Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 857
Filtrar
1.
Sci Total Environ ; 930: 172521, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641095

RESUMO

Agricultural practitioners, researchers and policymakers are increasingly advocating for integrated pest management (IPM) to reduce pesticide use while preserving crop productivity and profitability. Using selective pesticides, putatively designed to act on pests while minimising impacts on off-target organisms, is one such option - yet evidence of whether these chemicals control pests without adversely affecting natural enemies and other beneficial species (henceforth beneficials) remains scarce. At present, the selection of pesticides compatible with IPM often considers a single (or a limited number of) widely distributed beneficial species, without considering undesired effects on co-occurring beneficials. In this study, we conducted standardised laboratory bioassays to assess the acute toxicity effects of 20 chemicals on 15 beneficial species at multiple exposure timepoints, with the specific aims to: (1) identify common and diverging patterns in acute toxicity responses of tested beneficials; (2) determine if the effect of pesticides on beetles, wasps and mites is consistent across species within these groups; and (3) assess the impact of mortality assessment timepoints on International Organisation for Biological Control (IOBC) toxicity classifications. Our work demonstrates that in most cases, chemical toxicities cannot be generalised across a range of beneficial insects and mites providing biological control, a finding that was found even when comparing impacts among closely related species of beetles, wasps and mites. Additionally, we show that toxicity impacts increase with exposure length, pointing to limitations of IOBC protocols. This work challenges the notion that chemical toxicities can be adequately tested on a limited number of 'representative' species; instead, it highlights the need for careful consideration and testing on a range of regionally and seasonally relevant beneficial species.


Assuntos
Agricultura , Praguicidas , Animais , Praguicidas/toxicidade , Agricultura/métodos , Ácaros/efeitos dos fármacos , Testes de Toxicidade Aguda , Vespas/efeitos dos fármacos , Controle de Pragas/métodos , Besouros/efeitos dos fármacos , Controle Biológico de Vetores
2.
Toxins (Basel) ; 16(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38535798

RESUMO

Viruses are one of the leading causes of human disease, and many highly pathogenic viruses still have no specific treatment drugs. Therefore, producing new antiviral drugs is an urgent matter. In our study, we first found that the natural wasp venom peptide Protopolybia-MP III had a significant inhibitory effect on herpes simplex virus type 1 (HSV-1) replication in vitro by using quantitative real-time PCR (qPCR), Western blotting, and plaque-forming assays. Immunofluorescence analysis showed Protopolybia-MP III could enter cells, and it inhibited multiple stages of the HSV-1 life cycle, including the attachment, entry/fusion, and post-entry stages. Furthermore, ultracentrifugation and electron microscopy detected that Protopolybia-MP III significantly suppressed HSV-1 virion infectivity at different temperatures by destroying the integrity of the HSV-1 virion. Finally, by comparing the antiviral activity of Protopolybia-MP III and its mutants, a series of peptides with better anti-HSV-1 activity were identified. Overall, this work found the function and mechanism of the antiviral wasp venom peptide Protopolybia-MP III and its derivatives against HSV-1 and laid the foundation for the research and development of wasp venom-derived antiviral candidate peptide drugs.


Assuntos
Herpesvirus Humano 1 , Vespas , Humanos , Animais , Venenos de Vespas , Bioensaio , Peptídeos , Antivirais
3.
Sci Total Environ ; 923: 171526, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458447

RESUMO

Herbicides have been intensively used for weed control, raising concerns about their potentially adverse effects on non-target organisms. Research on the effects of these common agrochemicals on beneficial insects and the ecosystem services they provide (e.g., predation and pollination) is scarce. Therefore, we tested whether a commercial formulation comprising a mixture of mesotrione and atrazine was detrimental to adult females and larvae of the Neotropical predatory social wasp Polistes satan, which is an effective natural enemy of crop pests. Wasps were individually fed syrups contaminated with different concentrations of the herbicide above and below the maximum label rate (MLR = 12 mL/L). Survival was assessed. The locomotor activity, immune response, and midgut morphology of adults as well as the immune response of the larvae were also studied. Herbicide concentrations far above the MLR (12, 40, and 100 times) caused adult mortality, whereas lower concentrations (0.5, 1, and 6 times) did not. Herbicide exposure at 0.5 to 12 times the MLR increased adult activity. Adult exposure at 0.1 or 0.5 times the MLR did not affect melanotic encapsulation of foreign bodies but led to changes in the morphology of the midgut epithelium and peritrophic matrix. In larvae, the ingestion of herbicide at 0.1 or 0.2 times the MLR (corresponding to 9.6 and 19.2 ng of herbicide per individual) did not cause mortality but decreased their melanization-encapsulation response. Increased locomotor activity in herbicide-exposed adults can affect their foraging activity. The altered midgut morphology of adults coupled with the decreased immune response in larvae caused by herbicide exposure at realistic concentrations can increase the susceptibility of wasps to infections. Therefore, herbicides are toxic to predatory wasps.


Assuntos
Atrazina , Cicloexanonas , Herbicidas , Vespas , Animais , Feminino , Atrazina/toxicidade , Larva , Comportamento Predatório , Ecossistema , Herbicidas/toxicidade
4.
Plant Physiol ; 195(1): 698-712, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38236304

RESUMO

Many insects have evolved the ability to manipulate plant growth to generate extraordinary structures called galls, in which insect larva can develop while being sheltered and feeding on the plant. In particular, cynipid (Hymenoptera: Cynipidae) wasps have evolved to form morphologically complex galls and generate an astonishing array of gall shapes, colors, and sizes. However, the biochemical basis underlying these remarkable cellular and developmental transformations remains poorly understood. A key determinant in plant cellular development is cell wall deposition that dictates the physical form and physiological function of newly developing cells, tissues, and organs. However, it is unclear to what degree cell walls are restructured to initiate and support the formation of new gall tissue. Here, we characterize the molecular alterations underlying gall development using a combination of metabolomic, histological, and biochemical techniques to elucidate how valley oak (Quercus lobata) leaf cells are reprogrammed to form galls. Strikingly, gall development involves an exceptionally coordinated spatial deposition of lignin and xylan to form de novo gall vasculature. Our results highlight how cynipid wasps can radically change the metabolite profile and restructure the cell wall to enable the formation of galls, providing insights into the mechanism of gall induction and the extent to which plants can be entirely reprogrammed to form unique structures and organs.


Assuntos
Parede Celular , Interações Hospedeiro-Parasita , Tumores de Planta , Vespas , Animais , Parede Celular/metabolismo , Vespas/fisiologia , Tumores de Planta/parasitologia , Quercus/metabolismo , Quercus/parasitologia , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Lignina/metabolismo
5.
J Agric Food Chem ; 72(3): 1571-1581, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38206573

RESUMO

Chinese chestnut (Castanea mollissima BL.) is a well-known fruit tree that has been cultivated in East Asia for millennia. Leaves and buds of the plant can become seriously infested by the gall wasp Dryocosmus kuriphilus (GWDK), which results in gall formation and associated significant losses in fruit production. Herbivore-induced terpenes have been reported to play an important role in plant-herbivory interactions, and in this study, we show that upon herbivory by GWDK, four terpene-related compounds were significantly induced, while the concentrations of these four compounds in intact buds were relatively low. Among these compounds, (E)-nerolidol and (E, E)-α-farnesene have frequently been reported to be involved in plant herbivory defenses, which suggests direct and/or indirect functions in chestnut GWDK defenses. Candidate terpene synthase (TPS) genes that may account for (E)-nerolidol and (E, E)-α-farnesene terpene biosynthesis were characterized by transcriptomics and phylogenetic approaches, which revealed altered transcript levels for two TPSs: CmAFS, a TPS-g subfamily member, and CmNES/AFS, a TPS-b clade member. Both genes were dramatically upregulated in gene expression upon GWDK infestation. Furthermore, Agrobacterium tumefaciens-mediated transient overexpression in Nicotiana benthamiana showed that CmAFS catalyzed the formation of (E, E)-α-farnesene, while CmNES/AFS showed dual (E)-nerolidol and (E, E)-α-farnesene synthase activity. Biochemical assays of the recombinant CmAFS and CmNES/AFS proteins confirmed their catalytic activity in vitro, and the enzymatic products were consistent with two of the major volatile compounds released upon GWDK-infested chestnut buds. Subcellular localization demonstrated that CmAFS and CmNES/AFS were both localized in the cytoplasm, the primary compartment for sesquiterpene synthesis. In summary, we show that two novel sesquiterpene synthase genes CmAFS and CmNES/AFS are inducible by herbivory and can account for the elevated accumulation of (E, E)-α-farnesene and (E)-nerolidol upon GWDK infestation and may be implicated in chestnut defense against GWDK herbivores.


Assuntos
Alquil e Aril Transferases , Sesquiterpenos , Vespas , Animais , Filogenia , Sesquiterpenos/metabolismo , Terpenos/química , Óxido Nítrico Sintase , China
7.
Pest Manag Sci ; 80(2): 307-316, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37682693

RESUMO

BACKGROUND: Although most biological control programs use multiple biological agents to manage pest species, to date only a few programs have combined the use of agents from different guilds. Using sweet pepper (Capsicum annuum L.), the entomopathogenic fungus Akanthomyces muscarius ARSEF 5128, the tobacco peach aphid Myzus persicae var. nicotianae and the aphid parasitoid Aphidius ervi as the experimental model, we explored whether root inoculation with an entomopathogenic fungus is compatible with parasitoid wasps for enhanced biocontrol of aphids. RESULTS: In dual-choice behavior experiments, A. ervi was significantly attracted to the odor of M. persicae-infested C. annuum plants that had been inoculated with A. muscarius, compared to noninoculated infested plants. There was no significant difference in attraction to the odor of uninfested plants. Myzus persicae-infested plants inoculated with A. muscarius emitted significantly higher amounts of indole, (E)-nerolidol, (3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene and one unidentified terpene compared to noninoculated infested plants. Coupled gas chromatography-electroantennography, using the antennae of A. ervi, confirmed the physiological activity of these elevated compounds. Inoculation of plants with A. muscarius did not affect parasitism rate nor parasitoid longevity, but significantly increased the speed of mummy formation in parasitized aphids on fungus-inoculated plants. CONCLUSION: Our data suggest that root inoculation of C. annuum with A. muscarius ARSEF 5128 alters the olfactory-mediated behavior of parasitoids, but has little effect on parasitism efficiency or life-history parameters. However, increased attraction of parasitoids towards M. persicae-infested plants when inoculated by entomopathogenic fungi can accelerate host localization and hence improve biocontrol efficacy. © 2023 Society of Chemical Industry.


Assuntos
Afídeos , Capsicum , Parasitos , Vespas , Animais , Controle Biológico de Vetores , Vespas/fisiologia , Plantas , Nicotiana , Afídeos/fisiologia
8.
Cladistics ; 40(1): 34-63, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919831

RESUMO

Chalcidoidea are mostly parasitoid wasps that include as many as 500 000 estimated species. Capturing phylogenetic signal from such a massive radiation can be daunting. Chalcidoidea is an excellent example of a hyperdiverse group that has remained recalcitrant to phylogenetic resolution. We combined 1007 exons obtained with Anchored Hybrid Enrichment with 1048 ultra-conserved elements (UCEs) for 433 taxa including all extant families, >95% of all subfamilies, and 356 genera chosen to represent the vast diversity of the superfamily. Going back and forth between the molecular results and our collective knowledge of morphology and biology, we detected bias in the analyses that was driven by the saturation of nucleotide data. Our final results are based on a concatenated analysis of the least saturated exons and UCE datasets (2054 loci, 284 106 sites). Our analyses support an expected sister relationship with Mymarommatoidea. Seven previously recognized families were not monophyletic, so support for a new classification is discussed. Natural history in some cases would appear to be more informative than morphology, as illustrated by the elucidation of a clade of plant gall associates and a clade of taxa with planidial first-instar larvae. The phylogeny suggests a transition from smaller soft-bodied wasps to larger and more heavily sclerotized wasps, with egg parasitism as potentially ancestral for the entire superfamily. Deep divergences in Chalcidoidea coincide with an increase in insect families in the fossil record, and an early shift to phytophagy corresponds with the beginning of the "Angiosperm Terrestrial Revolution". Our dating analyses suggest a middle Jurassic origin of 174 Ma (167.3-180.5 Ma) and a crown age of 162.2 Ma (153.9-169.8 Ma) for Chalcidoidea. During the Cretaceous, Chalcidoidea may have undergone a rapid radiation in southern Gondwana with subsequent dispersals to the Northern Hemisphere. This scenario is discussed with regard to knowledge about the host taxa of chalcid wasps, their fossil record and Earth's palaeogeographic history.


Assuntos
Parasitos , Vespas , Animais , Vespas/genética , Filogenia , Evolução Biológica
9.
Pest Manag Sci ; 80(3): 1145-1152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37874124

RESUMO

BACKGROUND: Combined use can be an effective measure to improve pest control by viruses and parasitic wasps. However, not all combinations of natural enemies show improved effects. Helicoverpa armigera nucleopolyhedrovirus (HearNPV) and Campoletis chlorideae Uchida are two important natural enemies of Helicoverpa armigera. This study aimed to investigate the combined effects of C. chlorideae and HearNPV against H. armigera larvae and the impact of HearNPV on C. chlorideae. RESULTS: The combination of HearNPV and C. chlorideae exerted increased mortality on H. armigera when C. chlorideae parasitized larvae one day after infection with HearNPV. C. chlorideae could distinguish between HearNPV-infected and noninfected larvae. Besides influencing host selection of C. chlorideae, HearNPV infection had negative effects on the development and reproduction of C. chlorideae. The developmental time of C. chlorideae was significantly prolonged and the percentage of emergence and adult eclosion of C. chlorideae was lower in infected hosts. The adult wasps were also smaller in body size, and female adults had fewer eggs when they developed in virus-infected hosts. CONCLUSIONS: HearNPV combined with C. chlorideae could improve the efficacy of biological control against H. armigera. The results provided valuable information on the importance of timing in the combined use of HearNPV and C. chlorideae for the biological control of H. armigera. © 2023 Society of Chemical Industry.


Assuntos
Mariposas , Nucleopoliedrovírus , Vespas , Animais , Feminino , Mariposas/parasitologia , Helicoverpa armigera , Larva
10.
Braz. j. biol ; 84: e249008, 2024. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355893

RESUMO

Abstract Horismenus camobiensis sp. nov. (Hymenoptera: Eulophidae), is described based on morphological, molecular and ecological data; this new species of chalcid wasp acts as hyperparasitoid of Opsiphanis invirae (Hübner, 1818) (Lepidoptera: Nymphalidae) in its parasitoid Cotesia invirae Salgado-Neto and Whitfield, 2019 (Hymenoptera: Braconidae). Diagnoses with morphological and molecular characters and illustrations are provided.


Resumo Horismenus camobiensis sp. nov. (Hymenoptera: Eulophidae) é descrita com base em dados morfológicos, moleculares e ecológicos; esta nova espécie Chalcididae atua como hiperparasitoide de Opsiphanis invirae (Hübner, 1818) (Lepidoptera: Nymphalidae) em pupas de seu parasitoide Cotesia invirae Salgado-Neto and Whitfield, 2019 (Hymenoptera: Braconidae). Caracteres diagnósticos morfológicos e moleculares e ilustrações de H. camobiensis são fornecidos.


Assuntos
Animais , Vespas , Borboletas , Himenópteros , Pupa
11.
PLoS One ; 18(11): e0288278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37917617

RESUMO

Recurrent polyploidization occurred in the evolutionary history of most Eukaryota. However, how neopolyploid detriment (sterility, gigantism, gene dosage imbalances) has been overcome and even been bridged to evolutionary advantage (gene network diversification, mass radiation, range expansion) is largely unknown, particularly for animals. We used the parasitoid wasp Nasonia vitripennis, a rare insect system with heritable polyploidy, to begin addressing this knowledge gap. In Hymenoptera the sexes have different ploidies (haploid males, diploid females) and neopolyploids (diploid males, triploid females) occur for various species. Although such polyploids are usually sterile, those of N. vitripennis are reproductively capable and can even establish stable polyploid lines. To assess the effects of polyploidization, we compared a long-established polyploid line, the Whiting polyploid line (WPL) and a newly generated transformer knockdown line (tKDL) for fitness traits, absolute gene expression, and cell size and number. WPL polyploids have high male fitness and low female fecundity, while tKDL polyploids have poor male mate competition ability and high fertility. WPL has larger cells and cell number reduction, but the tKDL does not differ in this respect. Expression analyses of two housekeeping genes indicated that gene dosage is linked to sex irrespective of ploidy. Our study suggests that polyploid phenotypic variation may explain why some polyploid lineages thrive and others die out; a commonly proposed but difficult-to-test hypothesis. This documentation of diploid males (tKDL) with impaired competitive mating ability; triploid females with high fitness variation; and hymenopteran sexual dosage compensation (despite the lack of sex chromosomes) all challenges general assumptions on hymenopteran biology. We conclude that polyploidization is dependent on the duplicated genome characteristics and that genomes of different lines are unequally suited to survive diploidization. These results demonstrate the utility of N. vitripennis for delineating mechanisms of animal polyploid evolution, analogous to more advanced polyploid plant models.


Assuntos
Vespas , Feminino , Masculino , Animais , Vespas/genética , Triploidia , Poliploidia , Diploide , Haploidia , Reprodução
12.
Toxins (Basel) ; 15(11)2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37999519

RESUMO

(1) Background: Dipeptidyl Peptidases IV (DPPIVs), present in many organisms, are minor components in the venoms of Hymenoptera, where they have been identified as cross-reactive allergenic molecules. Considering that the structure of homologous DPPIVs is well characterized, we aimed to explain which regions have higher similarity among these proteins and present a comparison among them, including a new Vespa velutina DPPIV sequence. Moreover, two cases of sensitization to DPPIVs in wasp- and honeybee-sensitized patients are presented. (2) Methods: Proteomic analyses have been performed on the venom of the Asian hornet Vespa velutina to demonstrate the sequence of its DPPIV (allergen named Vesp v 3, with sequence accession number P0DRB8, and with the proteomic data available via ProteomeXchange with the identifier PXD046030). A comparison performed through their alignments and analysis of the three-dimensional structure showed a region with higher similarity among Hymenoptera DPPIVs. Additionally, ImmunoCAP™ determinations (including specific inhibition experiments), as well as IgE immunoblotting, are performed to demonstrate the allergenicity of Api m 5 and Ves v 3. (3) Results and Conclusions: The data presented demonstrate that the similarities among Hymenoptera DPPIVs are most likely localized at the C-terminal region of these enzymes. In addition, a higher similarity of the Vespa/Vespula DPPIVs is shown. The clinical cases analyzed demonstrated the allergenicity of Api m 5 and Ves v 3 in the sera of the allergic patients, as well as the presence of this minor component in the preparations used in venom immunotherapy.


Assuntos
Himenópteros , Vespas , Humanos , Abelhas , Animais , Alérgenos/química , Himenópteros/metabolismo , Dipeptidil Peptidase 4 , Proteômica , Venenos de Vespas/química
13.
PLoS One ; 18(10): e0292607, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37816027

RESUMO

Understanding host-parasitoid food webs, as well as the factors affecting species interactions, is important for developing pest management strategies in an agroecosystem. This research aimed to study how the long-term change in oil palm plantations, specifically the tree age, affect the structure of host-parasitoid food webs. The field research was conducted on an oil palm plantation located in Central Kalimantan and Jambi Province, Indonesia. In Central Kalimantan, we conducted observations of lepidopteran larvae and parasitoid wasps at different tree ages, ranging from 3 to 18 years old. For tree ages from 3 to 10 years, observations of host-parasitoid food webs were conducted by collecting the lepidopteran larvae using a hand-collection method in each oil palm tree within a hundred trees and they were later reared in the laboratory for observing the emerging parasitoids. The fogging method was applied for trees aged 12 to 18 years because the tree height was too high, and hand-collection was difficult to perform. To compare host-parasitoid food webs between different regions, we also conducted a hand-collection method in Jambi, but only for trees aged 3 years old. The food-web structure that was analyzed included the species number of lepidopteran larvae and parasitoid wasps, linkage density, and interaction diversity. We found 32 species of lepidopteran pests and 16 species of associated parasitoids in Central Kalimantan and 12 species of lepidopteran pests, and 11 species of parasitoids in Jambi. Based on the GLM analysis, tree age had a negative relationship with the species number of lepidopteran larvae and parasitoids as well as linkage density and interaction diversity. Different geographical regions showed different host-parasitoid food web structures, especially the species number of lepidopteran larvae and interaction diversity, which were higher in Central Kalimantan than in Jambi. However, some parasitoids can be found across different tree ages. For example, Fornicia sp (Hymenoptera: Braconidae) was recorded in all ages of oil palm sampled. Results of the GLM analysis showed that the abundance of Fornicia sp and its host (lepidopteran larvae abundance) were not affected by the tree age of the oil palm. In conclusion, the long-term change in oil palm plantations simplifies the structure of host-parasitoid food webs. This highlights the importance of long-term studies across geographical regions for a better understanding of the consequences that wide monoculture oil palm plantations have on biological control services.


Assuntos
Cadeia Alimentar , Vespas , Animais , Larva , Árvores , Interações Hospedeiro-Parasita
14.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833918

RESUMO

Antimicrobial peptides have gradually attracted interest as promising alternatives to conventional agents to control the worldwide health threats posed by antibiotic resistance and cancer. Crabrolin is a tridecapeptide extracted from the venom of the European hornet (Vespa crabro). Its antibacterial and anticancer potentials have been underrated compared to other peptides discovered from natural resources. Herein, a series of analogs were designed based on the template sequence of crabrolin to study its structure-activity relationship and enhance the drug's potential by changing the number, type, and distribution of charged residues. The cationicity-enhanced derivatives were shown to have improved antibacterial and anticancer activities with a lower toxicity. Notably, the double-arginine-modified product, crabrolin-TR, possessed a potent capacity against Pseudomonas aeruginosa (minimum inhibitory concentration (MIC) = 4 µM), which was around thirty times stronger than the parent peptide (MIC = 128 µM). Furthermore, crabrolin-TR showed an in vivo treatment efficacy in a Klebsiella-pneumoniae-infected waxworm model and was non-toxic under its maximum MBC value (MIC = 8 µM), indicating its therapeutic potency and better selectivity. Overall, we rationally designed functional peptides by progressively increasing the number and distribution of charged residues, demonstrating new insights for developing therapeutic molecules from natural resources with enhanced properties, and proposed crabrolin-TR as an appealing antibacterial and anticancer agent candidate for development.


Assuntos
Peptídeos Antimicrobianos , Vespas , Animais , Peptídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Venenos de Vespas/química , Testes de Sensibilidade Microbiana
15.
Sci Rep ; 13(1): 18149, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903850

RESUMO

Insect galls, which often have complex external and internal structures, are believed to have adaptive significance for the survival of insects inside galls. A unique internal structure was discovered in the gall of a new cynipid species, Belizinella volutum Ide & Koyama, sp. nov., where the larval chamber could roll freely in the internal air space of the gall. Observations of the live galls using micro-computed tomography (micro-CT) revealed its formation process. The larval chamber becomes isolated from the internal parenchyma soon after the gall reaches the maximum diameter and is able to roll as the internal air space is expanding from the surrounding parenchyma to the outer gall wall. The enemy hypothesis could partly explain the adaptive significance of the unique structure of the gall of B. volutum.


Assuntos
Vespas , Animais , Larva , Microtomografia por Raio-X , Tumores de Planta , Insetos
16.
Biomolecules ; 13(10)2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37892230

RESUMO

The larval stages of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae), are parasitized by the endophagous parasitoid wasp, Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae). During the injections of eggs, this parasitoid wasp also injects into the host body the secretion of the venom gland and the calyx fluid, which contains a polydnavirus (T. nigriceps BracoVirus: TnBV) and the Ovarian calyx fluid Proteins (OPs). The effects of the OPs on the host immune system have recently been described. In particular, it has been demonstrated that the OPs cause hemocytes to undergo a number of changes, such as cellular oxidative stress, actin cytoskeleton modifications, vacuolization, and the inhibition of hemocyte encapsulation capacity, which results in both a loss of hemocyte functionality and cell death. In this study, by using a combined transcriptomic and proteomic analysis, the main components of T. nigriceps ovarian calyx fluid proteins were identified and their possible role in the parasitic syndrome was discussed. This study provides useful information to support the analysis of the function of ovarian calyx fluid proteins, to better understand T. nigriceps parasitization success and for a more thorough understanding of the components of ovarian calyx fluid proteins and their potential function in combination with other parasitoid factors.


Assuntos
Mariposas , Poríferos , Vespas , Animais , Transcriptoma , Proteômica , Larva
17.
Toxins (Basel) ; 15(10)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37888622

RESUMO

Biologically active peptides have attracted increasing attention in research on the development of new drugs. Mastoparans, a group of wasp venom linear cationic α-helical peptides, have a variety of biological effects, including mast cell degranulation, activation of protein G, and antimicrobial and anticancer activities. However, the potential hemolytic activity of cationic α-helical peptides greatly limits the clinical applications of mastoparans. Here, we systematically and comprehensively studied the hemolytic activity of mastoparans based on our wasp venom mastoparan family peptide library. The results showed that among 55 mastoparans, 18 had strong hemolytic activity (EC50 ≤ 100 µM), 14 had modest hemolytic activity (100 µM < EC50 ≤ 400 µM) and 23 had little hemolytic activity (EC50 > 400 µM), suggesting functional variation in the molecular diversity of mastoparan family peptides from wasp venom. Based on these data, structure-function relationships were further explored, and, hydrophobicity, but not net charge and amphiphilicity, was found to play a critical role in the hemolytic activity of mastoparans. Combining the reported antimicrobial activity with the present hemolytic activity data, we found that four mastoparan peptides, Parapolybia-MP, Mastoparan-like peptide 12b, Dominulin A and Dominulin B, have promise for applications because of their high antimicrobial activity (MIC ≤ 10 µM) and low hemolytic activity (EC50 ≥ 400 µM). Our research not only identified new leads for the antimicrobial application of mastoparans but also provided a large chemical space to support the molecular design and optimization of mastoparan family peptides with low hemolytic activity regardless of net charge or amphiphilicity.


Assuntos
Anti-Infecciosos , Vespas , Animais , Venenos de Vespas/química , Peptídeos/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Vespas/química , Anti-Infecciosos/farmacologia , Hemólise
18.
J Insect Sci ; 23(5)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721499

RESUMO

The widely distributed, polyphagous fall armyworm, Spodoptera frugiperda (J.E. Smith, 1797), is one of the most important crop pests worldwide. The egg-parasitoid wasp, Telenomus remus Nixon, 1937, is frequently described as a possible control agent for S. frugiperda. We selected an isoline of T. remus and evaluated its parasitism potential (for 24 h) in S. frugiperda eggs, in laboratory conditions, and also its ability to fly at different temperatures and relative humidity levels, aiming to provide basic information about this isoline. The selected isoline maintained good flight capacity without affecting its parasitism efficiency or developing inefficient haplotypes for biological-control programs, compared across generations to a regularline laboratory-reared for more than 60 generations. The flight capacity of the isoline was best at 25-30 °C and relative humidity 70-90%.


Assuntos
Agentes de Controle Biológico , Vespas , Animais , Óvulo , Spodoptera/genética
19.
J Exp Biol ; 226(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37534841

RESUMO

The parasitic wasp Cotesia congregata suppresses feeding in its host, the caterpillar Manduca sexta, during specific periods of wasp development. We examined both feeding behaviour and the neurophysiology of the mandibular closer muscle in parasitized and unparasitized control M. sexta to determine how the wasp may accomplish this. To test whether the wasps activated a pre-existing host mechanism for feeding cessation, we examined the microstructure of feeding behaviour in caterpillars that stopped feeding due to illness-induced anorexia or an impending moult. These microstructures were compared with that shown by parasitized caterpillars. While there were overall differences between parasitized and unparasitized caterpillars, the groups showed similar progression in feeding microstructure as feeding ended, suggesting a common pattern for terminating a meal. Parasitized caterpillars also consumed less leaf area in 100 bites than control caterpillars at around the same time their feeding microstructure changed. The decline in food consumption was accompanied by fewer spikes per burst and shorter burst durations in chewing muscle electromyograms. Similar extracellular results were obtained from the motorneuron of the mandibular closer muscle. However, chewing was dramatically re-activated in non-feeding parasitized caterpillars if the connectives posterior to the suboesophageal ganglion were severed. The same result was observed in unparasitized caterpillars given the same treatment. Our results suggest that the reduced feeding in parasitized caterpillars is not due to damage to the central pattern generator (CPG) for chewing, motor nerves or chewing muscles, but is more likely to be due to a suppression of chewing CPG activity by ascending or descending inputs.


Assuntos
Manduca , Vespas , Animais , Vespas/fisiologia , Manduca/fisiologia , Mastigação , Comportamento Alimentar/fisiologia , Larva/fisiologia , Interações Hospedeiro-Parasita/fisiologia
20.
Curr Biol ; 33(15): R799-R800, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37552942

RESUMO

In the 1880s, Henri Fabre was captivated by the "special art of eating", whereby a parasitoid wasp larva fed selectively on host internal organs, avoiding the heart (dorsal vessel) and tracheal system (respiratory system) to preserve life. In Fabre's words: "The ruling feature in this scientific method of eating, which proceeds from parts less to the parts more necessary to preserve a remnant of life, is none the less obvious"1. Subsequent investigators have reported the same for many parasitoid wasps2,3, including for the emerald jewel wasp (Ampulex compressa)4. Here it is reported that larval jewel wasps destroy the dorsal vessel and tracheae (respiratory system) in the thorax of their cockroach host (Periplaneta americana) at their earliest opportunity. Moreover, the broken tracheae release air into the host, which the larval jewel wasp inspires. An increase in larval chewing rate, cotemporaneous with the sudden release of air from the host's broken tracheae, suggests the larva taps into the host respiratory system to support its metabolism while rapidly consuming the host. VIDEO ABSTRACT.


Assuntos
Baratas , Vespas , Animais , Vespas/metabolismo , Larva/metabolismo , Venenos de Vespas , Interações Hospedeiro-Parasita , Sistema Respiratório , Tórax
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA