Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 494
Filtrar
1.
J Vis Exp ; (207)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767363

RESUMO

Human adipose-derived mesenchymal stem cells (ADSCs) can promote the regeneration and reconstruction of various tissues and organs. Recent research suggests that their regenerative function may be attributed to cell-cell contact and cell paracrine effects. The paracrine effect is an important way for cells to interact and transfer information over short distances, in which extracellular vesicles (EVs) play a functional role as carriers. There is significant potential for ADSC EVs in regenerative medicine. Multiple studies have reported on the effectiveness of these methods. Various methods for extracting and isolating EVs are currently described based on principles such as centrifugation, precipitation, molecular size, affinity, and microfluidics. Ultracentrifugation is regarded as the gold standard for isolating EVs. Nevertheless, a meticulous protocol to highlight precautions during ultracentrifugation is still absent. This study presents the methodology and crucial steps involved in ADSC culture, supernatant collection, and EV ultracentrifugation. However, even though ultracentrifugation is cost-effective and requires no further treatment, there are still some inevitable drawbacks, such as a low recovery rate and EV aggregation.


Assuntos
Tecido Adiposo , Vesículas Extracelulares , Células-Tronco Mesenquimais , Ultracentrifugação , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/química , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Ultracentrifugação/métodos , Tecido Adiposo/citologia , Técnicas Citológicas/métodos
2.
Anal Chem ; 96(19): 7651-7660, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690989

RESUMO

Development of molecular diagnostics for lung cancer stratification and monitoring is crucial for the rational planning and timely adjustment of treatments to improve clinical outcomes. In this regard, we propose a nanocavity architecture to sensitively profile the protein signature on small extracellular vesicles (sEVs) to enable accurate, noninvasive staging and treatment monitoring of lung cancer. The nanocavity architecture is formed by molecular recognition through the binding of sEVs with the nanobox-based core-shell surface-enhanced Raman scattering (SERS) barcodes and mirrorlike, asymmetric gold microelectrodes. By imposing an alternating current on the gold microelectrodes, a nanofluidic shear force was stimulated that supported the binding of sEVs and the efficient assembly of the nanoboxes. The binding of sEVs further induced a nanocavity between the nanobox and the gold microelectrode that significantly amplified the electromagnetic field to enable the simultaneous enhancement of Raman signals from four SERS barcodes and generate patient-specific molecular sEV signatures. Importantly, evaluated on a cohort of clinical samples (n = 76) on the nanocavity architecture, the acquired patient-specific sEV molecular signatures achieved accurate identification, stratification, and treatment monitoring of lung cancer patients, highlighting its potential for transition to clinical utility.


Assuntos
Vesículas Extracelulares , Ouro , Neoplasias Pulmonares , Análise Espectral Raman , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo , Humanos , Ouro/química , Microeletrodos
3.
Methods Mol Biol ; 2804: 77-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753141

RESUMO

Extracellular vesicles (EVs) are secreted by cells and found in biological fluids such as blood, with concentration correlated with oncogenic signals, making them attractive biomarkers for liquid biopsy. The current gold-standard method for EVs isolation requires an ultracentrifugation (UC) step among others. The cost and complexity of this technique are forbiddingly high for many researchers, as well as for routine use in biological laboratories and hospitals. This chapter reports on a simple microfluidic method for EVs isolation, based on a microfluidic size sorting technique named Deterministic Lateral Displacement (DLD). With the design of micrometric DLD array, we demonstrated the potential of our DLD devices for the isolation of nano-biological objects such as EVs, with main population size distribution consistent with UC technique.


Assuntos
Vesículas Extracelulares , Dispositivos Lab-On-A-Chip , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Técnicas de Cultura de Células/métodos , Ultracentrifugação/métodos
4.
Nat Commun ; 15(1): 4109, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750038

RESUMO

Label-free detection of multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies. Specifically, this platform fingerprints heterogeneous biological nanoparticle populations via a multiplexed label-free immunoaffinity assay with single particle sensitivity. First, we characterise the robustness and performance of the platform, and then apply it to profile four distinct ovarian cell-derived extracellular vesicle populations over a panel of surface protein biomarkers, thus developing a unique biomarker fingerprint for each cell line. We foresee that our approach will find many applications where routine and multiplexed characterisation of biological nanoparticles are required.


Assuntos
Nanopartículas , Humanos , Nanopartículas/química , Bicamadas Lipídicas/química , Holografia/métodos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Microfluídica/métodos , Microfluídica/instrumentação , Feminino , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Linhagem Celular Tumoral , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Biomarcadores/análise
5.
ACS Nano ; 18(21): 13696-13713, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38751164

RESUMO

The potential of human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (hucMSC-EVs) in wound healing is promising, yet a comprehensive understanding of how fibroblasts and keratinocytes respond to this treatment remains limited. This study utilizes single-cell RNA sequencing (scRNA-seq) to investigate the impact of hucMSC-EVs on the cutaneous wound microenvironment in mice. Through rigorous single-cell analyses, we unveil the emergence of hucMSC-EV-induced hematopoietic fibroblasts and MMP13+ fibroblasts. Notably, MMP13+ fibroblasts exhibit fetal-like expressions of MMP13, MMP9, and HAS1, accompanied by heightened migrasome activity. Activation of MMP13+ fibroblasts is orchestrated by a distinctive PIEZO1-calcium-HIF1α-VEGF-MMP13 pathway, validated through murine models and dermal fibroblast assays. Organotypic culture assays further affirm that these activated fibroblasts induce keratinocyte migration via MMP13-LRP1 interactions. This study significantly contributes to our understanding of fibroblast heterogeneities as well as intercellular interactions in wound healing and identifies hucMSC-EV-induced hematopoietic fibroblasts as potential targets for reprogramming. The therapeutic targets presented by these fibroblasts offer exciting prospects for advancing wound healing strategies.


Assuntos
Vesículas Extracelulares , Fibroblastos , Células-Tronco Mesenquimais , Análise de Célula Única , Cordão Umbilical , Cicatrização , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo , Animais , Camundongos , Fibroblastos/metabolismo , Análise de Sequência de RNA , Células Cultivadas , Movimento Celular , Metaloproteinase 13 da Matriz/metabolismo , Feto
6.
Int J Biol Macromol ; 268(Pt 2): 131874, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692547

RESUMO

Serious orthopedic disorders resulting from myriad diseases and impairments continue to pose a considerable challenge to contemporary clinical care. Owing to its limited regenerative capacity, achieving complete bone tissue regeneration and complete functional restoration has proven challenging with existing treatments. By virtue of cellular regenerative and paracrine pathways, stem cells are extensively utilized in the restoration and regeneration of bone tissue; however, low survival and retention after transplantation severely limit their therapeutic effect. Meanwhile, biomolecule materials provide a delivery platform that improves stem cell survival, increases retention, and enhances therapeutic efficacy. In this review, we present the basic concepts of stem cells and extracellular vesicles from different sources, emphasizing the importance of using appropriate expansion methods and modification strategies. We then review different types of biomolecule materials, focusing on their design strategies. Moreover, we summarize several forms of biomaterial preparation and application strategies as well as current research on biomacromolecule materials loaded with stem cells and extracellular vesicles. Finally, we present the challenges currently impeding their clinical application for the treatment of orthopedic diseases. The article aims to provide researchers with new insights for subsequent investigations.


Assuntos
Vesículas Extracelulares , Células-Tronco , Vesículas Extracelulares/química , Humanos , Células-Tronco/citologia , Animais , Materiais Biocompatíveis/química , Doenças Ósseas/terapia , Regeneração Óssea , Transplante de Células-Tronco/métodos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia
7.
Biosens Bioelectron ; 258: 116381, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744116

RESUMO

Surface proteins on the membrane of nano-sized extracellular vesicles (EVs) not only play crucial roles in cell-to-cell communication, but also are specific binding targets for EV detection, isolation and tracking. The low abundance of protein biomarkers on EV surface, the formation of clusters and the complex EV surface network impose significant challenges to the study of EVs. Employing bulky sized affinity ligands, such as antibodies, in the detection and characterization of these vesicles often result in reduced sensitivity of detection or poor quantification of proteins on the EV surface. By virtue of their small size and high specificity, Affibody molecules emerge as a potential alternative to their monoclonal antibody counterparts as robust affinity ligands in EV research. In this study, we present a theoretical framework on the superiority of anti-HER2 Affibodies over anti-HER2 antibodies in labeling and detecting HER2-positive EVs, followed by the demonstration of the advantages of HER2 Affibodies in accessing EV surface and the detection of EVs through multiple types of approaches including fluorescence intensity, colorimetry, and fluorescence polarization. HER2 Affibodies outperformed by 10-fold over three HER2 antibody clones in accessing HER2-positive EVs derived from different human cancer cell lines. Furthermore, HRP-Affibody molecules could detect EVs from cancer cells spiked into human serum with at least a 2-fold higher sensitivity compared with that of their antibody counterparts. In addition, in fluorescence polarization assays in which no separation of free from bound ligand is required, FITC-labeled HER2 Affibodies could sensitively detect HER2-positive EVs with a clinically relevant limit of detection, whilst HER2 antibodies failed to detect EVs in the same conditions. With the demonstrated superiority in accessing and detecting surface targets over bulky-sized antibodies in EVs, Affibodies may become the next-generation of affinity ligands in the precise characterization and quantification of molecular architecture on the surface of EVs.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Receptor ErbB-2 , Vesículas Extracelulares/química , Humanos , Ligantes , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia
8.
Anal Chim Acta ; 1309: 342699, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772652

RESUMO

Extracellular vesicles (EVs) are cell-released, nucleus-free particles with a double-membrane structure that effectively prevents degradation of internal components by a variety of salivary enzymes. Saliva is an easily accessible biofluid that contains a wealth of valuable information for disease diagnosis and monitoring and especially reflect respiratory and digestive tract diseases. However, the lack of efficient and high-throughput methods for proteomic analysis of salivary biomarkers poses a significant challenge. Herein, we designed a salivary EV amphiphile-dendrimer supramolecular probe (SEASP) array which enables efficient enrichment and in situ detection of EVs protein biomarkers. Detergent Tween-20 washing of SEASP arrays removes high abundance of heteroproteins from saliva well. This array shows good analytical performance in the linear range of 10 µL-150 µL (LOD = 0.4 µg protein, or 10 µL saliva), exhibiting a good recovery (80.0 %). Compared to ultracentrifugation (UC), this procedure provides simple and convenient access to high-purity EVs (1.3 × 109 particles per mg protein) with good physiological status and structure. Coupling with mass spectrometry based proteomic analysis, differentially expressed proteins as selected asthma biomarkers have been screened. Then, we validated the proteomics primary screening results through clinical samples (100 µL each) using the SEASP array. Utilizing the dual antibody fluorescence technology, SEASP enables the simultaneous high-throughput detection of two proteins. Therefore, the EVs marker protein CD81 could be used as an internal standard to normalize the number of EVs, which was stably expressed in EVs. Proteomics and array results suggested that HNRNPU (P = 4.9 * 10-6) and MUC5B (P = 4.7 * 10-11) are promising protein biomarkers for infantile asthma. HNRNPU and MUC5B may be associated with disease onset and subtypes. The SEASP arrays provide a significant advancement in the field of salivary biomarker. The array enables high-throughput in situ protein detection for highly viscous and complex biological samples. It provides a rapid, low-cost, highly specific screening procedure and experimental basis for early disease screening and diagnosis in the field of liquid biopsy.


Assuntos
Vesículas Extracelulares , Proteômica , Saliva , Saliva/química , Humanos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Biomarcadores/análise , Ensaios de Triagem em Larga Escala , Asma/diagnóstico , Asma/metabolismo
9.
J Nanobiotechnology ; 22(1): 274, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773614

RESUMO

Small extracellular vesicle-derived microRNAs (sEV-miRNAs) have emerged as promising noninvasive biomarkers for early cancer diagnosis. Herein, we developed a molecular probe based on three-dimensional (3D) multiarmed DNA tetrahedral jumpers (mDNA-Js)-assisted DNAzyme activated by Na+, combined with a disposable paper-based electrode modified with a Zr-MOF-rGO-Au NP nanocomplex (ZrGA) to fabricate a novel biosensor for sEV-miRNAs Assay. Zr-MOF tightly wrapped by rGO was prepared via a one-step method, and it effectively aids electron transfer and maximizes the effective reaction area. In addition, the mechanically rigid, and nanoscale-addressable mDNA-Js assembled from the bottom up ensure the distance and orientation between fixed biological probes as well as avoid probe entanglement, considerably improving the efficiency of molecular hybridization. The fabricated bioplatform achieved the sensitive detection of sEV-miR-21 with a detection limit of 34.6 aM and a dynamic range from100 aM to 0.2 µM. In clinical blood sample tests, the proposed bioplatform showed results highly consistent with those of qRT-PCRs and the signal increased proportionally with the NSCLC staging. The proposed biosensor with a portable wireless USB-type analyzer is promising for the fast, easy, low-cost, and highly sensitive detection of various nucleic acids and their mutation derivatives, making it ideal for POC biosensing.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Limite de Detecção , Estruturas Metalorgânicas , MicroRNAs , Papel , Estruturas Metalorgânicas/química , Vesículas Extracelulares/química , Humanos , Técnicas Biossensoriais/métodos , DNA Catalítico/química , Grafite/química , Ouro/química , DNA/química , Nanopartículas Metálicas/química , Hibridização de Ácido Nucleico , Técnicas Eletroquímicas/métodos , Eletrodos , Zircônio/química
10.
Cell Biochem Funct ; 42(4): e4035, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715180

RESUMO

Chronic lymphocytic leukemia (CLL) is a chronic lymphoproliferative disorder characterized by monoclonal B cell proliferation. Studies carried out in recent years suggest that extracellular vesicles (EVs) may be a potential biomarker in cancer. Tyro3-Axl-Mertk (TAM) Receptor Tyrosine Kinases (RTKs) and Phosphatidylserine (PS) have crucial roles in macrophage-mediated immune response under normal conditions. In the tumor microenvironment, these molecules contribute to immunosuppressive signals and prevent the formation of local and systemic antitumor immune responses. Based on this, we aimed to evaluate the amount of PS and TAM RTK in plasma and on the surface of EVs in CLL patients and healthy volunteers in this study. In this study, 25 CLL (11 F/14 M) patients in the Rai (O-I) stage, newly diagnosed or followed up without treatment, and 15 healthy volunteers (11 F/4 M) as a control group were included. For all samples, PS and TAM RTK levels were examined first in the plasma and then in the EVs obtained from the plasma. We detected a significant decrease in plasma PS, and TAM RTK levels in CLL patients compared to the control. Besides, we determined a significant increase in TAM RTK levels on the EV surface in CLL, except for PS. In conclusion, these receptor levels measured by ELISA in plasma may not be effective for the preliminary detection of CLL. However, especially TAM RTKs on the surface of EVs may be good biomarkers and potential targets for CLL therapies.


Assuntos
Vesículas Extracelulares , Leucemia Linfocítica Crônica de Células B , Fosfatidilserinas , Receptores Proteína Tirosina Quinases , Humanos , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Feminino , Fosfatidilserinas/metabolismo , Fosfatidilserinas/sangue , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/sangue , Masculino , Pessoa de Meia-Idade , Idoso , Receptor Tirosina Quinase Axl , Proteínas Proto-Oncogênicas/sangue , Proteínas Proto-Oncogênicas/metabolismo , Adulto , c-Mer Tirosina Quinase/metabolismo , Idoso de 80 Anos ou mais
11.
Exp Parasitol ; 261: 108765, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679126

RESUMO

Toxocara is a genus of nematodes, which infects a variety of hosts, principally dogs and cats, with potential zoonotic risks to humans. Toxocara spp. larvae are capable of migrating throughout the host tissues, eliciting eosinophilic and granulomatous reactions, while surviving for extended periods of time, unchanged, in the host. It is postulated that larvae are capable of altering the host's immune response through the release of excretory-secretory products, containing both proteins and extracellular vesicles (EVs). The study of EVs has increased exponentially in recent years, largely due to their potential use as a diagnostic tool, and in molecular therapy. To this end, there have been multiple isolation methods described for the study of EVs. Here, we use nanoparticle tracking to compare the yield, size distribution, and % labelling of EV samples acquired through various reported methods, from larval cultures of Toxocara canis and T. cati containing Toxocara excretory-secretory products (TES). The methods tested include ultracentrifugation, polymer precipitation, magnetic immunoprecipitation, size exclusion chromatography, and ultrafiltration. Based on these findings, ultrafiltration produces the best results in terms of yield, expected particle size, and % labelling of sample. Transmission electron microscopy confirmed the presence of EVs with characteristic cup-shaped morphology. These findings can serve as a guide for those investigating EVs, particularly those released from multicellular organisms, such as helminths, for which few comparative analyses have been performed.


Assuntos
Cromatografia em Gel , Exossomos , Vesículas Extracelulares , Microscopia Eletrônica de Transmissão , Toxocara canis , Toxocara , Ultracentrifugação , Animais , Toxocara/isolamento & purificação , Toxocara/metabolismo , Toxocara/química , Toxocara canis/química , Exossomos/química , Exossomos/ultraestrutura , Exossomos/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/ultraestrutura , Vesículas Extracelulares/metabolismo , Cães , Larva , Imunoprecipitação , Toxocaríase/parasitologia , Gatos , Nanopartículas/química , Tamanho da Partícula , Proteínas de Helminto/análise , Proteínas de Helminto/metabolismo , Proteínas de Helminto/química , Proteínas de Helminto/isolamento & purificação
12.
Analyst ; 149(11): 3169-3177, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38639189

RESUMO

Small extracellular vesicles (sEVs), a form of extracellular vesicles, are lipid bilayered structures released by all cells. Large-scale studies on sEVs from clinical samples are necessary, but a major obstacle is the lack of rapid, reproducible, efficient, and low-cost methods to enrich sEVs. Acoustic microfluidics have the advantage of being label-free and biocompatible, which have been reported to successfully enrich sEVs. In this paper, we present a highly efficient acoustic microfluidic trap that can offer low and large volume compatible ways of enriching sEVs from biological fluids by flexible structure design. It uses the idea of pre-loading larger seed particles in the acoustic trap to enable sub-micron particle capturing. The microfluidic chip is actuated using a piezoelectric plate transducer attached to a silicon-glass bonding plate with circular cavities. Each cavity works as a resonant unit, excited at the frequency of both the half wave resonance in the main plane and inverted quarter wave resonance in the depth direction, which has the ability to strongly trap seed particles at the center, thereby improving the subsequent nanoparticle capture efficiency. Mean trapping efficiencies of 35.62% and 64.27% were obtained using 60 nm and 100 nm nanobeads, respectively. By the use of this technology, we have successfully enriched sEVs from cell culture conditioned media and blood plasma at a flow rate of 10 µL min-1. The isolated sEV subpopulations are characterized by NTA and TEM, and their protein cargo is determined by WB. This acoustic trapping chip provides a rapid and robust method to enrich sEVs from biofluids with high reproducibility and sufficient quantities. Therefore, it can serve as a new tool for biological and clinical research such as cancer diagnosis and drug delivery.


Assuntos
Acústica , Vesículas Extracelulares , Vesículas Extracelulares/química , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Nanopartículas/química , Dispositivos Lab-On-A-Chip , Meios de Cultivo Condicionados/química
13.
Analyst ; 149(11): 3195-3203, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38651605

RESUMO

Extracellular vesicles (EVs) originating from cancer cells incorporate various critical biomolecules that can aid in early cancer diagnosis. However, the rapid analysis of these micro vesicles remains challenging due to their nano-scale size and overlapping dimensions, hindering sufficient capture in terms of quantity and purity. In this study, an acoustofluidic device was developed to enhance the yield of immune-captured EVs. The channel of the device was modified with degradable gelatin nanoparticles (∼220 nm) to increase the surface roughness, and subsequently treated with CD63 antibodies. The acoustic-induced streaming would prolong the rotation time of the EVs in the targeted continuous flow area, improving their aggregation towards the surrounding pillars and subsequent capture by the specific CD63 antibodies. Consequently, the capture efficiency of the device was improved when the signal was on, as evidenced by enhanced fluorescence intensity in the main channel. It is demonstrated that the acoustofluidic device could enhance the immune capture of EVs through acoustic mixing, showcasing great potential in the rapid and fast detection of EVs in liquid biopsy applications.


Assuntos
Vesículas Extracelulares , Gelatina , Nanopartículas , Tetraspanina 30 , Gelatina/química , Vesículas Extracelulares/química , Vesículas Extracelulares/imunologia , Nanopartículas/química , Humanos , Tetraspanina 30/metabolismo , Acústica , Dispositivos Lab-On-A-Chip
14.
Nanomedicine ; 58: 102748, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663789

RESUMO

Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (AMSC-EVs) have been highlighted as a cell-free therapy due to their regenerative capability to enhance tissue and organ regeneration. Herein, we aimed to examine the mechanism of PF127-hydrogel@AMSC-EVs in promoting tracheal cartilage defect repair. Based on bioinformatics methods, SCNN1B was identified as a key gene for the osteogenic differentiation of AMSCs induced by AMSC-EVs. EVs were isolated from rat AMSCs and then loaded onto thermo-sensitive PF-127 hydrogel to develop PF127-hydrogel@AMSC-EVs. It was established that PF127-hydrogel@AMSC-EVs could effectively deliver SCNN1B into AMSCs, where SCNN1B promoted AMSC osteogenic differentiation. The promotive effect was evidenced by enhanced ALP activity, extracellular matrix mineralization, and expression of s-glycosaminoglycan, RUNX2, OCN, collagen II, PERK, and ATF4. Furthermore, the in vivo experiments revealed that PF127-hydrogel@AMSC-SCNN1B-EVs stimulated tracheal cartilage regeneration in rats through PERK/ATF4 signaling axis activation. Therefore, PF127-hydrogel@AMSC-SCNN1B-EVs may be a novel cell-free biomaterial to facilitate tracheal cartilage regeneration and cartilage injury repair.


Assuntos
Cartilagem , Vesículas Extracelulares , Hidrogéis , Células-Tronco Mesenquimais , Traqueia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Hidrogéis/química , Ratos , Traqueia/metabolismo , Cartilagem/metabolismo , Regeneração , Poloxâmero/química , Poloxâmero/farmacologia , Ratos Sprague-Dawley , Diferenciação Celular/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Osteogênese/efeitos dos fármacos , Masculino
15.
Anal Chim Acta ; 1302: 342473, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580402

RESUMO

In the medical field, extracellular vesicles (EVs) are gaining importance as they act as cells mediators. These are phospholipid bilayer vesicles and contain crucial biochemical information about their mother cells being carrier of different biomolecules such as small molecules, proteins, lipids, and nucleic acids. After release into the extracellular matrix, they enter the systemic circulation and can be found in all human biofluids. Since EVs reflect the state of the cell of origin, there is exponential attention as potential source of new circulating biomarkers for liquid biopsy. The use of EVs in clinical practice faces several challenges that need to be addressed: these include the standardization of lysis protocols, the availability of low-cost reagents and the development of analytical tools capable of detecting biomarkers. The process of lysis is a crucial step that can impact all subsequent analyses, towards the development of novel analytical strategies. To aid researchers to support the evolution of measurement science technology, this tutorial review evaluates and discuss the most commonly protocols used to characterize the contents of EVs, including their advantages and disadvantages in terms of experimental procedures, time and equipment. The purpose of this tutorial review is to offer practical guide to researchers which are intended to develop novel analytical approaches. Some of the most significant applications are considered, highlighting their main characteristics divided per mechanism of action. Finally, comprehensive tables which provide an overview at a glance are provided to readers.


Assuntos
Vesículas Extracelulares , Ácidos Nucleicos , Humanos , Vesículas Extracelulares/química , Biópsia Líquida/métodos , Biomarcadores/análise , Ácidos Nucleicos/análise , Morte Celular
16.
Anal Chem ; 96(16): 6321-6328, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38595097

RESUMO

Small extracellular vesicles (sEVs) are heterogeneous biological nanoparticles (NPs) with wide biomedicine applications. Tracking individual nanoscale sEVs can reveal information that conventional microscopic methods may lack, especially in cellular microenvironments. This usually requires biolabeling to identify single sEVs. Here, we developed a light scattering imaging method based on dark-field technology for label-free nanoparticle diffusion analysis (NDA). Compared with nanoparticle tracking analysis (NTA), our method was shown to determine the diffusion probabilities of a single NP. It was demonstrated that accurate size determination of NPs of 41 and 120 nm in diameter is achieved by purified Brownian motion (pBM), without or within the cell microenvironments. Our pBM method was also shown to obtain a consistent size estimation of the normal and cancerous plasma-derived sEVs without and within cell microenvironments, while cancerous plasma-derived sEVs are statistically smaller than normal ones. Moreover, we showed that the velocity and diffusion coefficient are key parameters for determining the diffusion types of the NPs and sEVs in a cancerous cell microenvironment. Our light scattering-based NDA and pBM methods can be used for size determination of NPs, even in cell microenvironments, and also provide a tool that may be used to analyze sEVs for many biomedical applications.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/química , Humanos , Luz , Nanopartículas/química , Espalhamento de Radiação , Microambiente Celular , Tamanho da Partícula , Difusão , Microambiente Tumoral , Linhagem Celular Tumoral , Movimento (Física)
17.
Anal Chem ; 96(16): 6158-6169, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602477

RESUMO

Raman spectroscopy has been widely used for label-free biomolecular analysis of cells and tissues for pathological diagnosis in vitro and in vivo. AI technology facilitates disease diagnosis based on Raman spectroscopy, including machine learning (PCA and SVM), manifold learning (UMAP), and deep learning (ResNet and AlexNet). However, it is not clear how to optimize the appropriate AI classification model for different types of Raman spectral data. Here, we selected five representative Raman spectral data sets, including endometrial carcinoma, hepatoma extracellular vesicles, bacteria, melanoma cell, diabetic skin, with different characteristics regarding sample size, spectral data size, Raman shift range, tissue sites, Kullback-Leibler (KL) divergence, and significant Raman shifts (i.e., wavenumbers with significant differences between groups), to explore the performance of different AI models (e.g., PCA-SVM, SVM, UMAP-SVM, ResNet or AlexNet). For data set of large spectral data size, Resnet performed better than PCA-SVM and UMAP. By building data characteristic-assisted AI classification model, we optimized the network parameters (e.g., principal components, activation function, and loss function) of AI model based on data size and KL divergence etc. The accuracy improved from 85.1 to 94.6% for endometrial carcinoma grading, from 77.1 to 90.7% for hepatoma extracellular vesicles detection, from 89.3 to 99.7% for melanoma cell detection, from 88.1 to 97.9% for bacterial identification, from 53.7 to 85.5% for diabetic skin screening, and mean time expense of 5 s.


Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos , Humanos , Feminino , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/química , Aprendizado de Máquina , Melanoma/patologia , Melanoma/diagnóstico , Melanoma/classificação , Vesículas Extracelulares/química , Máquina de Vetores de Suporte , Bactérias/classificação , Bactérias/isolamento & purificação , Inteligência Artificial
18.
Sci Rep ; 14(1): 9347, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654096

RESUMO

Breast cancer, a leading cause of female mortality due to delayed detection owing to asymptomatic nature and limited early diagnostic tools, was investigated using a multi-modal approach. Plasma-derived small EVs from breast cancer patients (BrCa, n = 74) and healthy controls (HC, n = 30) were analyzed. Small EVs (n = 104), isolated through chemical precipitation, underwent characterization via transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Validation involved antibody-based tests (TSG101, CD9, CD81, CD63). Infrared spectra of small EVs were obtained, revealing significant differences in lipid acyl chains, particularly in the C-H stretching of CH3. The study focused on the lipid region (3050-2900 cm-1), identifying peaks (3015 cm-1, 2960 cm-1, 2929 cm-1) as distinctive lipid characteristics. Spectroscopic lipid-to-lipid ratios [(I3015/I2929), (I2960/I2929)] emerged as prominent breast cancer markers. Exploration of protein, nucleic acid, and carbohydrate ratios indicated variations in alpha helices, asymmetric C-H stretching vibrations, and C-O stretching at 1033 cm-1. Principal component analysis (PCA) successfully differentiated BrCa and HC small EVs, and heatmap analysis and receiver operating characteristic (ROC) curve evaluations underscored the discriminatory power of lipid ratios. Notably, (I2960/I2929) exhibited 100% sensitivity and specificity, highlighting its potential as a robust BrCa sEV marker for breast cancer detection.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Vesículas Extracelulares , Lipídeos , Espectrofotometria Infravermelho , Humanos , Neoplasias da Mama/diagnóstico , Feminino , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Lipídeos/química , Lipídeos/análise , Espectrofotometria Infravermelho/métodos , Pessoa de Meia-Idade , Adulto , Idoso
19.
ACS Sens ; 9(4): 2194-2202, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38621146

RESUMO

Breast cancer is one of the most diagnosed cancers worldwide. Precise diagnosis and subtyping have important significance for targeted therapy and prognosis prediction of breast cancer. Herein, we design a proximity-guaranteed DNA machine for accurate identification of breast cancer extracellular vesicles (EVs), which is beneficial to explore the subtype features of breast cancer. In our design, two proximity probes are located close on the same EV through specific recognition of coexisting surface biomarkers, thus being ligated with the help of click chemistry. Then, the ligated product initiates the operation of a DNA machine involving catalytic hairpin assembly and clusters of regularly interspaced short palindromic repeats (CRISPR)-Cas12a-mediated trans-cleavage, which finally generates a significant response that enables the identification of EVs expressing both biomarkers. Principle-of-proof studies are performed using EVs derived from the breast cancer cell line BT474 as the models, confirming the high sensitivity and specificity of the DNA machine. When further applied to clinical samples, the DNA machine is shown to be capable of not only distinguishing breast cancer patients with special subtypes but also realizing the tumor staging regarding the disease progression. Therefore, our work may provide new insights into the subtype-based diagnosis of breast cancer as well as identification of more potential therapeutic targets in the future.


Assuntos
Neoplasias da Mama , DNA , Vesículas Extracelulares , Vesículas Extracelulares/química , Humanos , Neoplasias da Mama/genética , Feminino , DNA/química , DNA/genética , Linhagem Celular Tumoral , Biomarcadores Tumorais , Sistemas CRISPR-Cas/genética
20.
ACS Appl Bio Mater ; 7(5): 2741-2751, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38630629

RESUMO

Herb-based extracellular vesicles (EV), inherently replete with bioactive proteins, RNA, lipids, and other medicinal compounds, are noncytotoxic and uniquely capable of cellular delivery to meet the ever-stringent challenges of ongoing clinical applications. EVs are abundant in nature, affordable, and scalable, but they are also incredibly fragile and stuffed with many biomolecules. To address the low drug binding abilities and poor stability of EVs, we demonstrated herb-based EVs (isolated from neem, mint, and curry leaves) conjugated with chitosan (CS) and PEGylated graphene oxide (GP) that led to their transformation into robust and efficient vectors. The designed conjugates successfully delivered estrogen receptor α (ERα1)-targeting siRNA to breast cancer MCF7 cells. Our data revealed that neem-based EV-CS-GP conjugates were most efficient in cellular siRNA delivery, which could be attributed to hyaluronic acid-mediated recognition of neem EVs by MCF7 cells via CD44 receptors. Our approach shows a futuristic direction in designing clinically viable, sustainable, nontoxic EV-based vehicles that can deliver a variety of functional siRNA cargos.


Assuntos
Neoplasias da Mama , Quitosana , Receptor alfa de Estrogênio , Vesículas Extracelulares , Grafite , Polietilenoglicóis , RNA Interferente Pequeno , Humanos , Quitosana/química , Grafite/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Células MCF-7 , Polietilenoglicóis/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Tamanho da Partícula , Feminino , Sobrevivência Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA