Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34452301

RESUMO

Wasps of the genus Vespula are social insects that have become major pests and predators in their introduced range. Viruses present in these wasps have been studied in the context of spillover from honey bees, yet we lack an understanding of the endogenous virome of wasps as potential reservoirs of novel emerging infectious diseases. We describe the characterization of 68 novel and nine previously identified virus sequences found in transcriptomes of Vespula vulgaris in colonies sampled from their native range (Belgium) and an invasive range (New Zealand). Many viruses present in the samples were from the Picorna-like virus family (38%). We identified one Luteo-like virus, Vespula vulgaris Luteo-like virus 1, present in the three life stages examined in all colonies from both locations, suggesting this virus is a highly prevalent and persistent infection in wasp colonies. Additionally, we identified a novel Iflavirus with similarity to a recently identified Moku virus, a known wasp and honey bee pathogen. Experimental infection of honey bees with this novel Vespula vulgaris Moku-like virus resulted in an active infection. The high viral diversity present in these invasive wasps is a likely indication that their polyphagous diet is a rich source of viral infections.


Assuntos
Abelhas/virologia , Vírus de Insetos/isolamento & purificação , Vírus de Insetos/fisiologia , Vírus de RNA/isolamento & purificação , Vírus de RNA/fisiologia , Viroma , Vespas/virologia , Animais , Vírus de Insetos/classificação , Vírus de Insetos/genética , Vírus de RNA/classificação , Vírus de RNA/genética , Carga Viral , Replicação Viral
2.
Arch Virol ; 166(8): 2333-2335, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34075444

RESUMO

The complete genome sequence of a novel iflavirus isolated from the gregarious and koinobiont endoparasitoid Tetrastichus brontispae, tentatively named "Tetrastichus brontispae RNA virus 3" (TbRV-3), was determined by total RNA and Sanger sequencing. The complete genome is 9998 nucleotides in length, 8934 nt of which encodes a putative polyprotein of 2978 amino acids. TbRV-3 was found to have a similar genome organization and to contain conserved domains and motifs found in other iflaviruses, with some variations. Phylogenetic analysis based on deduced amino acid sequences of the RdRp domain showed that TbRV-3 clustered with Dinocampus coccinellae paralysis virus (DcPV). However, the percent amino acid sequence identity of the putative capsid proteins of TbRV-3 and DcPV determined using BLASTp was below the species demarcation threshold (90%), suggesting that TbRV-3 is a new iflavirus. This is the first virus of the family Iflaviridae to be isolated from a wasp of the family Eulophidae.


Assuntos
Vírus de Insetos/classificação , Vespas/virologia , Sequenciamento Completo do Genoma/métodos , Sequência de Aminoácidos , Animais , Tamanho do Genoma , Genoma Viral , Vírus de Insetos/genética , Vírus de Insetos/isolamento & purificação , Fases de Leitura Aberta , Filogenia , Análise de Sequência de RNA
3.
Arch Virol ; 166(1): 295-297, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33067649

RESUMO

Here, we report a novel RNA virus from an encyrtid endoparasitoid wasp (Diversinervus elegans). This virus has a genome of 8845 nucleotides in length with a poly(A) tail. It contains one open reading frame (ORF) encoding a single polyprotein that shares the most significant similarity to the polyproteins of dicistroviruses. Phylogenetic analysis suggested that this virus belongs to the family Dicistroviridae from the order Picornavirales, but its genomic organization is distinct from that of the other known dicistroviruses, which have two ORFs. Consequently, we propose that this virus is a member of a new species in the order Picornavirales, and have named it "Diversinervus elegans virus" (DEV).


Assuntos
Dicistroviridae/genética , Genoma Viral/genética , Vírus de RNA/genética , Vespas/virologia , Animais , Fases de Leitura Aberta/genética , Filogenia , Poliproteínas/genética , RNA Viral/genética , Alinhamento de Sequência , Análise de Sequência de DNA/métodos , Proteínas Virais/genética
4.
Sci Rep ; 10(1): 2096, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034183

RESUMO

Sufficient energy supply to the host immune system is important for resisting pathogens. Therefore, during pathogen infection, the host metabolism is reassigned from storage, growth, and development to the immune system. Previous studies in Drosophila melanogaster have demonstrated that systemic metabolic switching upon an immune challenge is activated by extracellular adenosine signaling, modulating carbohydrate mobilization and redistributing energy to the hemocytes. In the present study, we discovered that symbiotic virus (SmBV) of the parasitoid wasp Snellenius manilae is able to down-regulate the extracellular adenosine of its host, Spodoptera litura, to inhibit metabolism switching. The decreased carbohydrate mobilization, glycogenolysis, and ATP synthesis upon infection results in the host being unable to supply energy to its immune system, thus benefitting the development of wasp larvae. When we added adenosine to the infected S. litura larvae, we observed enhanced host immune responses that decreased the pupation rate of S. manilae. Previous studies showed that after pathogen infection, the host activates its adenosine pathway to trigger immune responses. However, our results suggest a different model: we found that in S. manilae, SmBV modulates the host adenosine pathway such that wasp eggs and larvae can evade the host immune response.


Assuntos
Adenosina/metabolismo , Polydnaviridae/metabolismo , Spodoptera/virologia , Vespas/virologia , Animais , Metabolismo dos Carboidratos , Regulação para Baixo , Espaço Extracelular/metabolismo , Sistema Imunitário/metabolismo , Tolerância Imunológica , Larva , Redes e Vias Metabólicas , Spodoptera/imunologia , Spodoptera/metabolismo , Spodoptera/parasitologia
6.
J Gen Virol ; 98(12): 2914-2915, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29120298

RESUMO

The Nyamiviridae is a family of viruses with unsegmented, negative-sense RNA genomes of 11.3-12.2 kb that produce enveloped, spherical virions. Viruses of the genus Nyavirus are tick-borne and some also infect birds. Other nyamiviruses infecting parasitoid wasps and plant parasitic nematodes have been classified into the genera Peropuvirus and Socyvirus, respectively. This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Nyamiviridae, which is available at www.ictv.global/report/nyamiviridae.


Assuntos
Genoma Viral , Filogenia , Infecções por Vírus de RNA/veterinária , Vírus de RNA/genética , Vírion/genética , Animais , Aves/virologia , Especificidade de Hospedeiro , Nematoides/virologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/classificação , Vírus de RNA/ultraestrutura , Terminologia como Assunto , Carrapatos/virologia , Vírion/classificação , Vírion/ultraestrutura , Vespas/virologia
7.
Genetica ; 145(6): 469-479, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28939979

RESUMO

Studying mechanisms that drive host adaptation in parasitoids is crucial for the efficient use of parasitoids in biocontrol programs. Cotesia typhae nov. sp. (Fernández-Triana) (Hymenoptera: Braconidae) is a newly described parasitoid of the Mediterranean corn borer Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae). Braconidae are known for their domesticated bracovirus, which is injected with eggs in the host larva to overcome its resistance. In this context, we compared reproductive success traits of four Kenyan strains of C. typhae on a French and a Kenyan populations of its host. Differences were found between the four strains and the two most contrasted ones were studied more thoroughly on the French host population. Parasitoid offspring size was correlated with parasitism success and the expression of bracovirus virulence genes (CrV1 and Cystatin) in the host larva after parasitism. Hybrids between these two parasitoid strains showed phenotype and gene expression profiles similar to the most successful parental strain, suggesting the involvement of dominant alleles in the reproductive traits. Ovary dissections revealed that the most successful strain injected more eggs in a single host larva than the less successful one, despite an equal initial ovocyte number in ovaries. It can be expected that the amount of viral particles increase with the number of eggs injected. The ability to bypass the resistance of the allopatric host may in consequence be related to the oviposition behaviour (eggs allocation). The influence of the number of injected eggs on parasitism success and on virulence gene expression was evaluated by oviposition interruption experiments.


Assuntos
Oviposição/fisiologia , Polydnaviridae/genética , Vespas/fisiologia , Animais , Feminino , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Parasita , Lepidópteros/imunologia , Lepidópteros/parasitologia , Masculino , Polydnaviridae/patogenicidade , Reprodução , Transcriptoma , Virulência/genética , Vespas/genética , Vespas/virologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-28557004

RESUMO

Two physiological changes of Spodoptera litura parasitized by Microplitis bicoloratus are hemocyte-apoptosis and retarded immature development. ß-Chain of Fo F1 -ATPase was found from a S. litura transcriptome. It belongs to a conserved P-loop NTPase superfamily, descending from a common ancestor of Lepidopteran clade. However, the characterization of ß-chain of ATPase in apoptotic cells and its involvement in development remain unknown. Here, the ectopic expression and endogenous Fo F1 -ATPase ß-chain occurred on S. litura cell membrane: in vivo, at the late stage of apoptotic hemocyte, endogenous Fo F1 -ATPase ß-chain was stably expressed during M. bicoloratus larva development from 4 to 7 days post-parasitization; in vitro, at an early stage of pre-apoptotic Spli221 cells by infecting with M. bicoloratus bracovirus particles, the proteins were speedily recover expression. Furthermore, endogenous Fo F1 -ATPase ß-chain was localized on the apoptotic cell membrane. RNA interference (RNAi) of Fo F1 -ATPase ß-chain led to significantly decreased head capsule width. This suggested that Fo F1 -ATPase ß-chain positively regulated the development of S. litura. The RNAi effect on the head capsule width was enhanced with parasitism. Our research found that Fo F1 -ATPase ß-chain was expressed and localized on the cell membrane in the apoptotic cells, and involved in the development of S. litura.


Assuntos
Interações Hospedeiro-Parasita , Polydnaviridae/fisiologia , ATPases Translocadoras de Prótons/metabolismo , Spodoptera/parasitologia , Vespas/virologia , Sequência de Aminoácidos , Animais , Apoptose , Hemócitos/enzimologia , Larva/parasitologia , Spodoptera/enzimologia , Spodoptera/crescimento & desenvolvimento , Vespas/fisiologia
9.
Sci Rep ; 6: 34983, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713534

RESUMO

There is an increasing global trend of emerging infectious diseases (EIDs) affecting a wide range of species, including honey bees. The global epidemic of the single stranded RNA Deformed wing virus (DWV), driven by the spread of Varroa destructor has been well documented. However, DWV is just one of many insect RNA viruses which infect a wide range of hosts. Here we report the full genome sequence of a novel Iflavirus named Moku virus (MV), discovered in the social wasp Vespula pensylvanica collected in Hawaii. The novel genome is 10,056 nucleotides long and encodes a polyprotein of 3050 amino acids. Phylogenetic analysis showed that MV is most closely related to Slow bee paralysis virus (SBPV), which is highly virulent in honey bees but rarely detected. Worryingly, MV sequences were also detected in honey bees and Varroa from the same location, suggesting that MV can also infect other hymenopteran and Acari hosts.


Assuntos
Abelhas/virologia , Vírus de Insetos/genética , Vírus de RNA/genética , Varroidae/virologia , Vespas/virologia , Animais , Genoma Viral , Havaí , Especificidade de Hospedeiro , Vírus de Insetos/classificação , Vírus de Insetos/isolamento & purificação , Filogenia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA Viral/genética , Proteínas Virais/genética
10.
PLoS One ; 11(9): e0161661, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27598941

RESUMO

Translational control is a strategy that various viruses use to manipulate their hosts to suppress acute antiviral response. Polydnaviruses, a group of insect double-stranded DNA viruses symbiotic to some endoparasitoid wasps, are divided into two genera: ichnovirus (IV) and bracovirus (BV). In IV, some Cys-motif genes are known as host translation-inhibitory factors (HTIF). The genome of endoparasitoid wasp Cotesia plutellae contains a Cys-motif gene (Cp-TSP13) homologous to an HTIF known as teratocyte-secretory protein 14 (TSP14) of Microplitis croceipes. Cp-TSP13 consists of 129 amino acid residues with a predicted molecular weight of 13.987 kDa and pI value of 7.928. Genomic DNA region encoding its open reading frame has three introns. Cp-TSP13 possesses six conserved cysteine residues as other Cys-motif genes functioning as HTIF. Cp-TSP13 was expressed in Plutella xylostella larvae parasitized by C. plutellae. C. plutellae bracovirus (CpBV) was purified and injected into non-parasitized P. xylostella that expressed Cp-TSP13. Cp-TSP13 was cloned into a eukaryotic expression vector and used to infect Sf9 cells to transiently express Cp-TSP13. The synthesized Cp-TSP13 protein was detected in culture broth. An overlaying experiment showed that the purified Cp-TSP13 entered hemocytes. It was localized in the cytosol. Recombinant Cp-TSP13 significantly inhibited protein synthesis of secretory proteins when it was added to in vitro cultured fat body. In addition, the recombinant Cp-TSP13 directly inhibited the translation of fat body mRNAs in in vitro translation assay using rabbit reticulocyte lysate. Moreover, the recombinant Cp-TSP13 significantly suppressed cellular immune responses by inhibiting hemocyte-spreading behavior. It also exhibited significant insecticidal activities by both injection and feeding routes. These results indicate that Cp-TSP13 is a viral HTIF.


Assuntos
Interações Hospedeiro-Parasita/genética , Vírus de Insetos/genética , Polydnaviridae/genética , Vespas/virologia , Motivos de Aminoácidos/genética , Sequência de Aminoácidos/genética , Animais , DNA/genética , Vírus de Insetos/patogenicidade , Fases de Leitura Aberta , Polydnaviridae/patogenicidade , Proteínas Virais/genética , Vespas/genética
11.
Insect Biochem Mol Biol ; 62: 86-99, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25584519

RESUMO

During oviposition, Cotesia congregata parasitoid wasps inject into their host, Manduca sexta, some biological factors such as venom, ovarian fluid and a symbiotic polydnavirus (PDV) named Cotesia congregata bracovirus (CcBV). During parasitism, complex interactions occur between wasp-derived factors and host targets that lead to important modifications in host physiology. In particular, the immune response leading to wasp egg encapsulation is inhibited allowing wasp survival. To date, the regulation of host genes during the interaction had only been studied for a limited number of genes. In this study, we analysed the global impact of parasitism on host gene regulation 24 h post oviposition by high throughput 454 transcriptomic analyses of two tissues known to be involved in the host immune response (hemocytes and fat body). To identify specific effects of parasitism on host transcription at this time point, transcriptomes were obtained from non-treated and parasitized larvae, and also from larvae injected with heat-killed bacteria and double stimulated larvae that were parasitized prior to bacterial challenge. Results showed that, immune challenge by bacteria leads to induction of certain antimicrobial peptide (AMP) genes in M. sexta larvae whether they were parasitized or not prior to bacterial challenge. These results show that at 24 h post oviposition pathways leading to expression of AMP genes are not all inactivated suggesting wasps are in an antiseptic environment. In contrast, at this time point genes involved in phenoloxidase activation and cellular immune responses were globally down-regulated after parasitism in accordance with the observed inhibition of wasp egg encapsulation.


Assuntos
Manduca/imunologia , Manduca/parasitologia , Polydnaviridae/imunologia , Transcriptoma , Vespas/fisiologia , Animais , Corpo Adiposo/imunologia , Corpo Adiposo/metabolismo , Feminino , Regulação da Expressão Gênica , Hemócitos/imunologia , Hemócitos/metabolismo , Interações Hospedeiro-Parasita , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Proteínas de Insetos/metabolismo , Larva/imunologia , Larva/parasitologia , Larva/virologia , Manduca/genética , Manduca/virologia , Vespas/virologia
12.
J Virol ; 88(16): 8795-812, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24872581

RESUMO

UNLABELLED: Bracoviruses (BVs) from the Polydnaviridae family are symbiotic viruses used as biological weapons by parasitoid wasps to manipulate lepidopteran host physiology and induce parasitism success. BV particles are produced by wasp ovaries and injected along with the eggs into the caterpillar host body, where viral gene expression is necessary for wasp development. Recent sequencing of the proviral genome of Cotesia congregata BV (CcBV) identified 222 predicted virulence genes present on 35 proviral segments integrated into the wasp genome. To date, the expressions of only a few selected candidate virulence genes have been studied in the caterpillar host, and we lacked a global vision of viral gene expression. In this study, a large-scale transcriptomic analysis by 454 sequencing of two immune tissues (fat body and hemocytes) of parasitized Manduca sexta caterpillar hosts allowed the detection of expression of 88 CcBV genes expressed 24 h after the onset of parasitism. We linked the expression profiles of these genes to several factors, showing that different regulatory mechanisms control viral gene expression in the host. These factors include the presence of signal peptides in encoded proteins, diversification of promoter regions, and, more surprisingly, gene position on the proviral genome. Indeed, most genes for which expression could be detected are localized in particular proviral regions globally producing higher numbers of circles. Moreover, this polydnavirus (PDV) transcriptomic analysis also reveals that a majority of CcBV genes possess at least one intron and an arthropod transcription start site, consistent with an insect origin of these virulence genes. IMPORTANCE: Bracoviruses (BVs) are symbiotic polydnaviruses used by parasitoid wasps to manipulate lepidopteran host physiology, ensuring wasp offspring survival. To date, the expressions of only a few selected candidate BV virulence genes have been studied in caterpillar hosts. We performed a large-scale analysis of BV gene expression in two immune tissues of Manduca sexta caterpillars parasitized by Cotesia congregata wasps. Genes for which expression could be detected corresponded to genes localized in particular regions of the viral genome globally producing higher numbers of circles. Our study thus brings an original global vision of viral gene expression and paves the way to the determination of the regulatory mechanisms enabling the expression of BV genes in targeted organisms, such as major insect pests. In addition, we identify sequence features suggesting that most BV virulence genes were acquired from insect genomes.


Assuntos
Expressão Gênica/genética , Genes Virais/genética , Genoma Viral/genética , Polydnaviridae/genética , Vespas/genética , Vespas/virologia , Animais , Perfilação da Expressão Gênica/métodos , Manduca/genética , Manduca/virologia , Regiões Promotoras Genéticas/genética
13.
J Virol ; 87(17): 9649-60, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804644

RESUMO

The relationship between parasitoid wasps and polydnaviruses constitutes one of the few known mutualisms between viruses and eukaryotes. Viral particles are injected with the wasp eggs into parasitized larvae, and the viral genes thus introduced are used to manipulate lepidopteran host physiology. The genome packaged in the particles is composed of 35 double-stranded DNA (dsDNA) circles produced in wasp ovaries by amplification of viral sequences from proviral segments integrated in tandem arrays in the wasp genome. These segments and their flanking regions within the genome of the wasp Cotesia congregata were recently isolated, allowing extensive mapping of amplified sequences. The bracovirus DNAs packaged in the particles were found to be amplified within more than 12 replication units. Strikingly, the nudiviral cluster, the genes of which encode particle structural components, was also amplified, although not encapsidated. Amplification of bracoviral sequences was shown to involve successive head-to-head and tail-to-tail concatemers, which was not expected given the nudiviral origin of bracoviruses.


Assuntos
Genoma Viral , Polydnaviridae/genética , Vespas/patogenicidade , Vespas/virologia , Animais , Sequência de Bases , DNA Viral/química , DNA Viral/genética , Feminino , Amplificação de Genes , Manduca/parasitologia , Manduca/virologia , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Provírus/genética , Replicon , Simbiose , Vírion/genética
14.
Insect Biochem Mol Biol ; 41(12): 993-1002, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22015579

RESUMO

In the tripartite parasitization system of the lepidopteran host Manduca sexta, the endoparasitoid wasp Cotesia congregata and its endosymbiotic virus, C. congregata Bracovirus (CcBV), the expression of viral proteins is necessary for successful parasitization. Here we have examined the in vitro effects of six members of the ankyrin-repeat protein family (Ank) of CcBV, which are thought to interfere with the host's induced innate immune responses, on the transcriptional activity of a heterologous lepidopteran Rel/NFκB transcription factor, Relish1 of Bombyx mori. Using as transcriptional activator BmRelish1-d2 (R1d2), a constitutively active mutant of the major regulator of the Imd pathway, BmRelish1, in conjunction with a reporter gene controlled by a B. mori antimicrobial peptide gene promoter, we have found that 5 of the 6 examined Anks suppress R1d2-dependent transcriptional activity to various degrees. Immunofluorescence studies have also revealed that while some of the Ank proteins have a rather strict cytoplasmic localization, others are detected both in the cytoplasm and the nucleus of the expressing cells and that colocalization with R1d2 occurs exclusively in the nucleus. Thus, our results suggest that functional and spatial differences among the various CcBV Ank family members may be responsible for the observed differential inhibition of R1d2 activity.


Assuntos
Interações Hospedeiro-Parasita , Proteínas de Insetos/metabolismo , Manduca/imunologia , Proteínas Virais/metabolismo , Vespas/virologia , Animais , Repetição de Anquirina , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Expressão Gênica , Manduca/parasitologia , Manduca/virologia
15.
BMC Genomics ; 12: 446, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21906285

RESUMO

BACKGROUND: Parasitoid insects manipulate their hosts' physiology by injecting various factors into their host upon parasitization. Transcriptomic approaches provide a powerful approach to study insect host-parasitoid interactions at the molecular level. In order to investigate the effects of parasitization by an ichneumonid wasp (Diadegma semiclausum) on the host (Plutella xylostella), the larval transcriptome profile was analyzed using a short-read deep sequencing method (Illumina). Symbiotic polydnaviruses (PDVs) associated with ichneumonid parasitoids, known as ichnoviruses, play significant roles in host immune suppression and developmental regulation. In the current study, D. semiclausum ichnovirus (DsIV) genes expressed in P. xylostella were identified and their sequences compared with other reported PDVs. Five of these genes encode proteins of unknown identity, that have not previously been reported. RESULTS: De novo assembly of cDNA sequence data generated 172,660 contigs between 100 and 10000 bp in length; with 35% of > 200 bp in length. Parasitization had significant impacts on expression levels of 928 identified insect host transcripts. Gene ontology data illustrated that the majority of the differentially expressed genes are involved in binding, catalytic activity, and metabolic and cellular processes. In addition, the results show that transcription levels of antimicrobial peptides, such as gloverin, cecropin E and lysozyme, were up-regulated after parasitism. Expression of ichnovirus genes were detected in parasitized larvae with 19 unique sequences identified from five PDV gene families including vankyrin, viral innexin, repeat elements, a cysteine-rich motif, and polar residue rich protein. Vankyrin 1 and repeat element 1 genes showed the highest transcription levels among the DsIV genes. CONCLUSION: This study provides detailed information on differential expression of P. xylostella larval genes following parasitization, DsIV genes expressed in the host and also improves our current understanding of this host-parasitoid interaction.


Assuntos
Interações Hospedeiro-Parasita/genética , Mariposas/genética , Mariposas/parasitologia , Polydnaviridae/genética , Transcriptoma , Vespas/fisiologia , Animais , Perfilação da Expressão Gênica , Genes de Insetos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Larva/genética , Larva/parasitologia , Larva/virologia , Mariposas/virologia , Análise de Sequência de DNA/métodos , Vespas/virologia
16.
J Microbiol Biotechnol ; 19(6): 610-5, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19597320

RESUMO

As a provirus, polydnavirus has a segmented DNA genome on chromosome(s) of host wasp. It contains several genes in each segment that presumably play critical roles in regulating physiological processes of target insect parasitized by the wasp. A cysteine-rich protein 1 (CRP1) is present in the polydnavirus Cotesia plutellae bracovirus (CpBV) genome, but its expression and physiological function in Plutella xylostella parasitized by the viral host C. plutellae is not known. This CpBV-CRP1 encoding 189 amino acids with a putative signal peptide (20 residues) was persistently expressed in parasitized P. xylostella with gradual decrease at the late parasitization period. Expression of CpBV-CRP1 was tissue-specific in the fat body/epidermis and hemocyte, but not in the gut. Its physiological function was analyzed by inducing transient expression of a CpBV segment containing CpBV-CRP1 and its promoter, which caused significant reduction in hemocyte -spreading and delayed larval development. When the treated larvae were co-injected with double-stranded RNA of CpBV-CRP1, the expression of CpBV-CRP1 disappeared,whereas other genes encoded in the CpBV segment was expressed. These co-injected larvae significantly recovered the hemocyte-spreading capacity and larval development rate. This study reports that CpBV-CRP1 is expressed in P.xylostella parasitized by C.plutellae and its physiological function is to alter the host immune and developmental processes.


Assuntos
Genes Virais/fisiologia , Polydnaviridae/genética , Vespas/virologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Cisteína/química , Expressão Gênica , Regulação Viral da Expressão Gênica , Técnicas de Silenciamento de Genes/métodos , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Dados de Sequência Molecular , Mariposas/imunologia , Mariposas/metabolismo , Mariposas/virologia , Polydnaviridae/imunologia , Interferência de RNA , Proteínas Virais/química , Proteínas Virais/fisiologia
17.
J Invertebr Pathol ; 101(3): 194-203, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19460382

RESUMO

Very few obligatory relationships involve viruses to the remarkable exception of polydnaviruses (PDVs) associated with tens of thousands species of parasitic wasps that develop within the body of lepidopteran larvae. PDV particles, injected along with parasite eggs into the host body, act by manipulating host immune defences, development and physiology, thereby enabling wasp larvae to survive in a potentially harmful environment. Particle production does not occur in infected tissues of parasitized caterpillars, but is restricted to specialized cells of the wasp ovaries. Moreover, the genome enclosed in the particles encodes almost no viral structural protein, but mostly factors used to manipulate the physiology of the parasitized host. We recently unravelled the viral nature of PDVs associated with braconid wasps by characterizing a large set of nudivirus genes residing permanently in the wasp chromosome(s). Many of these genes encode structural components of the bracovirus particles and their expression pattern correlates with particle production. They constitute a viral machinery comprising a large number of core genes shared by nudiviruses and baculoviruses. Thus bracoviruses do not appear to be nudiviruses remnants, but instead complex nudiviral devices carrying DNA for the delivery of virulence genes into lepidopteran hosts. This highlights the fact that viruses should no longer be exclusively considered obligatory parasites, and that in certain cases they are obligatory symbionts.


Assuntos
Polydnaviridae/genética , Vírion/genética , Vespas/virologia , Sequência de Aminoácidos , Animais , Sequência Conservada , DNA Viral , Feminino , Genoma Viral , Dados de Sequência Molecular , Nucleocapsídeo/genética , Nucleocapsídeo/fisiologia , Ovário/metabolismo , Ovário/virologia , Polydnaviridae/fisiologia , Polydnaviridae/ultraestrutura , Alinhamento de Sequência , Transcrição Gênica , Proteínas do Envelope Viral/genética , Vírion/fisiologia
18.
Biol Chem ; 390(5-6): 493-502, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19361282

RESUMO

Parasites have evolved different virulence strategies to manipulate host physiological functions. The parasitoid wasp Cotesia congregata induces developmental arrest and immune suppression of its Lepidopteran host Manduca sexta. In this interaction, a symbiotic virus (C. congregata Bracovirus, CcBV) associated with the wasp is essential for parasitism success. The virus is injected into the host with wasp eggs and virus genes are expressed in host tissues. Among potential CcBV virulence genes, cystatins, which are tight binding inhibitors of C1A cysteine proteases, are suspected to play an important role in the interaction owing to their high level of expression. So far, however, potential in vivo targets in M. sexta are unknown. Here, we characterized for the first time four M. sexta C1A cysteine proteases corresponding to cathepsin L and cathepsin B and two different '26-29 kDa' cysteine proteases (MsCath1 and MsCath2). Our analyses revealed that MsCath1 and MsCath2 are transcriptionally downregulated in the course of parasitism. Moreover, viral Cystatin1 and MsCath1 co-localize in the plasma following parasitism, strongly suggesting that they interact. We also show that parasitism induces a general increase of cysteine protease activity which is later controlled. The potential involvement of cysteine proteases in defense against parasitoids is discussed.


Assuntos
Cistatinas/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas de Insetos/metabolismo , Manduca/parasitologia , Polydnaviridae/enzimologia , Vespas/fisiologia , Animais , Cistatinas/genética , Cisteína Endopeptidases/análise , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/isolamento & purificação , Regulação da Expressão Gênica no Desenvolvimento , Interações Hospedeiro-Parasita , Proteínas de Insetos/análise , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Larva/enzimologia , Larva/crescimento & desenvolvimento , Manduca/enzimologia , Vespas/virologia
19.
Science ; 323(5916): 926-30, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19213916

RESUMO

Many species of parasitoid wasps inject polydnavirus particles in order to manipulate host defenses and development. Because the DNA packaged in these particles encodes almost no viral structural proteins, their relation to viruses has been debated. Characterization of complementary DNAs derived from braconid wasp ovaries identified genes encoding subunits of a viral RNA polymerase and structural components of polydnavirus particles related most closely to those of nudiviruses--a sister group of baculoviruses. The conservation of this viral machinery in different braconid wasp lineages sharing polydnaviruses suggests that parasitoid wasps incorporated a nudivirus-related genome into their own genetic material. We found that the nudiviral genes themselves are no longer packaged but are actively transcribed and produce particles used to deliver genes essential for successful parasitism in lepidopteran hosts.


Assuntos
DNA Viral , Polydnaviridae/genética , Vespas/virologia , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Evolução Biológica , DNA Viral/análise , Etiquetas de Sequências Expressas , Feminino , Genoma de Inseto , Dados de Sequência Molecular , Ovário/virologia , Polydnaviridae/fisiologia , Proteínas Estruturais Virais/genética , Vírion/genética , Integração Viral
20.
Virus Res ; 138(1-2): 144-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18831994

RESUMO

Using electron microscopy, we demonstrated the presence of a novel small RNA-containing virus in the venom apparatus of an endoparasitic wasp, Pteromalus puparum, designated as PpSRV. Morphologically, PpSRV has classical features of picorna-like viruses. It caused the development deterioration and tissue destruction of P. puparum venom apparatus. The laboratory colony of P. puparum was infectious with PpSRV at a low level. Partial genomic sequence analysis indicated that PpSRV 3'-proximal genome was characteristically similar to most dicistroviruses containing an internal ribosome entry site (IRES) for facilitating cap-independent translation and a 3' ORF encoding a structural protein with three major capsid polyproteins (28, 31 and 28 kDa) and a minor one (9.6 kDa). Phylogenetic evolution analysis of PpSRV structural protein with the counterparts of other dicistroviruses exhibited that PpSRV belonged to the Cripavirus genus and fell into same clade with Black queen cell virus (BQCV), an infectious virus to honey bee, suggesting that PpSRV might be pathogenic to P. puparum.


Assuntos
Genoma Viral , Vírus de Insetos/genética , Vírus de RNA/genética , Vespas/virologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Vírus de Insetos/química , Vírus de Insetos/classificação , Vírus de Insetos/isolamento & purificação , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Vírus de RNA/química , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Alinhamento de Sequência , Venenos de Vespas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA