Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Toxicon ; 243: 107719, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38631492

RESUMO

African spitting cobra, Naja nigricincta nigricincta (Zebra snake), envenomation is an important cause of snakebite morbidity and mortality in Namibia. The snake is endemic to central and northern Namibia as well as southern Angola. The venom is mainly cytotoxic, resulting in aggressive dermo-necrosis and often accompanied by severe systemic complications. No specific antivenom exists. Rhabdomyolysis, systemic inflammatory response, haemostatic abnormalities, infective necrotising fasciitis as well as acute kidney failure have been documented. Based on murine models, this study assessed SAVP/SAIMR - and EchiTAb-Plus-ICP polyvalent antivenom neutralisation as well as subdermal necrosis. Additional muscle, cardiac, kidney and lung histology, creatine kinase measurements and post-mortems were performed. An intravenous median lethal dose (LD50) of Naja nigricincta nigricincta venom was determined at 18.4 (CI: 16.3; 20.52) µg and a subdermal lethal dose at 15.3(CI: 12.96; 17.74)µg. The SAIMR/SAVP polyvalent antivenom median effective dose (ED50) was 1.2 ml antivenom/1 mg venom equating to a potency (WHO) of 1 ml antivenom neutralising 0.63 mg venom and approximately 240 ml (24 vials) needed for initial treatment. The ED50 of the EchiTAb-Plus-ICP was 1 ml antivenom/1 mg venom and a potency of 65 mg venom/ml antivenom (3.3 x LD50), estimating 230 ml (23 vials) for treatment. Histology and serology (creatine kinase) evidenced venom induced skeletal myotoxicity, which was not prevented by the antivenoms tested. Cardiac myonecrosis, an inflammatory response, direct venom kidney tubular necrosis and cardio-pulmonary failure were documented.


Assuntos
Antivenenos , Venenos Elapídicos , Necrose , Mordeduras de Serpentes , Animais , Antivenenos/uso terapêutico , Antivenenos/farmacologia , Camundongos , Venenos Elapídicos/toxicidade , Mordeduras de Serpentes/tratamento farmacológico , Modelos Animais de Doenças , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Inflamação/tratamento farmacológico , Dose Letal Mediana , Naja , Masculino , Creatina Quinase/sangue , Rim/efeitos dos fármacos , Rim/patologia
2.
Toxins (Basel) ; 16(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668589

RESUMO

Coralsnakes (Micrurus spp.) are the only elapids found throughout the Americas. They are recognized for their highly neurotoxic venom, which is comprised of a wide variety of toxins, including the stable, low-mass toxins known as three-finger toxins (3FTx). Due to difficulties in venom extraction and availability, research on coralsnake venoms is still very limited when compared to that of other Elapidae snakes like cobras, kraits, and mambas. In this study, two previously described 3FTx from the venom of M. corallinus, NXH1 (3SOC1_MICCO), and NXH8 (3NO48_MICCO) were characterized. Using in silico, in vitro, and ex vivo experiments, the biological activities of these toxins were predicted and evaluated. The results showed that only NXH8 was capable of binding to skeletal muscle cells and modulating the activity of nAChRs in nerve-diaphragm preparations. These effects were antagonized by anti-rNXH8 or antielapidic sera. Sequence analysis revealed that the NXH1 toxin possesses eight cysteine residues and four disulfide bonds, while the NXH8 toxin has a primary structure similar to that of non-conventional 3FTx, with an additional disulfide bond on the first loop. These findings add more information related to the structural diversity present within the 3FTx class, while expanding our understanding of the mechanisms of the toxicity of this coralsnake venom and opening new perspectives for developing more effective therapeutic interventions.


Assuntos
Clonagem Molecular , Cobras Corais , Venenos Elapídicos , Músculo Esquelético , Receptores Nicotínicos , Animais , Venenos Elapídicos/química , Venenos Elapídicos/toxicidade , Venenos Elapídicos/genética , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Sequência de Aminoácidos , Masculino
3.
Appl Biochem Biotechnol ; 196(1): 160-181, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37103736

RESUMO

Snake venoms are a potential source of bioactive peptides, which have multiple therapeutic properties in treating diseases such as diabetes, cancer, and neurological disorders. Among bioactive peptides, cytotoxins (CTXs) and neurotoxins are low molecular weight proteins belonging to the three-finger-fold toxins (3FTxs) family composed of two ß sheets that are stabilized by four to five conserved disulfide bonds containing 58-72 amino acid residues. These are highly abundant in snake venom and are predicted to have insulinotropic activities. In this study, the CTXs were purified from Indian cobra snake venom using preparative HPLC and characterized using high-resolution mass spectrometry (HRMS) TOF-MS/MS. Further SDS-PAGE analysis confirmed the presence of low molecular weight cytotoxic proteins. The CTXs in fractions A and B exhibited dose-dependent insulinotropic activity from 0.001 to 10 µM using rat pancreatic beta-cell lines (RIN-5F) in the ELISA. Nateglinide and repaglinide are synthetic small-molecule drugs that control sugar levels in the blood in type 2 diabetes, which were used as a positive control in ELISA. Concluded that purified CTXs have insulinotropic activity, and there is a scope to use these proteins as small molecules to stimulate insulinotropic activities. At this stage, the focus is on the efficiency of the cytotoxins to induce insulin. Additional work is ongoing on animal models to see the extent of the beneficial effects and efficiency to cure diabetes using streptozotocin-induced models.


Assuntos
Diabetes Mellitus Tipo 2 , Venenos Elapídicos , Ratos , Animais , Venenos Elapídicos/química , Venenos Elapídicos/toxicidade , Naja naja , Citotoxinas/farmacologia , Espectrometria de Massas em Tandem , Peptídeos
4.
Toxins (Basel) ; 15(11)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37999521

RESUMO

Colombia encompasses three mountain ranges that divide the country into five natural regions: Andes, Pacific, Caribbean, Amazon, and Orinoquia. These regions offer an impressive range of climates, altitudes, and landscapes, which lead to a high snake biodiversity. Of the almost 300 snake species reported in Colombia, nearly 50 are categorized as venomous. This high diversity of species contrasts with the small number of studies to characterize their venom compositions and natural history in the different ecoregions. This work reviews the available information about the venom composition, isolated toxins, and potential applications of snake species found in Colombia. Data compilation was conducted according to the PRISMA guidelines, and the systematic literature search was carried out in Pubmed/MEDLINE. Venom proteomes from nine Viperidae and three Elapidae species have been described using quantitative analytical strategies. In addition, venoms of three Colubridae species have been studied. Bioactivities reported for some of the venoms or isolated components-such as antibacterial, cytotoxicity on tumoral cell lines, and antiplasmodial properties-may be of interest to develop potential applications. Overall, this review indicates that, despite recent progress in the characterization of venoms from several Colombian snakes, it is necessary to perform further studies on the many species whose venoms remain essentially unexplored, especially those of the poorly known genus Micrurus.


Assuntos
Cobras Corais , Toxinas Biológicas , Animais , Colômbia , Venenos de Serpentes/toxicidade , Venenos de Serpentes/metabolismo , Elapidae/metabolismo , Toxinas Biológicas/metabolismo , Cobras Corais/metabolismo , Venenos Elapídicos/toxicidade , Venenos Elapídicos/metabolismo
5.
PLoS Negl Trop Dis ; 16(12): e0010997, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36525460

RESUMO

OBJECTIVE: This study aimed to evaluate the clinical therapeutic efficacy of anti-snake venom serum blockade in treating local tissue necrosis caused by Chinese cobra (Naja atra) bites. METHODS: Patients bitten by a Chinese cobra (Naja atra) (n = 50) that met the inclusion criteria were randomly divided into two groups: the experimental group (n = 25) and the control group (n = 25). The experimental group received regular as well as anti-snake venom serum blocking treatment, whereas regular treatment plus chymotrypsin blocking therapy was given to the control group. The necrotic volumes around snake wounds in these groups were detected on the first, third and seventh days. On the third day of treatment, some local tissues in the wounds were randomly selected for pathological biopsy, and the necrosis volume of the local tissue was observed. Furthermore, the amount of time required for wound healing was recorded. RESULTS: On the third and seventh days post-treatment, the necrotic volume of the wound of the experimental group was much smaller than that of the control group, and the experimental group's wound healing time was shorter than that of the control group (all p < 0.05). Moreover, the pathological biopsies taken from the control group showed nuclear pyknosis, fragmentation, sparse nuclear density, and blurred edges, and the degree of necrosis was much higher than that of the experimental group. CONCLUSIONS: Anti-snake venom blocking therapy is a new and improved therapy with good clinical effect on local tissue necrosis caused by Chinese cobra bites; moreover, it is superior to conventional chymotrypsin blocking therapy in the treatment of cobra bites. It can better neutralize and prevent the spread of the toxin, reduce tissue necrosis, and shorten the course of the disease by promoting healing of the wound. Furthermore, this treatment plan is also applicable to wound necrosis caused by other snake toxins, such as tissue necrosis caused by elapidae and viper families. CLINICAL TRIAL REGISTRATION: This trial is registered in the Chinese Clinical Trial Registry, a primary registry of International Clinical Trial Registry Platform, World Health Organization (Registration No. ChiCTR2200059070; trial URL:http://www.chictr.org.cn/edit.aspx?pid=134353&htm=4).


Assuntos
Antivenenos , Necrose , Mordeduras de Serpentes , Animais , Humanos , Antivenenos/uso terapêutico , Quimotripsina/antagonistas & inibidores , Venenos Elapídicos/toxicidade , Elapidae , Naja naja , Necrose/tratamento farmacológico , Mordeduras de Serpentes/tratamento farmacológico
6.
Toxicol Lett ; 369: 12-21, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35970279

RESUMO

Coral snakes mainly cause neurotoxic symptoms in human envenomation, but experimental studies have already demonstrated several pharmacological activities in addition to these effects. This investigation was carried out with the aim of evaluating (1) non-neurogenic mechanisms involved in the inflammatory response induced by Micrurus lemniscatus venom (MLV) in rat hind paws, (2) participation of PLA2 in this response, and (3) neutralizing efficiency of commercial anti-elapid antivenom on edema. MLV promoted a rapid, significant increase in vascular permeability, influx of leukocytes, and disorganization of collagen bundles, as demonstrated by histological analysis. Several pretreatments were applied to establish the involvement of inflammatory mediators in MLV-induced edema (5 µg/paw). Treatment of animals with chlorpromazine reduced MLV-induced edema, indicating participation of TNF-α. However, the inefficiency of other pharmacological treatments suggests that eicosanoids, leukotrienes, and nitric oxide have no role in this type of edema formation. In contrast, PAF negatively modulates this venom-induced effect. MLV was recognized by anti-elapid serum, but this antivenom did not neutralize edema formation. Chemical modification of MLV with p-bromophenacyl bromide abrogated the phospholipase activity and markedly reduced edema, demonstrating PLA2 participation in MLV-induced edema. In conclusion, the non-neurogenic inflammatory profile of MLV is characterized by TNF-α-mediated edema, participation of PLA2 activity, and down-regulation by PAF. MLV induces an influx of leukocytes and destruction of collagen fibers at the site of its injection.


Assuntos
Cobras Corais , Animais , Antivenenos , Clorpromazina/toxicidade , Edema/induzido quimicamente , Venenos Elapídicos/toxicidade , Elapidae , Humanos , Mediadores da Inflamação/toxicidade , Óxido Nítrico , Fosfolipases A2/toxicidade , Ratos , Fator de Necrose Tumoral alfa/toxicidade
7.
Int. j. morphol ; 40(1): 251-260, feb. 2022. ilus
Artigo em Inglês | LILACS | ID: biblio-1385582

RESUMO

SUMMARY: Skeletal muscle injury is an acute inflammatory condition caused by an inflammatory response. To reduce inflammatory cell infiltration and relieve skeletal muscle injury, efficient treatment is urgently needed. Nitric oxide is a free radical molecule reported to have anti-inflammatory effects. In this study, we showed that NO could inhibit the inflammatory response of C2C12 cells in vitro and protect rat skeletal muscle injury from notexin in vivo. NO synthase inhibitor (L-NG-Nitroarginine Methyl Este?L-NAME) and NO donor (sodium nitroprusside dehydrate ?SNP) were used to explore the vital role of lipopolysaccharides (LPSs) in LPS-stimulated C2C12 myoblasts.The expression of IL-18 and IL-1b was upregulated by L-NAME and downregulated by SNP, as indicated by the ELISA results. NO can reduce ASC, Caspase-1, and NLRP3 mRNA and protein levels. Furthermore, NO was detected in the rat model. The results of immunohistochemical staining showed that the production of DMD decreased. We conducted qRT-PCR and western blotting to detect the expression of Jo-1, Mi-2, TLR2, and TLR4 on day 6 post injury following treatment with L-NAME and SNP. The expression of Jo-1, Mi-2, TLR2, and TLR4 was upregulated by L-NAME and significantly reversed by SNP. NO can alleviate C2C12 cell inflammatory responses and protect rat skeletal muscle injury from notexin.


RESUMEN: La lesión del músculo esquelético es una afección inflamatoria aguda causada por una respuesta inflamatoria. Para reducir la infiltración de células inflamatorias y aliviar la lesión del músculo esquelético es necesario un tratamiento eficaz. El óxido nítrico es una molécula de radicales libres que tiene efectos antiinflamatorios. En este estudio, demostramos que el ON podría inhibir la respuesta inflamatoria de las células C2C12 in vitro y proteger la lesión del músculo esquelético de rata de la notexina in vivo. El inhibidor de ON sintasa (L-NG-nitroarginina metil este, L-NAME) y el donante de ON (nitroprusiato de sodio deshidratado, SNP) se utilizaron para explorar el papel vital de los lipopolisacáridos (LPS) en los mioblastos C2C12 estimulados por LPS. La expresión de IL- 18 e IL-1b fue regulada positivamente por L-NAME y regulada negativamente por SNP, como indican los resultados de ELISA. El ON puede reducir los niveles de proteína y ARNm de ASC, Caspasa-1 y NLRP3. Además, se detectó ON en el modelo de rata. Los resultados de la tinción inmunohistoquímica mostraron que disminuyó la producción de DMD. Realizamos qRT-PCR y transferencia Western para detectar la expresión de Jo-1, Mi-2, TLR2 y TLR4 el día 6 después de la lesión después del tratamiento con L-NAME y SNP. La expresión de Jo-1, Mi-2, TLR2 y TLR4 fue regulada positivamente por L- NAME y significativamente revertida por SNP. El ON puede aliviar las respuestas inflamatorias de las células C2C12 en ratas, y proteger la lesión del músculo esquelético de la notexina.


Assuntos
Animais , Masculino , Ratos , Mioblastos/efeitos dos fármacos , Venenos Elapídicos/toxicidade , Anti-Inflamatórios/farmacologia , Doenças Musculares/induzido quimicamente , Óxido Nítrico/farmacologia , Técnicas In Vitro , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Sobrevivência Celular , Ratos Sprague-Dawley , NG-Nitroarginina Metil Éster , Caspases , Modelos Animais de Doenças , Reação em Cadeia da Polimerase em Tempo Real , Inflamação
8.
Cardiovasc Toxicol ; 22(2): 181-190, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35067838

RESUMO

In the present study, we investigated the cardiotoxic potential of Micrurus frontalis venom. Twelve guinea pigs (Cavia porcellus) were distributed in two groups (n = 6), named control and envenomed. Control groups received 0.2 ml of PBS/BSA, while envenomed group received 0.2 ml of the same solution containing 450 µg/kg of M. frontalis venom. Both were intramuscular injections. Electrocardiography, echocardiogram, blood count, and serum biochemistry were performed before and 2 h after inoculation. Necropsy was performed, and histological and ultrastructural analysis of the heart were conducted. First clinical signs were presented as early as 18 min after venom inoculation. All poisoned animals presented flaccid paralysis of both hind and forelimbs, followed by fasciculations and respiratory arrythmia. However, the animals did not die in the first 2 h of poisoning. ECG of the poisoned animals revealed severe ventricular arrythmias, corroborated by reduction of both ejection and shortening fractions, increase in CK, CK-MB, troponin, cardiomyocyte degeneration, fragmentation and mitochondrial damage. M. frontalis venom causes severe heart damage, eliciting both morphological and arrhythmogenic effects after only 2 h of envenomation.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Cardiomiopatias/induzido quimicamente , Venenos Elapídicos/toxicidade , Frequência Cardíaca/efeitos dos fármacos , Miocárdio/patologia , Disfunção Ventricular Esquerda/induzido quimicamente , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Arritmias Cardíacas/sangue , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Biomarcadores/sangue , Cardiomiopatias/sangue , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Cardiotoxicidade , Cobras Corais , Cobaias , Masculino , Miocárdio/metabolismo , Necrose , Fatores de Tempo , Disfunção Ventricular Esquerda/sangue , Disfunção Ventricular Esquerda/patologia
9.
Neurotox Res ; 40(1): 173-178, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34757506

RESUMO

In this work, we investigated the in vitro neurotoxicity of Calliophis intestinalis venom using chick biventer cervicis neuromuscular preparations and electrophysiological analysis of voltage-gated sodium (NaV) channels expressed in HEK293 cells. We found that the indirect twitches of the neuromuscular preparations decreased over time when exposed to venom. However, the responses of these preparations to the agonists acetylcholine, carbachol, and potassium chloride were not changed after incubation with the venom. Our electrophysiological experiments show that C. intestinalis venom acts as a NaV channel antagonist-the first known from a vertebrate venom-by decreasing the peak current of NaV1.4 channels without changing the kinetics of activation or inactivation. Our proteomic results accord with earlier analyses and find that the venom contains three-finger toxins, cysteine-rich secretory proteins, kunitz peptides, phospholipase A2s, snake venom metalloproteases, and vespryns. Some of the three-finger toxins are similar to the δ-elapitoxins from the venom of the closely related Calliophis bivirgatus. However, δ-elapitoxins act as NaV channel agonists in C. bivirgatus whereas C. intestinalis venom contains NaV channel antagonists. The toxins and mechanisms responsible for the neuromuscular symptoms remain unclear as does the identity of the NaV channel antagonists. These aspects of this unusual venom require further study.


Assuntos
Síndromes Neurotóxicas , Proteômica , Acetilcolina , Animais , Galinhas/metabolismo , Venenos Elapídicos/toxicidade , Células HEK293 , Humanos
10.
Toxins (Basel) ; 15(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36668826

RESUMO

In aqueous solutions, cobra cytotoxins (CTX), three-finger folded proteins, exhibit conformational equilibrium between conformers with either cis or trans peptide bonds in the N-terminal loop (loop-I). The equilibrium is shifted to the cis form in toxins with a pair of adjacent Pro residues in this loop. It is known that CTX with a single Pro residue in loop-I and a cis peptide bond do not interact with lipid membranes. Thus, if a cis peptide bond is present in loop-I, as in a Pro-Pro containing CTX, this should weaken its lipid interactions and likely cytotoxic activities. To test this, we have isolated seven CTX from Naja naja and N. haje cobra venoms. Antibacterial and cytotoxic activities of these CTX, as well as their capability to induce calcein leakage from phospholipid liposomes, were evaluated. We have found that CTX with a Pro-Pro peptide bond indeed exhibit attenuated membrane-perturbing activity in model membranes and lower cytotoxic/antibacterial activity compared to their counterparts with a single Pro residue in loop-I.


Assuntos
Proteínas Cardiotóxicas de Elapídeos , Elapidae , Animais , Elapidae/metabolismo , Proteínas Cardiotóxicas de Elapídeos/toxicidade , Proteínas Cardiotóxicas de Elapídeos/química , Citotoxinas/toxicidade , Citotoxinas/química , Conformação Proteica , Venenos Elapídicos/toxicidade , Venenos Elapídicos/química , Fosfolipídeos/metabolismo , Peptídeos/toxicidade
11.
Toxins (Basel) ; 13(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34941697

RESUMO

Phospholipase A2 (PLA2) toxins are one of the main toxin families found in snake venom. PLA2 toxins are associated with various detrimental effects, including neurotoxicity, myotoxicity, hemostatic disturbances, nephrotoxicity, edema, and inflammation. Although Naja sumatrana venom contains substantial quantities of PLA2 components, there is limited information on the function and activities of PLA2 toxins from the venom. In this study, a secretory PLA2 from the venom of Malaysian N. sumatrana, subsequently named A2-EPTX-Nsm1a, was isolated, purified, and characterized. A2-EPTX-Nsm1a was purified using a mass spectrometry-guided approach and multiple chromatography steps. Based on LC-MSMS, A2-EPTX-Nsm1a was found to show high sequence similarity with PLA2 from venoms of other Naja species. The PLA2 activity of A2-EPTX-Nsm1 was inhibited by 4-BPB and EDTA. A2-EPTX-Nsm1a was significantly less cytotoxic in a neuroblastoma cell line (SH-SY5Y) compared to crude venom and did not show a concentration-dependent cytotoxic activity. To our knowledge, this is the first study that characterizes and investigates the cytotoxicity of an Asp49 PLA2 isolated from Malaysian N. sumatrana venom in a human neuroblastoma cell line.


Assuntos
Venenos Elapídicos/enzimologia , Naja , Fosfolipases A2 Secretórias/química , Fosfolipases A2 Secretórias/toxicidade , Animais , Linhagem Celular Tumoral , Venenos Elapídicos/toxicidade , Humanos , Fosfolipases A2 Secretórias/isolamento & purificação
12.
Toxins (Basel) ; 13(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34437419

RESUMO

Given that the venom system in sea snakes has a role in enhancing their secondary adaption to the marine environment, it follows that elucidating the diversity and function of venom toxins will help to understand the adaptive radiation of sea snakes. We performed proteomic and de novo NGS analyses to explore the diversity of venom toxins in the annulated sea snake (Hydrophis cyanocinctus) and estimated the adaptive molecular evolution of the toxin-coding unigenes and the toxicity of the major components. We found three-finger toxins (3-FTxs), phospholipase A2 (PLA2) and cysteine-rich secretory protein (CRISP) in the venom proteome and 59 toxin-coding unigenes belonging to 24 protein families in the venom-gland transcriptome; 3-FTx and PLA2 were the most abundant families. Nearly half of the toxin-coding unigenes had undergone positive selection. The short- (i.p. 0.09 µg/g) and long-chain neurotoxin (i.p. 0.14 µg/g) presented fairly high toxicity, whereas both basic and acidic PLA2s expressed low toxicity. The toxicity of H. cyanocinctus venom was largely determined by the 3-FTxs. Our data show the venom is used by H. cyanocinctus as a biochemically simple but genetically complex weapon and venom evolution in H. cyanocinctus is presumably driven by natural selection to deal with fast-moving prey and enemies in the marine environment.


Assuntos
Venenos Elapídicos , Hydrophiidae , Animais , Venenos Elapídicos/química , Venenos Elapídicos/genética , Venenos Elapídicos/toxicidade , Feminino , Dose Letal Mediana , Masculino , Camundongos Endogâmicos ICR , Neurotoxinas/análise , Neurotoxinas/genética , Neurotoxinas/toxicidade , Fosfolipases A2/análise , Fosfolipases A2/genética , Fosfolipases A2/toxicidade , Proteoma/análise , Proteoma/genética , Proteoma/toxicidade , Proteínas de Répteis/análise , Proteínas de Répteis/genética , Proteínas de Répteis/toxicidade , Transcriptoma
13.
Toxicol Lett ; 350: 225-239, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34343594

RESUMO

Bungarus multicinctus is one of the top ten venomous snakes in China, and its bite causes acute and severe diseases, but its pathophysiology remains poorly elucidated. Thus, an animal model of Bungarus multicinctus bite was established by intramuscular injection of 30µg/kg of Bungarus multicinctus venom, and then the serum metabolites were subsequently screened, identified and validated by ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) methods to explore the potential biomakers and possible metabolic pathways. Untargeted metabolomics analysis showed that 36 and 38 endogenous metabolites levels changed in ESI+ and ESI-, respectively, KEGG pathway analysis showed that 5 metabolic pathways, including mineral absorption, central carbon metabolism in cancer, protein digestion and absorption, aminoacyl-tRNA biosynthesis and ABC transporters might be closely related to Bungarus multicinctus bite. Targeted metabolomics analysis showed that there were significant differences in serum D-proline, L-leucine and L-glutamine after Bungarus multicinctus bite (P < 0.05). In addition, receiver operating characteristic (ROC) analysis showed that the diagnostic efficiency of L-Glutamine was superior to other potential biomarkers and the AUC value was 0.944. Moreover, we found evidence for differences in the pathophysiology of glutamine between Bungarus multicinctus bite group and normal group, specifically with the content of glutamine synthetase (GS) and glutaminase (GLS). Taken together, the current study has successfully established an animal model of Bungarus multicinctus bite, and further identified the links between the metabolic perturbations and the pathophysiology and the potential diagnostic biomakers of Bungarus multicinctus bite, which provided valuable insights for studying the mechanism of Bungarus multicinctus bite.


Assuntos
Bungarus , Venenos Elapídicos/sangue , Venenos Elapídicos/metabolismo , Venenos Elapídicos/toxicidade , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica , Porco Miniatura/sangue , Animais , China , Feminino , Masculino , Camundongos , Modelos Animais , Suínos
14.
Toxicon ; 197: 24-32, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33775665

RESUMO

Proteomics technologies enable a comprehensive study of complex proteins and their functions. The venom proteomes of three medically important Nigerian Elapidae snakes Naja haje, Naja katiensis and Naja nigricollis was studied using HILIC coupled with LC-MS/MS analysis. Results revealed a total of 57, 55, and 46 proteins in the venoms of N. haje, N. katiensis, and N. nigricollis, respectively, with molecular mass ranging between 5 and 185  kDa. These snakes have 38 common proteins in addition to 3 uncommon proteins: actiflagelin, cathelicidin, and cystatin identified in their venoms. The identified proteins belonged to 14 protein families in N. haje and N. katiensis, and 12 protein families in N. nigricollis. Of the total venom proteins, 3FTx was the most abundant protein family, constituting 52% in N. haje and N. katiensis, and 41% in N. nigricollis, followed by PLA2, constituting 37% in N. nigricollis, 26% in N. haje, and 24% in N. katiensis. Other protein families, including LAAO, CRISPs, VEGF, PLB, CVF, SVMP, SVH, AMP, PI, Globin, Actin, and C-type lectins, were also detected, although, at very low abundances. Quantification of the relative abundance of each protein revealed that alpha and beta fibrinogenase and PLA2, which constituted 18-26% of the total proteome, were the most abundant. The 3 uncommon proteins have no known function in snake venom. However, actiflagelin activates sperm motility; cystatin inhibits angiogenesis, while cathelicidin exerts antimicrobial effects. The three Nigerian Naja genus proteomes displayed 70% similarity in composition, which suggests the possibility of formulating antivenom that may cross-neutralise the venoms of cobra species found in Nigeria. These data provide insights into clinically relevant peptides/proteins present in the venoms of these snakes. Data are available via ProteomeXchange with identifier PXD024627.


Assuntos
Naja , Proteômica , Animais , Cromatografia Líquida , Venenos Elapídicos/toxicidade , Elapidae , Humanos , Masculino , Naja haje , Nigéria , Venenos de Serpentes , Motilidade dos Espermatozoides , Espectrometria de Massas em Tandem
15.
J Proteomics ; 240: 104196, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33775842

RESUMO

Cobras are the most medically important elapid snakes in Africa. The African genera Naja and Hemachatus include snakes with neurotoxic and cytotoxic venoms, with shared biochemical, toxinological and antigenic characteristics. We have studied the antigenic cross-reactivity of four sub-Saharan Africa cobra venoms against an experimental monospecific Hemachatus haemachatus antivenom through comparative proteomics, preclinical assessment of neutralization, and third generation antivenomics. The venoms of H. haemachatus, N. annulifera, N. mossambica and N. nigricollis share an overall qualitative family toxin composition but depart in their proportions of three-finger toxin (3FTxs) classes, phospholipases A2 (PLA2s), snake venom metalloproteinases (SVMPs), and cysteine-rich secretory proteins (CRISPs). A monospecific anti-Hemachatus antivenom produced by Costa Rican Instituto Clodomiro Picado neutralized the lethal activity of the homologous and heterologous neuro/cytotoxic (H. haemachatus) and cyto/cardiotoxic (N. mossambica and N. nigricollis) venoms of the three spitting cobras sampled, while it was ineffective against the lethal and toxic activities of the neurotoxic venom of the non-spitting snouted cobra N. annulifera. The ability of the anti-Hemachatus-ICP antivenom to neutralize toxic (dermonecrotic and anticoagulant) and enzymatic (PLA2) activities of spitting cobra venoms suggested a closer kinship of H. haemachatus and Naja subgenus Afrocobra spitting cobras than to Naja subgenus Uraeus neurotoxic taxa. These results were confirmed by third generation antivenomics. BIOLOGICAL SIGNIFICANCE: African Naja species represent the most widespread medically important elapid snakes across Africa. To gain deeper insight into the spectrum of medically relevant toxins, we compared the proteome of three spitting cobras (Hemachatus haemachatus, Naja mossambica and N. nigricollis) and one non-spitting cobra (N. annulifera). Three finger toxins and phospholipases A2 are the two major protein families among the venoms analyzed. The development of antivenoms of broad species coverage is an urgent need in sub-Saharan Africa. An equine antivenom raised against H. haemachatus venom showed cross-reactivity with the venoms of H. haemachatus, N. mossambica and N. nigricollis, while having poor recognition of the venom of N. annulifera. This immunological information provides clues for the design of optimum venom mixtures for the preparation of broad spectrum antivenoms.


Assuntos
Antivenenos , Hemachatus , África Subsaariana , Animais , Venenos Elapídicos/toxicidade , Elapidae , Cavalos
16.
Cardiovasc Toxicol ; 21(6): 462-471, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33559838

RESUMO

Micrurus surinamensis is a coral snake from the Elapidae family of wide distribution in Amazonia Forest. Its venom contains neurotoxins that induce muscular and respiratory paralysis; however, its cardiovascular action is not yet characterized. The aim of this study was to investigate the cardiotoxic effects caused by M. surinamensis poisoning in rodents. Twelve guinea pigs (Cavia porcellus) were distributed in two groups (n = 6) named as control and envenomed. The control group received 0.2 ml of PBS/BSA via intramuscular injection (IM), while envenomed animals received 0.75 µg of venom per g of body weight, also via IM. Electrocardiographic examination (ECG) and biochemical serum tests were conducted before and 2 h after inoculation. ECG of the envenomed animals revealed severe progressive arrhythmias including atrioventricular block, supraventricular, and ventricular extrasystoles. Serum biochemistry showed significant increase in CK, CK-MB, and LDH enzymes corroborating the skeletal and cardiac muscle damage. Myonecrosis and degeneration were observed in both skeletal and heart muscle; nevertheless, transmission electron microscopy revealed cardiac muscle fibers fragmentation. In conclusion, M. surinamensis venom has a potent cardiotoxic activity eliciting arrhythmogenic effects and heart damage after only 2 h of envenomation.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Cobras Corais , Venenos Elapídicos/toxicidade , Animais , Arritmias Cardíacas/fisiopatologia , Complexos Atriais Prematuros/induzido quimicamente , Complexos Atriais Prematuros/fisiopatologia , Bloqueio Atrioventricular/induzido quimicamente , Bloqueio Atrioventricular/fisiopatologia , Cardiotoxicidade , Cobaias , Frequência Cardíaca/efeitos dos fármacos , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Necrose , Fatores de Tempo , Complexos Ventriculares Prematuros/induzido quimicamente , Complexos Ventriculares Prematuros/fisiopatologia
17.
J. venom. anim. toxins incl. trop. dis ; 27: e20200047, 2021. tab, graf
Artigo em Inglês | VETINDEX, LILACS | ID: biblio-1287090

RESUMO

The venom of the krait (Bungarus sindanus), an Elapidae snake, is highly toxic to humans and contains a great amount of acetylcholinesterase (AChE). The enzyme AChE provokes the hydrolysis of substrate acetylcholine (ACh) in the nervous system and terminates nerve impulse. Different inhibitors inactivate AChE and lead to ACh accumulation and disrupted neurotransmission. Methods: The present study was designed to evaluate the effect of palladium(II) complex as antivenom against krait venom AChE using kinetics methods. Results: Statistical analysis showed that krait venom AChE inhibition decreases with the increase of Pd(II) complex (0.025-0.05 µM) and exerted 61% inhibition against the AChE at a fixed concentration (0.5 mM) of ACh. Kinetic analysis using the Lineweaver Burk plot showed that Pd(II) caused a competitive inhibition. The compound Pd(II) complex binds at the active site of the enzyme. It was observed that K m (Michaelis-Menten constant of AChE-ACh into AChE and product) increased from 0.108 to 0.310 mM (45.74 to 318.35%) and V max remained constant with an increase of Pd(II) complex concentrations. In AChE K Iapp was found to increase from 0.0912 to 0.025 µM (29.82-72.58%) and did not affect the V maxapp with an increase of ACh from (0.05-1 mM). K i (inhibitory constant) was estimated to be 0.029µM for snake venom; while the K m was estimated to be 0.4 mM. The calculated IC50 for Pd(II) complex was found to be 0.043 µM at constant ACh concentration (0.5 mM). Conclusions: The results show that the Pd(II) complex can be deliberated as an inhibitor of AChE.(AU)


Assuntos
Animais , Bungarus , Venenos Elapídicos/toxicidade , Biologia Sintética , Paládio , Acetilcolinesterase
18.
Toxins (Basel) ; 12(7)2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605112

RESUMO

Cardiotoxin CTII from Najaoxiana cobra venom translocates to the intermembrane space (IMS) of mitochondria to disrupt the structure and function of the inner mitochondrial membrane. At low concentrations, CTII facilitates ATP-synthase activity, presumably via the formation of non-bilayer, immobilized phospholipids that are critical in modulating ATP-synthase activity. In this study, we investigated the effects of another cardiotoxin CTI from Najaoxiana cobra venom on the structure of mitochondrial membranes and on mitochondrial-derived ATP synthesis. By employing robust biophysical methods including 31P-NMR and 1H-NMR spectroscopy, we analyzed the effects of CTI and CTII on phospholipid packing and dynamics in model phosphatidylcholine (PC) membranes enriched with 2.5 and 5.0 mol% of cardiolipin (CL), a phospholipid composition that mimics that in the outer mitochondrial membrane (OMM). These experiments revealed that CTII converted a higher percentage of bilayer phospholipids to a non-bilayer and immobilized state and both cardiotoxins utilized CL and PC molecules to form non-bilayer structures. Furthermore, in order to gain further understanding on how cardiotoxins bind to mitochondrial membranes, we employed molecular dynamics (MD) and molecular docking simulations to investigate the molecular mechanisms by which CTII and CTI interactively bind with an in silico phospholipid membrane that models the composition similar to the OMM. In brief, MD studies suggest that CTII utilized the N-terminal region to embed the phospholipid bilayer more avidly in a horizontal orientation with respect to the lipid bilayer and thereby penetrate at a faster rate compared with CTI. Molecular dynamics along with the Autodock studies identified critical amino acid residues on the molecular surfaces of CTII and CTI that facilitated the long-range and short-range interactions of cardiotoxins with CL and PC. Based on our compiled data and our published findings, we provide a conceptual model that explains a molecular mechanism by which snake venom cardiotoxins, including CTI and CTII, interact with mitochondrial membranes to alter the mitochondrial membrane structure to either upregulate ATP-synthase activity or disrupt mitochondrial function.


Assuntos
Proteínas Cardiotóxicas de Elapídeos/metabolismo , Venenos Elapídicos/toxicidade , Mitocôndrias Cardíacas/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Naja naja , Fosfolipídeos/metabolismo , Animais , Sítios de Ligação , Bovinos , Proteínas Cardiotóxicas de Elapídeos/toxicidade , Venenos Elapídicos/metabolismo , Membranas Artificiais , Mitocôndrias Cardíacas/enzimologia , Membranas Mitocondriais/enzimologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Fatores de Tempo
19.
PLoS Negl Trop Dis ; 14(2): e0008054, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32032357

RESUMO

Naja atra envenomation is one of the most significant clinical snakebite concerns in Taiwan. Taiwanese freeze-dried neurotoxic antivenom (FNAV) is currently used clinically for the treatment of cobra snakebite, and has been shown to limit the mortality of cobra envenomation to less than 1%. However, more than half of victims (60%) require surgery because of local tissue necrosis, a major problem in patients with cobra envenomation. Although the importance of evaluating the neutralizing effect of FNAV on this pathology is recognized, whether FNAV is able to prevent the local necrosis extension induced by N. atra venom has not been investigated in detail. Cytotoxins (CTXs) are considered as the major components of N. atra venom that cause necrosis. In the current study, we isolated CTXs from whole cobra venom and used both whole venom and purified CTXs to develop animal models for assessing the neutralization potential of FNAV against venom necrotizing activity. Local necrotic lesions were successfully produced in mice using CTXs in place of whole N. atra venom. FNAV was able to rescue mice from a subcutaneously injected lethal dose of cobra venom; however, it was unable to prevent CTX-induced dermo-necrosis. Furthermore, using the minimal necrosis dose (MND) of CTXs and venom proteome data, we found a dose of whole N. atra venom suitable for FNAV and developed a workable protocol for inducing local necrosis in rodent models that successfully imitated the clinical circumstance of cobra envenoming. This information provides a more comprehensive understanding of the pathophysiology of N. atra envenomation, and serves as a guide for improving current antivenom strategies and advancing clinical snakebite management in Taiwan.


Assuntos
Antivenenos/uso terapêutico , Venenos Elapídicos/toxicidade , Naja naja , Necrose/induzido quimicamente , Animais , Citotoxinas/química , Citotoxinas/toxicidade , Venenos Elapídicos/química , Camundongos , Camundongos Endogâmicos ICR , Taiwan
20.
Int J Med Sci ; 17(1): 71-81, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929740

RESUMO

It is known that high-intensity exercise can cause inflammation and damage in muscle tissue, and in recent years, physical therapists and fitness professionals have begun to use foam rolling as a recovery method to improve performance. Despite the lack of basic science studies to support or refute the efficacy of foam rolling, the technique is very widely used in the sports world. In this respect, we investigated whether foam rolling could attenuate muscle damage and inflammation. Female Wistar rats were assigned to control (C), foam rolling (FR), notexin without foam rolling (N) and notexin with foam rolling (NFR) groups. A 4.5 x 2 cm foam roller was used to massage their hind legs (two 60-second repetitions twice a day for 3 days). Motor function tests (Balance Beam Test and Grip strength) were used. We detected an increase in time and foot faults when crossing a beam in the N group compared to C and FR rats. In contrast, a significant decrease was detected in both tests in NFR compared to N rats. Muscle power was measured with a grip strength test and better performance was detected in NFR rats compared to N rats. Furthermore, an increase of pro-inflammatory proteins was noted in the N group, while there was a decrease in the NFR group. On the contrary, an increase in PPAR-γ (anti-inflammatory protein) in the NFR group compared to the N group demonstrates the anti-inflammatory properties of the foam rolling technique. In summary, applying foam rolling after damage has benefits such as an increase in anti-inflammatory proteins and a reduction of pro-inflammatory proteins, resulting in muscle recovery and better performance.


Assuntos
Inflamação/terapia , Força Muscular/fisiologia , Modalidades de Fisioterapia , Esportes/fisiologia , Animais , Modelos Animais de Doenças , Venenos Elapídicos/toxicidade , Humanos , Inflamação/sangue , Inflamação/induzido quimicamente , Inflamação/fisiopatologia , Interleucina-1/sangue , Massagem , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/lesões , Músculo Esquelético/fisiopatologia , Condicionamento Físico Animal/fisiologia , Fisioterapeutas , Amplitude de Movimento Articular/fisiologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA