health and disease.


Assuntos
Vasos Linfáticos , Vasos Linfáticos/fisiologia , Tecido Linfoide , Movimento Celular , Comunicação Celular
4.
Immunology ; 168(2): 233-247, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35719015

RESUMO

The draining of brain interstitial fluid (ISF) to cerebrospinal fluid (CSF) and the subsequent draining of CSF to meningeal lymphatics is well-known. Nonetheless, its role in the development of glioma is a remarkable finding that has to be extensively understood. The glymphatic system (GS) collects CSF from the subarachnoid space and brain ISF through aquaporin-4 (AQP4) water channels. The glial limiting membrane and the perivascular astrocyte-end-feet membrane both have elevated levels of AQP4. CSF is thought to drain through the nerve sheaths of the olfactory and other cranial nerves as well as spinal meningeal lymphatics via dorsal or basal lymphatic vessels. Meningeal lymphatic vessels (MLVs) exist below the skull in the dorsal and basal regions. In this view, MLVs offer a pathway to drain macromolecules and traffic immunological cells from the CNS into cervical lymph nodes (CLNs), and thus can be used as a candidate curing strategy against glioma and other associated complications, such as neuro-inflammation. Taken together, the lymphatic drainage system could provide a route or approach for drug targeting of glioma and other neurological conditions. Nevertheless, its pathophysiological role in glioma remains elusive, which needs extensive research. The current review aims to explore the lymphatic drainage system, its role in glioma progression, and possible therapeutic techniques that target MLVs in the CNS.


Assuntos
Glioma , Vasos Linfáticos , Humanos , Sistema Linfático/patologia , Sistema Linfático/fisiologia , Vasos Linfáticos/fisiologia , Encéfalo , Meninges , Glioma/terapia , Glioma/patologia
5.
Microcirculation ; 30(2-3): e12792, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36369987

RESUMO

BACKGROUND: Dysfunction of the lymphatic system following injury, disease, or cancer treatment can lead to lymphedema, a debilitating condition with no cure. Despite the various physical therapy and surgical options available, most treatments are palliative and fail to address the underlying lymphatic vascular insufficiency driving lymphedema progression. Stem cell therapy provides a promising alternative in the treatment of various chronic diseases with a wide range of therapeutic effects that reduce inflammation, fibrosis, and oxidative stress, while promoting lymphatic vessel (LV) regeneration. Specifically, stem cell transplantation is suggested to promote LV restoration, rebuild lymphatic circulation, and thus potentially be utilized towards an effective lymphedema treatment. In addition to stem cells, studies have proposed the administration of vascular endothelial growth factor C (VEGFC) to promote lymphangiogenesis and decrease swelling in lymphedema. AIMS: Here, we seek to combine the benefits of stem cell therapy, which provides a cellular therapeutic approach that can respond to the tissue environment, and VEGFC administration to restore lymphatic drainage. MATERIALS & METHODS: Specifically, we engineered mesenchymal stem cells (MSCs) to overexpress VEGFC using a lentiviral vector (hVEGFC MSC) and investigated their therapeutic efficacy in improving LV function and tissue swelling using near infrared (NIR) imaging, and lymphatic regeneration in a single LV ligation mouse tail lymphedema model. RESULTS: First, we showed that overexpression of VEGFC using lentiviral transduction led to an increase in VEGFC protein synthesis in vitro. Then, we demonstrated hVEGFC MSC administration post-injury significantly increased the lymphatic contraction frequency 14-, 21-, and 28-days post-surgery compared to the control animals (MSC administration) in vivo, while also reducing tail swelling 28-days post-surgery compared to controls. CONCLUSION: Our results suggest a therapeutic potential of hVEGFC MSC in alleviating the lymphatic dysfunction observed during lymphedema progression after secondary injury and could provide a promising approach to enhancing autologous cell therapy for treating lymphedema.


Assuntos
Vasos Linfáticos , Linfedema , Células-Tronco Mesenquimais , Animais , Camundongos , Linfangiogênese , Vasos Linfáticos/fisiologia , Linfedema/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos BALB C , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Lentivirus/genética
6.
Microcirculation ; 30(2-3): e12793, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36415150

RESUMO

The lymphatic vascular system is crucial for optimizing body fluid level, regulating immune function, and transporting lipid. Relative to the experimental models to investigate blood vasculature, there are significantly fewer tools to explore lymphatics. Although in vivo studies have contributed to major discoveries in the field, finding and characterizing lymphatic specific markers has opened the door to isolating lymphatic vessels and cells for building ex vivo and in vitro platforms. These preparations have enabled the study and analysis of lymphatic vasculature in various physiological and pathophysiological conditions leading to a better understanding of cellular expressions and signaling. In this review, a broad range of ex vivo and in vitro engineered models are highlighted and categorized based on the major lymphatic function they model including contractile function, inflammation, drainage and immune regulation, lymphangiogenesis, and tumor-lymphatic interactions. Then, the novel 3D engineered tissues are introduced consisting of acellularized scaffolds and hydrogels to form vessels and cellular structures close to in vivo morphology. This paper also compares traditional in vitro methods with recent technologies and elaborates on the inherent advantages and limitations of each preparation by critically discussing simplest to most complex tissue-cellular structures. It concludes with an outlook of the lymphatic vasculature models and the possible future direction of contemporary tools, such as organ-on-chips.


Assuntos
Vasos Linfáticos , Neoplasias , Humanos , Vasos Linfáticos/fisiologia , Sistema Linfático , Linfangiogênese , Transdução de Sinais
7.
Circ Res ; 130(1): 5-23, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34789016

RESUMO

BACKGROUND: The adherens protein VE-cadherin (vascular endothelial cadherin) has diverse roles in organ-specific lymphatic vessels. However, its physiological role in cardiac lymphatics and its interaction with lymphangiogenic factors has not been fully explored. We sought to determine the spatiotemporal functions of VE-cadherin in cardiac lymphatics and mechanistically elucidate how VE-cadherin loss influences prolymphangiogenic signaling pathways, such as adrenomedullin and VEGF (vascular endothelial growth factor)-C/VEGFR3 (vascular endothelial growth factor receptor 3) signaling. METHODS: Cdh5flox/flox;Prox1CreERT2 mice were used to delete VE-cadherin in lymphatic endothelial cells across life stages, including embryonic, postnatal, and adult. Lymphatic architecture and function was characterized using immunostaining and functional lymphangiography. To evaluate the impact of temporal and functional regression of cardiac lymphatics in Cdh5flox/flox;Prox1CreERT2 mice, left anterior descending artery ligation was performed and cardiac function and repair after myocardial infarction was evaluated by echocardiography and histology. Cellular effects of VE-cadherin deletion on lymphatic signaling pathways were assessed by knockdown of VE-cadherin in cultured lymphatic endothelial cells. RESULTS: Embryonic deletion of VE-cadherin produced edematous embryos with dilated cardiac lymphatics with significantly altered vessel tip morphology. Postnatal deletion of VE-cadherin caused complete disassembly of cardiac lymphatics. Adult deletion caused a temporal regression of the quiescent epicardial lymphatic network which correlated with significant dermal and cardiac lymphatic dysfunction, as measured by fluorescent and quantum dot lymphangiography, respectively. Surprisingly, despite regression of cardiac lymphatics, Cdh5flox/flox;Prox1CreERT2 mice exhibited preserved cardiac function, both at baseline and following myocardial infarction, compared with control mice. Mechanistically, loss of VE-cadherin leads to aberrant cellular internalization of VEGFR3, precluding the ability of VEGFR3 to be either canonically activated by VEGF-C or noncanonically transactivated by adrenomedullin signaling, impairing downstream processes such as cellular proliferation. CONCLUSIONS: VE-cadherin is an essential scaffolding protein to maintain prolymphangiogenic signaling nodes at the plasma membrane, which are required for the development and adult maintenance of cardiac lymphatics, but not for cardiac function basally or after injury.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Vasos Linfáticos/metabolismo , Pericárdio/metabolismo , Transdução de Sinais , Animais , Antígenos CD/genética , Caderinas/genética , Células Cultivadas , Feminino , Humanos , Vasos Linfáticos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34272308

RESUMO

BACKGROUND: Mesenteric lymph nodes (MLNs) are critical draining lymph nodes of the immune system that accommodate more than half of the body's lymphocytes, suggesting their potential value as a cancer immunotherapy target. Therefore, efficient delivery of immunomodulators to the MLNs holds great potential for activating immune responses and enhancing the efficacy of antitumor immunotherapy. Self-microemulsifying drug delivery systems (SMEDDS) have attracted increasing attention to improving oral bioavailability by taking advantage of the intestinal lymphatic transport pathway. Relatively little focus has been given to the lymphatic transport advantage of SMEDDS for efficient immunomodulators delivery to the MLNs. In the present study, we aimed to change the intestinal lymphatic transport paradigm from increasing bioavailability to delivering high concentrations of immunomodulators to the MLNs. METHODS: Chlorogenic acid (CHA)-encapsulated SMEDDS (CHA-SME) were developed for targeted delivery of CHA to the MLNs. The intestinal lymphatic transport, immunoregulatory effects on immune cells, and overall antitumor immune efficacy of CHA-SME were investigated through in vitro and in vivo experiments. RESULTS: CHA-SME enhanced drug permeation through intestinal epithelial cells and promoted drug accumulation within the MLNs via the lymphatic transport pathway. Furthermore, CHA-SME inhibited tumor growth in subcutaneous and orthotopic glioma models by promoting dendritic cell maturation, priming the naive T cells into effector T cells, and inhibiting the immunosuppressive component. Notably, CHA-SME induced a long-term immune memory effect for immunotherapy. CONCLUSIONS: These findings indicate that CHA-SME have great potential to enhance the immunotherapeutic efficacy of CHA by activating antitumor immune responses.


Assuntos
Ácido Clorogênico/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Vasos Linfáticos/fisiologia , Neoplasias/tratamento farmacológico , Administração Oral , Animais , Feminino , Humanos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
9.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34326257

RESUMO

The lymphatic system is involved in various biological processes, including fluid transport from the interstitium into the venous circulation, lipid absorption, and immune cell trafficking. Despite its critical role in homeostasis, lymphangiogenesis (lymphatic vessel formation) is less widely studied than its counterpart, angiogenesis (blood vessel formation). Although the incorporation of lymphatic vasculature in engineered tissues or organoids would enable more precise mimicry of native tissue, few studies have focused on creating engineered tissues containing lymphatic vessels. Here, we populated thick collagen sheets with human lymphatic endothelial cells, combined with supporting cells and blood endothelial cells, and examined lymphangiogenesis within the resulting constructs. Our model required just a few days to develop a functional lymphatic vessel network, in contrast to other reported models requiring several weeks. Coculture of lymphatic endothelial cells with the appropriate supporting cells and intact PDGFR-ß signaling proved essential for the lymphangiogenesis process. Additionally, subjecting the constructs to cyclic stretch enabled the creation of complex muscle tissue aligned with the lymphatic and blood vessel networks, more precisely biomimicking native tissue. Interestingly, the response of developing lymphatic vessels to tensile forces was different from that of blood vessels; while blood vessels oriented perpendicularly to the stretch direction, lymphatic vessels mostly oriented in parallel to the stretch direction. Implantation of the engineered lymphatic constructs into a mouse abdominal wall muscle resulted in anastomosis between host and implant lymphatic vasculatures, demonstrating the engineered construct's potential functionality in vivo. Overall, this model provides a potential platform for investigating lymphangiogenesis and lymphatic disease mechanisms.


Assuntos
Polpa Dentária/fisiologia , Células Endoteliais/fisiologia , Linfangiogênese/fisiologia , Vasos Linfáticos/fisiologia , Engenharia Tecidual , Técnicas de Cocultura , Humanos , Vasos Linfáticos/citologia , Neovascularização Fisiológica , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Células-Tronco/fisiologia
10.
Genes Cells ; 26(7): 474-484, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33864419

RESUMO

Lymphatic recanalization failure after lymphadenectomy constitutes a major risk of lymphedema in cancer surgery. It has been reported that GATA2, a zinc finger transcription factor, is expressed in lymphatic endothelial cells and is involved in the development of fetal lymphatic vessels. GATA3, another member of the GATA family of transcription factors, is required for the differentiation of lymphoid tissue inducer (LTi) cells and is essential for lymph node formation. However, how GATA2 and GATA3 function in recanalization after the surgical extirpation of lymphatic vessels has not been elucidated. Employing a new model of lymphatic recanalization, we examined the lymphatic reconnection process in Gata2 heterozygous deficient (Gata2+/- ) and Gata3 heterozygous deficient (Gata3+/- ) mice. We found that lymphatic recanalization was significantly impaired in Gata2+/- mice, while Gata3+/- mice rarely showed such abnormalities. Notably, the perturbed lymphatic recanalization in the Gata2+/- mice was partially restored by crossing with the Gata3+/- mice. Our results demonstrate for the first time that GATA2 participates in the regeneration of damaged lymphatic vessels and the unexpected suppressive activity of GATA3 against lymphatic recanalization processes.


Assuntos
Fator de Transcrição GATA2/metabolismo , Excisão de Linfonodo/efeitos adversos , Vasos Linfáticos/metabolismo , Linfedema/metabolismo , Complicações Pós-Operatórias/metabolismo , Animais , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Heterozigoto , Vasos Linfáticos/fisiologia , Linfedema/etiologia , Camundongos , Complicações Pós-Operatórias/etiologia , Regeneração
11.
Cancer Sci ; 112(5): 1735-1745, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33629407

RESUMO

Lymph node (LN) metastasis is thought to account for 20-30% of deaths from head and neck cancer. The lymphatic drug delivery system (LDDS) is a new technology that enables the injection of drugs into a sentinel LN (SLN) during the early stage of tumor metastasis to treat the SLN and secondary metastatic LNs. However, the optimal physicochemical properties of the solvent used to carry the drug have not been determined. Here, we show that the osmotic pressure and viscosity of the solvent influenced the antitumor effect of cisplatin (CDDP) in a mouse model of LN metastasis. Tumor cells were inoculated into the proper axillary LN (PALN), and the LDDS was used to inject CDDP solution into the subiliac LN (SiLN) to treat the tumor cells in the downstream PALN. CDDP dissolved in saline had no therapeutic effects in the PALN after it was injected into the SiLN using the LDDS or into the tail vein (as a control). However, CDDP solution with an osmotic pressure of ~ 1,900 kPa and a viscosity of ~ 12 mPa⋅s suppressed tumor growth in the PALN after it was injected into the SiLN using the LDDS. The high osmotic pressure dilated the lymphatic vessels and sinuses to enhance drug flow in the PALN, and the high viscosity increased the retention of CDDP in the PALN. Our results demonstrate that optimizing the osmotic pressure and viscosity of the solvent can enhance the effects of CDDP, and possibly other anticancer drugs, after administration using the LDDS.


Assuntos
Cisplatino/química , Metástase Linfática/tratamento farmacológico , Pressão Osmótica , Linfonodo Sentinela , Solventes/química , Viscosidade , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Axila , Fenômenos Químicos , Cisplatino/administração & dosagem , Cisplatino/farmacocinética , Meios de Contraste , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Injeções Intralinfáticas/métodos , Luciferases/metabolismo , Vasos Linfáticos/fisiologia , Camundongos , Solução Salina/administração & dosagem , Solução Salina/química , Linfonodo Sentinela/diagnóstico por imagem , Solventes/administração & dosagem , Solventes/farmacocinética , Ultrassonografia
12.
Nat Rev Cardiol ; 18(5): 368-379, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33462421

RESUMO

The lymphatic vasculature has an essential role in maintaining normal fluid balance in tissues and modulating the inflammatory response to injury or pathogens. Disruption of normal development or function of lymphatic vessels can have severe consequences. In the heart, reduced lymphatic function can lead to myocardial oedema and persistent inflammation. Macrophages, which are phagocytic cells of the innate immune system, contribute to cardiac development and to fibrotic repair and regeneration of cardiac tissue after myocardial infarction. In this Review, we discuss the cardiac lymphatic vasculature with a focus on developments over the past 5 years arising from the study of mammalian and zebrafish model organisms. In addition, we examine the interplay between the cardiac lymphatics and macrophages during fibrotic repair and regeneration after myocardial infarction. Finally, we discuss the therapeutic potential of targeting the cardiac lymphatic network to regulate immune cell content and alleviate inflammation in patients with ischaemic heart disease.


Assuntos
Coração , Inflamação , Vasos Linfáticos , Macrófagos , Isquemia Miocárdica , Regeneração , Animais , Modelos Animais de Doenças , Fibrose/imunologia , Fibrose/fisiopatologia , Coração/embriologia , Coração/fisiologia , Coração/fisiopatologia , Humanos , Inflamação/imunologia , Inflamação/fisiopatologia , Vasos Linfáticos/embriologia , Vasos Linfáticos/imunologia , Vasos Linfáticos/fisiologia , Vasos Linfáticos/fisiopatologia , Macrófagos/imunologia , Macrófagos/fisiologia , Isquemia Miocárdica/imunologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/imunologia , Regeneração/imunologia , Regeneração/fisiologia
14.
AJR Am J Roentgenol ; 216(3): 649-658, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33377793

RESUMO

OBJECTIVE. This article reviews thoracic lymphatic pathways and tributaries, discusses lymphatic anatomic variants and their clinical implications, and emphasizes common patterns of thoracic lymphadenopathy from extrapulmonary malignancies. CONCLUSION. Recognition of common patterns and pathways of thoracic lymphatic drainage can help identify the site of tumor origin and allow a more focused examination of disease extent, both of which are important for disease prognosis and management.


Assuntos
Metástase Linfática , Vasos Linfáticos/anatomia & histologia , Tórax/anatomia & histologia , Diafragma/anatomia & histologia , Humanos , Neoplasias Hepáticas/patologia , Linfa/fisiologia , Vasos Linfáticos/fisiologia , Mesotelioma Maligno/etiologia , Neoplasias Peritoneais/patologia , Pleura/anatomia & histologia , Neoplasias Pleurais/etiologia , Ducto Torácico/anatomia & histologia , Ducto Torácico/embriologia , Parede Torácica/anatomia & histologia
15.
Methods Mol Biol ; 2193: 85-96, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32808261

RESUMO

Lymphangiogenesis, the formation of lymphatic vessels from preexisting ones, is an important process in wound-healing physiology. Deregulation of lymphangiogenesis and lymphatic vascular remodeling have been implicated in a range of inflammatory conditions, such as lymphedema, lymphadenopathy, tumor growth, and cancer metastasis. Any attempt in understanding various parameters of the lymphangiogenic process and developing desirable therapeutic targets requires recapitulating these conditions in in vivo models. One pitfall with some experimental models is the absence of immune response, an important regulatory factor for lymphangiogenesis. We overcome this issue by using immune competent mice. In this chapter, by using Angiopoietin-2 (Ang2), a protein that belongs to the Ang/Tie signaling pathway, we describe the ear sponge assay with important adaptations, highlighting a reproducible and quantitative tool for assessment of in vivo lymphangiogenesis.


Assuntos
Bioensaio/métodos , Orelha/fisiopatologia , Linfangiogênese/fisiologia , Vasos Linfáticos/fisiologia , Angiopoietina-2/genética , Animais , Orelha/cirurgia , Humanos , Imunidade/imunologia , Imunidade/fisiologia , Linfangiogênese/genética , Linfangiogênese/imunologia , Vasos Linfáticos/imunologia , Camundongos , Transdução de Sinais/genética , Remodelação Vascular/genética , Remodelação Vascular/imunologia , Remodelação Vascular/fisiologia , Cicatrização/genética , Cicatrização/fisiologia
16.
Adv Drug Deliv Rev ; 160: 19-35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33058931

RESUMO

Though immunotherapy has revolutionized the treatment of cancer to improve disease outcomes, an array of challenges remain that limit wider clinical success, including low rate of response and immune-related adverse events. Targeting immunomodulatory drugs to therapeutically relevant tissues offers a way to overcome these challenges by potentially enabling enhanced therapeutic efficacy and decreased incidence of side effects. Research highlighting the importance of lymphatic tissues in the response to immunotherapy has increased interest in the application of engineered drug delivery systems (DDSs) to enable specific targeting of immunomodulators to lymphatic tissues and cells that they house. To this end, a variety of DDS platforms have been developed that enable more efficient uptake into lymphatic vessels and lymph nodes to provide targeted modulation of the immune response to cancer. This can occur either by delivery of immunotherapeutics to lymphatics tissues or by direct modulation of the lymphatic vasculature itself due to their direct involvement in tumor immune processes. This review will highlight DDS platforms that, by enabling the activities of cancer vaccines, chemotherapeutics, immune checkpoint blockade (ICB) antibodies, and anti- or pro-lymphangiogenic factors to lymphatic tissues through directed delivery and controlled release, augment cancer immunotherapy.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Imunomodulação/fisiologia , Neoplasias/tratamento farmacológico , Adjuvantes Imunológicos , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Vacinas Anticâncer/administração & dosagem , Preparações de Ação Retardada , Implantes de Medicamento/química , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/farmacologia , Lipídeos/química , Linfonodos/fisiologia , Vasos Linfáticos/fisiologia , Nanopartículas , Neoplasias/prevenção & controle , Proteínas/química , Alicerces Teciduais/química
17.
Elife ; 92020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32897857

RESUMO

Endothelial integrity is vital for homeostasis and adjusted to tissue demands. Although fluid uptake by lymphatic capillaries is a critical attribute of the lymphatic vasculature, the barrier function of collecting lymphatic vessels is also important by ensuring efficient fluid drainage as well as lymph node delivery of antigens and immune cells. Here, we identified the transmembrane ligand EphrinB2 and its receptor EphB4 as critical homeostatic regulators of collecting lymphatic vessel integrity. Conditional gene deletion in mice revealed that EphrinB2/EphB4 signalling is dispensable for blood endothelial barrier function, but required for stabilization of lymphatic endothelial cell (LEC) junctions in different organs of juvenile and adult mice. Studies in primary human LECs further showed that basal EphrinB2/EphB4 signalling controls junctional localisation of the tight junction protein CLDN5 and junction stability via Rac1/Rho-mediated regulation of cytoskeletal contractility. EphrinB2/EphB4 signalling therefore provides a potential therapeutic target to selectively modulate lymphatic vessel permeability and function.


Lymph vessels are thin walled tubes that, similar to blood vessels, carry white blood cells, fluids and waste. Unlike veins and arteries, however, lymph vessels do not carry red blood cells and their main function is to remove excess fluid from tissues. The cells that line vessels in the body are called endothelial cells, and they are tightly linked together by proteins to control what goes into and comes out of the vessels. The chemical, physical and mechanical signals that control the junctions between endothelial cells are often the same in different vessel types, but their effects can vary. The endothelial cells of both blood and lymph vessels have two interacting proteins on their membrane known as EphrinB2 and its receptor, EphB4. When these two proteins interact, the EphB4 receptor becomes activated, which leads to changes in the junctions that link endothelial cells together. Frye et al. examined the role of EphrinB2 and EphB4 in the lymphatic system of mice. When either EphrinB2 or EphB4 are genetically removed in newborn or adult mice, lymph vessels become disrupted, but no significant effect is observed on blood vessels. The reason for the different responses in blood and lymph vessels is unknown. The results further showed that lymphatic endothelial cells need EphB4 and EphrinB2 to be constantly interacting to maintain the integrity of the lymph vessels. Further examination of human endothelial cells grown in the laboratory revealed that this constant signalling controls the internal protein scaffold that determines a cell's shape and integrity. Changes in the internal scaffold affect the organization of the junctions that link neighboring lymphatic endothelial cells together. The loss of signalling between EphrinB2 and EphB4 in lymph vessels reflects the increase in vessel leakage seen in response to bacterial infections and in some genetic conditions such as lymphoedema. Finding ways to control the signalling between these two proteins could help treat these conditions by developing drugs that improve endothelial cell integrity in lymph vessels.


Assuntos
Células Endoteliais/metabolismo , Efrina-B2/genética , Homeostase , Junções Intercelulares/metabolismo , Vasos Linfáticos/fisiologia , Receptor EphB4/genética , Transdução de Sinais , Animais , Claudina-5/genética , Efrina-B2/metabolismo , Deleção de Genes , Camundongos , Receptor EphB4/metabolismo
19.
Front Immunol ; 11: 1234, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625213

RESUMO

Mast cells (MCs) are abundant in almost all vascularized tissues. Furthermore, their anatomical proximity to lymphatic vessels and their ability to synthesize, store and release a large array of inflammatory and vasoactive mediators emphasize their significance in the regulation of the lymphatic vascular functions. As a major secretory cell of the innate immune system, MCs maintain their steady-state granule release under normal physiological conditions; however, the inflammatory response potentiates their ability to synthesize and secrete these mediators. Activation of MCs in response to inflammatory signals can trigger adaptive immune responses by dendritic cell-directed T cell activation. In addition, through the secretion of various mediators, cytokines and growth factors, MCs not only facilitate interaction and migration of immune cells, but also influence lymphatic permeability, contractility, and vascular remodeling as well as immune cell trafficking through the lymphatic vessels. In summary, the consequences of these events directly affect the lymphatic niche, influencing inflammation at multiple levels. In this review, we have summarized the recent advancements in our understanding of the MC biology in the context of the lymphatic vascular system. We have further highlighted the MC-lymphatic interaction axis from the standpoint of the tumor microenvironment.


Assuntos
Imunomodulação , Sistema Linfático/fisiologia , Mastócitos/imunologia , Mastócitos/metabolismo , Plasticidade Celular/imunologia , Suscetibilidade a Doenças , Homeostase , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Vasos Linfáticos/fisiologia , Neoplasias/etiologia , Neoplasias/metabolismo , Especificidade de Órgãos/imunologia
20.
J Vis Exp ; (159)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32510513

RESUMO

The lymphatic system associated with the central nervous system (CNS) includes the lymphatic vasculature that spins around the brain, the spinal cord, and its associated LNs. The CNS-associated lymphatic system is involved in the drainage of CSF macromolecules and meningeal immune cells toward CNS-draining LNs, thereby regulating waste clearance and immune surveillance within CNS tissues. Presented is a novel approach to obtain three-dimensional (3D) and cellular resolution images of CNS-associated lymphatics while preserving the integrity of their circuits within surrounding tissues. The iDISCO+ protocol is used to immunolabel lymphatic vessels in decalcified and cleared whole mount preparations of the vertebral column that are subsequently imaged with light sheet fluorescence microscopy (LSFM). The technique reveals the 3D structure of the lymphatic network connecting the meningeal and epidural spaces around the spinal cord to extravertebral lymphatic vessels. Provided are 3D images of the drainage circuits of molecular tracers previously injected into either the CSF via the cisterna magna or the thoracolumbar spinal parenchyma. The iDISCO+/LSFM approach brings unprecedented opportunities to explore the structure and function of the CNS-associated lymphatic system in neurovascular biology, neuroimmunology, brain and vertebral cancer, or vertebral bone and joint biology.


Assuntos
Imageamento Tridimensional , Luz , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/fisiologia , Microscopia de Fluorescência , Neovascularização Fisiológica , Coluna Vertebral/irrigação sanguínea , Sistema Nervoso Central/irrigação sanguínea , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA