Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Endocrinology ; 162(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346492

RESUMO

Polycystic ovarian syndrome (PCOS), the most common endocrinopathy affecting women worldwide, is characterized by elevated luteinizing hormone (LH) pulse frequency due to the impaired suppression of gonadotrophin-releasing hormone (GnRH) release by steroid hormone negative feedback. Although neurons that co-express kisspeptin, neurokinin B, and dynorphin (KNDy cells) were recently defined as the GnRH/LH pulse generator, little is understood about their role in the pathogenesis of PCOS. We used a prenatal androgen-treated (PNA) mouse model of PCOS to determine whether changes in KNDy neurons or their afferent network underlie altered negative feedback. First, we identified elevated androgen receptor gene expression in KNDy cells of PNA mice, whereas progesterone receptor and dynorphin gene expression was significantly reduced, suggesting elevated androgens in PCOS disrupt progesterone negative feedback via direct actions upon KNDy cells. Second, we discovered GABAergic and glutamatergic synaptic input to KNDy neurons was reduced in PNA mice. Retrograde monosynaptic tract-tracing revealed a dramatic reduction in input originates from sexually dimorphic afferents in the preoptic area, anteroventral periventricular nucleus, anterior hypothalamic area and lateral hypothalamus. These results reveal 2 sites of neuronal alterations potentially responsible for defects in negative feedback in PCOS: changes in gene expression within KNDy neurons, and changes in synaptic inputs from steroid hormone-responsive hypothalamic regions. How each of these changes contribute to the neuroendocrine phenotype seen in in PCOS, and the role of specific sets of upstream KNDy afferents in the process, remains to be determined.


Assuntos
Androgênios/sangue , Neurônios/patologia , Síndrome do Ovário Policístico/patologia , Efeitos Tardios da Exposição Pré-Natal , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/metabolismo , Androgênios/farmacologia , Animais , Modelos Animais de Doenças , Dinorfinas/metabolismo , Feminino , Kisspeptinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurocinina B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Sistemas Neurossecretores/efeitos dos fármacos , Sistemas Neurossecretores/metabolismo , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/fisiopatologia , Síndrome do Ovário Policístico/psicologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/psicologia
2.
J Neurosci ; 41(41): 8494-8507, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34452938

RESUMO

Previous studies have shown that infiltration of capsaicin into the surgical site can prevent incision-induced spontaneous pain like behaviors and heat hyperalgesia. In the present study, we aimed to monitor primary sensory neuron Ca2+ activity in the intact dorsal root ganglia (DRG) using Pirt-GCaMP3 male and female mice pretreated with capsaicin or vehicle before the plantar incision. Intraplantar injection of capsaicin (0.05%) significantly attenuated spontaneous pain, mechanical, and heat hypersensitivity after plantar incision. The Ca2+ response in in vivo DRG and in in situ spinal cord was significantly enhanced in the ipsilateral side compared with contralateral side or naive control. Primary sensory nerve fiber length was significantly decreased in the incision skin area in capsaicin-pretreated animals detected by immunohistochemistry and placental alkaline phosphatase (PLAP) staining. Thus, capsaicin pretreatment attenuates incisional pain by suppressing Ca2+ response because of degeneration of primary sensory nerve fibers in the skin.SIGNIFICANCE STATEMENT Postoperative surgery pain is a major health and economic problem worldwide with ∼235 million major surgical procedures annually. Approximately 50% of these patients report uncontrolled or poorly controlled postoperative pain. However, mechanistic studies of postoperative surgery pain in primary sensory neurons have been limited to in vitro models or small numbers of neurons. Using an innovative, distinctive, and interdisciplinary in vivo populational dorsal root ganglia (DRG) imaging (>1800 neurons/DRG) approach, we revealed increased DRG neuronal Ca2+ activity from postoperative pain mouse model. This indicates widespread DRG primary sensory neuron plasticity. Increased neuronal Ca2+ activity occurs among various sizes of neurons but mostly in small-diameter and medium-diameter nociceptors. Capsaicin pretreatment as a therapeutic option significantly attenuates Ca2+ activity and postoperative pain.


Assuntos
Cálcio/metabolismo , Capsaicina/administração & dosagem , Gânglios Espinais/metabolismo , Dor Pós-Operatória/metabolismo , Dor Pós-Operatória/prevenção & controle , Ferida Cirúrgica/metabolismo , Vias Aferentes/química , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/metabolismo , Animais , Feminino , Gânglios Espinais/química , Membro Posterior/inervação , Membro Posterior/metabolismo , Hiperalgesia/metabolismo , Hiperalgesia/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Placa Plantar/química , Placa Plantar/inervação , Placa Plantar/metabolismo , Fármacos do Sistema Sensorial/administração & dosagem
3.
Cell Metab ; 33(7): 1466-1482.e7, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34043943

RESUMO

Sensory neurons relay gut-derived signals to the brain, yet the molecular and functional organization of distinct populations remains unclear. Here, we employed intersectional genetic manipulations to probe the feeding and glucoregulatory function of distinct sensory neurons. We reconstruct the gut innervation patterns of numerous molecularly defined vagal and spinal afferents and identify their downstream brain targets. Bidirectional chemogenetic manipulations, coupled with behavioral and circuit mapping analysis, demonstrated that gut-innervating, glucagon-like peptide 1 receptor (GLP1R)-expressing vagal afferents relay anorexigenic signals to parabrachial nucleus neurons that control meal termination. Moreover, GLP1R vagal afferent activation improves glucose tolerance, and their inhibition elevates blood glucose levels independent of food intake. In contrast, gut-innervating, GPR65-expressing vagal afferent stimulation increases hepatic glucose production and activates parabrachial neurons that control normoglycemia, but they are dispensable for feeding regulation. Thus, distinct gut-innervating sensory neurons differentially control feeding and glucoregulatory neurocircuits and may provide specific targets for metabolic control.


Assuntos
Regulação do Apetite , Eixo Encéfalo-Intestino/fisiologia , Glucose/metabolismo , Células Receptoras Sensoriais/fisiologia , Vias Aferentes/metabolismo , Animais , Apetite/fisiologia , Regulação do Apetite/genética , Comunicação Celular/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos Transgênicos , Gânglio Nodoso/metabolismo , Gânglio Nodoso/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Nervo Vago/metabolismo , Nervo Vago/fisiologia , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
4.
Acta Pharmacol Sin ; 42(6): 898-908, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33154555

RESUMO

Hydrogen sulfide (H2S), which is closely related to various cardiovascular disorders, lowers blood pressure (BP), but whether this action is mediated via the modification of baroreflex afferent function has not been elucidated. Therefore, the current study aimed to investigate the role of the baroreflex afferent pathway in H2S-mediated autonomic control of BP regulation. The results showed that baroreflex sensitivity (BRS) was increased by acute intravenous NaHS (a H2S donor) administration to renovascular hypertensive (RVH) and control rats. Molecular expression data also showed that the expression levels of critical enzymes related to H2S were aberrantly downregulated in the nodose ganglion (NG) and nucleus tractus solitarius (NTS) in RVH rats. A clear reduction in BP by the microinjection of NaHS or L-cysteine into the NG was confirmed in both RVH and control rats, and a less dramatic effect was observed in model rats. Furthermore, the beneficial effects of NaHS administered by chronic intraperitoneal infusion on dysregulated systolic blood pressure (SBP), cardiac parameters, and BRS were verified in RVH rats. Moreover, the increase in BRS was attributed to activation and upregulation of the ATP-sensitive potassium (KATP) channels Kir6.2 and SUR1, which are functionally expressed in the NG and NTS. In summary, H2S plays a crucial role in the autonomic control of BP regulation by improving baroreflex afferent function due at least in part to increased KATP channel expression in the baroreflex afferent pathway under physiological and hypertensive conditions.


Assuntos
Vias Aferentes/metabolismo , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Sulfeto de Hidrogênio/metabolismo , Hipertensão/fisiopatologia , Animais , Anti-Hipertensivos/farmacologia , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Cardiotônicos/farmacologia , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/farmacologia , Hipertensão/tratamento farmacológico , Masculino , Gânglio Nodoso/efeitos dos fármacos , Gânglio Nodoso/enzimologia , Gânglio Nodoso/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos Sprague-Dawley , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/enzimologia , Núcleo Solitário/metabolismo , Sulfetos/farmacologia , Receptores de Sulfonilureias/metabolismo , Sulfurtransferases/metabolismo
5.
Sci Rep ; 10(1): 16892, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037246

RESUMO

Recurrent laryngeal nerve (RLN) injury, in which hoarseness and dysphagia arise as a result of impaired vocal fold movement, is a serious complication. Misdirected regeneration is an issue for functional regeneration. In this study, we demonstrated the effect of TrkA inhibitors, which blocks the NGF-TrkA pathway that acts on the sensory/automatic nerves thus preventing misdirected regeneration among motor and sensory nerves, and thereby promoting the regeneration of motor neurons to achieve functional recovery. RLN axotomy rat models were used in this study, in which cut ends of the nerve were bridged with polyglycolic acid-collagen tube with and without TrkA inhibitor (TrkAi) infiltration. Our study revealed significant improvement in motor nerve fiber regeneration and function, in assessment of vocal fold movement, myelinated nerve regeneration, compound muscle action potential, and prevention of laryngeal muscle atrophy. Retrograde labeling demonstrated fewer labeled neurons in the vagus ganglion, which confirmed reduced misdirected regeneration among motor and sensory fibers, and a change in distribution of the labeled neurons in the nucleus ambiguus. Our study demonstrated that TrkAi have a strong potential for clinical application in the treatment of RLN injury.


Assuntos
Neurônios Motores/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Receptor trkA/antagonistas & inibidores , Traumatismos do Nervo Laríngeo Recorrente/tratamento farmacológico , Nervo Laríngeo Recorrente/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/metabolismo , Animais , Colágeno/metabolismo , Músculos Laríngeos/inervação , Masculino , Bulbo/efeitos dos fármacos , Bulbo/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Sistema Nervoso Periférico/efeitos dos fármacos , Sistema Nervoso Periférico/metabolismo , Ácido Poliglicólico/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Laríngeo Recorrente/metabolismo , Traumatismos do Nervo Laríngeo Recorrente/metabolismo , Células Receptoras Sensoriais/metabolismo , Prega Vocal/efeitos dos fármacos , Prega Vocal/metabolismo
6.
J Physiol ; 597(21): 5247-5264, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31520534

RESUMO

KEY POINTS: Functional disorders (i.e. interstitial cystitis/painful bladder syndrome and irritable bowel syndrome) are associated with hyperexcitability of afferent nerves innervating the urinary tract and the bowel, respectively. Various non-5-HT3 receptor mRNA transcripts are expressed in mouse urothelium and exert functional responses to 5-HT. Whilst 5-HT3 receptors were not detected in mouse urothelium, 5-HT3 receptors expressed on bladder sensory neurons plays a role in bladder afferent excitability both under normal conditions and in a mouse model of chronic visceral hypersensitivity. These data suggest that the role 5-HT3 receptors play in bladder afferent signalling warrants further study as a potential therapeutic target for functional bladder disorders. ABSTRACT: Serotonin (5-HT) is an excitatory mediator that in the gastrointestinal (GI) tract plays a physiological role in gut-brain signalling and is dysregulated in functional GI disorders such as irritable bowel syndrome (IBS). Patients suffering from IBS frequently suffer from urological symptoms characteristic of interstitial cystitis/painful bladder syndrome, which manifests due to cross-sensitization of shared innervation pathways between the bladder and colon. However, a direct modulatory role of 5-HT in bladder afferent signalling and its role in colon-bladder neuronal crosstalk remain elusive. The aim of this study was to investigate the action of 5-HT on bladder afferent signalling in normal mice and mice with chronic visceral hypersensitivity (CVH) following trinitrobenzenesulfonic acid-induced colitis. Bladder afferent activity was recorded directly using ex vivo afferent nerve recordings. Expression of 14 5-HT receptor subtypes, the serotonin transporter (SERT) and 5-HT-producing enzymes was determined in the urothelium using RT-PCR. Retrograde labelling of bladder-projecting dorsal root ganglion neurons was used to investigate expression of 5-HT3 receptors using single cell RT-PCR, while sensory neuronal and urothelial responses to 5-HT were determined by live cell calcium imaging. 5-HT elicited bladder afferent firing predominantly via 5-HT3 receptors expressed on afferent terminals. CVH animals showed a downregulation of SERT mRNA expression in urothelium, suggesting increased 5-HT bioavailability. Granisetron, a 5-HT3 antagonist, reversed bladder afferent hypersensitivity in CVH mice. These data suggest 5-HT exerts a direct effect on bladder afferents to enhance signalling. 5-HT3 antagonists could therefore be a potential therapeutic target to treat functional bladder and bowel disorders.


Assuntos
Vias Aferentes/metabolismo , Neurônios Aferentes/metabolismo , Serotonina/metabolismo , Bexiga Urinária/metabolismo , Vias Aferentes/efeitos dos fármacos , Animais , Colo/efeitos dos fármacos , Colo/metabolismo , Modelos Animais de Doenças , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Granisetron/farmacologia , Síndrome do Intestino Irritável/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Sistema Nervoso Periférico/efeitos dos fármacos , Sistema Nervoso Periférico/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Ácido Trinitrobenzenossulfônico/farmacologia , Bexiga Urinária/efeitos dos fármacos
7.
Pain ; 160(11): 2566-2579, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31335750

RESUMO

Endometriosis, an estrogen-dependent chronic inflammatory disease, is the most common cause of chronic pelvic pain. Here, we investigated the effects of linaclotide, a Food and Drug Administration-approved treatment for IBS-C, in a rat model of endometriosis. Eight weeks after endometrium transplantation into the intestinal mesentery, rats developed endometrial lesions as well as vaginal hyperalgesia to distension and decreased mechanical hind paw withdrawal thresholds. Daily oral administration of linaclotide, a peripherally restricted guanylate cyclase-C (GC-C) agonist peptide acting locally within the gastrointestinal tract, increased pain thresholds to vaginal distension and mechanical hind paw withdrawal thresholds relative to vehicle treatment. Furthermore, using a cross-over design, administering linaclotide to rats previously administered vehicle resulted in increased hind paw withdrawal thresholds, whereas replacing linaclotide with vehicle treatment decreased hind paw withdrawal thresholds. Retrograde tracing of sensory afferent nerves from the ileum, colon, and vagina revealed that central terminals of these afferents lie in close apposition to one another within the dorsal horn of the spinal cord. We also identified dichotomizing dual-labelled ileal/colon innervating afferents as well as colon/vaginal dual-labelled neurons and a rare population of triple traced ileal/colon/vaginal neurons within thoracolumbar DRG. These observations provide potential sources of cross-organ interaction at the level of the DRG and spinal cord. GC-C expression is absent in the vagina and endometrial cysts suggesting that the actions of linaclotide are shared through nerve pathways between these organs. In summary, linaclotide may offer a novel therapeutic option not only for treatment of chronic endometriosis-associated pain, but also for concurrent treatment of comorbid chronic pelvic pain syndromes.


Assuntos
Endometriose/induzido quimicamente , Hiperalgesia/etiologia , Dor/tratamento farmacológico , Peptídeos/farmacologia , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/metabolismo , Animais , Endometriose/complicações , Feminino , Hiperalgesia/tratamento farmacológico , Peptídeos/efeitos adversos , Peptídeos/uso terapêutico , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
8.
Gynecol Oncol ; 154(1): 228-235, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31003747

RESUMO

OBJECTIVE: Recently, our laboratory identified sensory innervation within head and neck squamous cell carcinomas (HNSCCs) and subsequently defined a mechanism whereby HNSCCs promote their own innervation via the release of exosomes that stimulate neurite outgrowth. Interestingly, we noted that exosomes from human papillomavirus (HPV)-positive cell lines were more effective at promoting neurite outgrowth than those from HPV-negative cell lines. As nearly all cervical tumors are HPV-positive, we hypothesized that these findings would extend to cervical cancer. METHODS: We use an in vitro assay with PC12 cells to quantify the axonogenic potential of cervical cancer exosomes. PC12 cells are treated with cancer-derived exosomes, stained with the pan-neuronal marker (ß-III tubulin) and the number of neurites quantified. To assess innervation in cervical cancer, we immunohistochemically stained cervical cancer patient samples for ß-III tubulin and TRPV1 (sensory marker) and compared the staining to normal cervix. RESULTS: Here, we show the presence of sensory nerves within human cervical tumors. Additionally, we show that exosomes derived from HPV-positive cervical cancer cell lines effectively stimulate neurite outgrowth. CONCLUSIONS: These data identify sensory nerves as components of the cervical cancer microenvironment and suggest that tumor- derived exosomes promote their recruitment.


Assuntos
Vias Aferentes/patologia , Exossomos/patologia , Neoplasias do Colo do Útero/patologia , Vias Aferentes/metabolismo , Animais , Colo do Útero/inervação , Exossomos/metabolismo , Feminino , Células HeLa , Papillomavirus Humano 16/isolamento & purificação , Humanos , Imuno-Histoquímica , Neuritos/metabolismo , Neuritos/patologia , Células PC12 , Ratos , Canais de Cátion TRPV/metabolismo , Tubulina (Proteína)/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia
9.
CNS Neurosci Ther ; 25(1): 123-135, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29900692

RESUMO

AIM: Substance P (SP) causes vasodilation and blood pressure (BP) reduction. However, the involvement of tachykinin receptors (NKRs) within baroreflex afferent pathway in SP-mediated BP regulation is largely unknown. METHODS: Under control and hypertensive condition, NKRs' expressions were evaluated in nodose (NG) and nucleus of tractus solitary (NTS) of male, female, and ovariectomized (OVX) rats; BP was recorded after microinjection of SP and NKRs agonists into NG; Baroreceptor sensitivity (BRS) was tested as well. RESULTS: Immunostaining and immunoblotting data showed that NK1R and NK2R were estrogen-dependently expressed on myelinated and unmyelinated afferents in NG. A functional study showed that BP was reduced dose-dependently by SP microinjection, which was more dramatic in males and can be mimicked by NK1R and NK2R agonists. Notably, further BP elevation and BRS dysfunction were confirmed in desoxycorticosterone acetate (DOCA)-salt model in OVX compared with DOCA-salt model in intact female rats. Additionally, similar changes in NKRs' expression in NG were also detected using DOCA-salt and SHR. Compared with NG, inversed expression profiles of NKRs were also found in NTS with either gender. CONCLUSION: The estrogen-dependent NKRs' expression in baroreflex afferent pathway participates at least partially in sexual-dimorphic and SP-mediated BP regulation under physiological and hypertensive conditions.


Assuntos
Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Gânglio Nodoso/metabolismo , Receptores de Taquicininas/metabolismo , Núcleo Solitário/metabolismo , Vias Aferentes/metabolismo , Animais , Estrogênios/metabolismo , Feminino , Hipertensão/metabolismo , Masculino , Pressorreceptores/metabolismo , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Ratos Wistar , Substância P/metabolismo
10.
Brain Behav Immun ; 73: 441-449, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29883598

RESUMO

Electrical stimulation of the vagus nerve (VNS) is a novel strategy used to treat inflammatory conditions. Therapeutic VNS activates both efferent and afferent fibers; however, the effects attributable to vagal afferent stimulation are unclear. Here, we tested if selective activation of afferent fibers in the abdominal vagus suppresses systemic inflammation. In urethane-anesthetized rats challenged with lipopolysaccharide (LPS, 60 µg/kg, i.v.), abdominal afferent VNS (2 Hz for 20 min) reduced plasma tumor necrosis factor alpha (TNF) levels 90 min later by 88% compared with unmanipulated animals. Pre-cutting the cervical vagi blocked this anti-inflammatory action. Interestingly, the surgical procedure to expose and prepare the abdominal vagus for afferent stimulation ('vagal manipulation') also had an anti-inflammatory action. Levels of the anti-inflammatory cytokine IL-10 were inversely related to those of TNF. Prior bilateral section of the splanchnic sympathetic nerves reversed the anti-inflammatory actions of afferent VNS and vagal manipulation. Sympathetic efferent activity in the splanchnic nerve was shown to respond reflexly to abdominal vagal afferent stimulation. These data demonstrate that experimentally activating abdominal vagal afferent fibers suppresses systemic inflammation, and that the efferent neural pathway for this action is in the splanchnic sympathetic nerves.


Assuntos
Inflamação/metabolismo , Nervos Esplâncnicos/fisiologia , Nervo Vago/fisiologia , Abdome/inervação , Vias Aferentes/metabolismo , Vias Aferentes/fisiologia , Animais , Anti-Inflamatórios/farmacologia , Citocinas , Modelos Animais de Doenças , Inflamação/imunologia , Interleucina-10/análise , Interleucina-10/sangue , Lipopolissacarídeos/farmacologia , Masculino , Vias Neurais , Ratos , Ratos Sprague-Dawley , Nervos Esplâncnicos/imunologia , Sistema Nervoso Simpático , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/sangue , Nervo Vago/imunologia , Estimulação do Nervo Vago/métodos
11.
Neurosci Lett ; 678: 1-7, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29705538

RESUMO

Previous studies have shown that peripheral ionotropic glutamate receptors are involved in the increase in sensitivity of a cutaneous branch of spinal dorsal ramus (CBDR) through antidromic electrical stimulation (ADES) of another CBDR in the adjacent segment. CBDR in the thoracic segments run parallel to each other and no synaptic contact at the periphery is reported. The present study investigated whether the increased sensitivity of peripheral sensory nerves via ADES of a CBDR induced Fos expression changes in the adjacent segments of the spinal cord. Fos expression increased in the T8 - T12 segments of the spinal cord evoked by ADES of the T10 CBDR in rats. The increased Fos expression in the T11 and T12, but not T8 - T10 spinal cord segments, was significantly blocked by local application of either N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) or non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) into the receptive field of T11 CBDR. The results suggest that endogenous glutamate released by ADES of sensory nerve may bind to peripheral ionotropic glutamate receptors and activate adjacent sensory nerve endings to increase the sensitivity of the spinal cord. These data reveal the potential mechanisms of neuron activation in the spinal cord evoked by peripheral sensitization.


Assuntos
Gânglios Espinais/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Medula Espinal/metabolismo , Vias Aferentes/metabolismo , Animais , Estimulação Elétrica , Masculino , Ratos Sprague-Dawley , Pele/inervação
12.
eNeuro ; 5(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627644

RESUMO

BDNF is a critical contributor to neuronal growth, development, learning, and memory. Although extensively studied in the brain, BDNF is also expressed by primary afferent sensory neurons in the peripheral nervous system. Unfortunately, anatomical and functional studies of primary afferent-derived BDNF have been limited by the availability of appropriate molecular tools. Here, we used targeted, inducible molecular approaches to characterize the expression pattern of primary afferent BDNF and the extent to which it contributes to a variety of pain and itch behaviors. Using a BDNF-LacZ reporter mouse, we found that BDNF is expressed primarily by myelinated primary afferents and has limited overlap with the major peptidergic and non-peptidergic subclasses of nociceptors and pruritoceptors. We also observed extensive neuronal, but not glial, expression in the spinal cord dorsal horn. In addition, because BDNF null mice are not viable and even Cre-mediated deletion of BDNF from sensory neurons could have developmental consequences, here we deleted BDNF selectively from sensory neurons, in the adult, using an advillin-Cre-ER line crossed to floxed BDNF mice. We found that BDNF deletion in the adult altered few itch or acute and chronic pain behaviors, beyond sexually dimorphic phenotypes in the tail immersion, histamine, and formalin tests. Based on the anatomical distribution of sensory neuron-derived BDNF and its limited contribution to pain and itch processing, we suggest that future studies of primary afferent-derived BDNF should examine behaviors evoked by activation of myelinated primary afferents.


Assuntos
Vias Aferentes/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Fibras Nervosas Mielinizadas/metabolismo , Dor/metabolismo , Prurido/metabolismo , Animais , Antineoplásicos Fitogênicos/toxicidade , Fator Neurotrófico Derivado do Encéfalo/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Adjuvante de Freund/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Histamina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Paclitaxel/toxicidade , Dor/induzido quimicamente , Medição da Dor , Prurido/induzido quimicamente
13.
J Comp Neurol ; 526(3): 425-438, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29055051

RESUMO

Type II spiral ganglion neurons (SGNs) are small caliber, unmyelinated afferents that extend dendritic arbors hundreds of microns along the cochlear spiral, contacting many outer hair cells (OHCs). Despite these many contacts, type II afferents are insensitive to sound and only weakly depolarized by glutamate release from OHCs. Recent studies suggest that type II afferents may be cochlear nociceptors, and can be excited by ATP released during tissue damage, by analogy to somatic pain-sensing C-fibers. The present work compares the expression patterns among cochlear type II afferents of two genes found in C-fibers: calcitonin-related polypeptide alpha (Calca/Cgrpα), specific to pain-sensing C-fibers, and tyrosine hydroxylase (Th), specific to low-threshold mechanoreceptive C-fibers, which was shown previously to be a selective biomarker of type II versus type I cochlear afferents (Vyas et al., ). Whole-mount cochlear preparations from 3-week- to 2-month-old CGRPα-EGFP (GENSAT) mice showed expression of Cgrpα in a subset of SGNs with type II-like peripheral dendrites extending beneath OHCs. Double labeling with other molecular markers confirmed that the labeled SGNs were neither type I SGNs nor olivocochlear efferents. Cgrpα starts to express in type II SGNs before hearing onset, but the expression level declines in the adult. The expression patterns of Cgrpα and Th formed opposing gradients, with Th being preferentially expressed in apical and Cgrpα in basal type II afferent neurons, indicating heterogeneity among type II afferent neurons. The expression of Th and Cgrpα was not mutually exclusive and co-expression could be observed, most abundantly in the middle cochlear turn.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células Receptoras Sensoriais/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Vias Aferentes/crescimento & desenvolvimento , Vias Aferentes/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Audição/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miosinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
14.
Sci Rep ; 7(1): 15865, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158567

RESUMO

Patients with interstitial cystitis/bladder pain syndrome (IC/BPS) suffer from chronic pain that severely affects quality of life. Although the underlying pathophysiology is not well understood, inhibition of bladder sensory afferents temporarily relieves pain. Here, we explored the possibility that optogenetic inhibition of nociceptive sensory afferents could be used to modulate bladder pain. The light-activated inhibitory proton pump Archaerhodopsin (Arch) was expressed under control of the sensory neuron-specific sodium channel (sns) gene to selectively silence these neurons. Optically silencing nociceptive sensory afferents significantly blunted the evoked visceromotor response to bladder distension and led to small but significant changes in bladder function. To study of the role of nociceptive sensory afferents in freely behaving mice, we developed a fully implantable, flexible, wirelessly powered optoelectronic system for the long-term manipulation of bladder afferent expressed opsins. We found that optogenetic inhibition of nociceptive sensory afferents reduced both ongoing pain and evoked cutaneous hypersensitivity in the context of cystitis, but had no effect in uninjured, naïve mice. These results suggest that selective optogenetic silencing of nociceptive bladder afferents may represent a potential future therapeutic strategy for the treatment of bladder pain.


Assuntos
Hiperalgesia/fisiopatologia , Dor Nociceptiva/fisiopatologia , Dor Pélvica/fisiopatologia , Bexiga Urinária/fisiopatologia , Vias Aferentes/metabolismo , Animais , Proteínas Arqueais/genética , Cistite Intersticial/genética , Cistite Intersticial/fisiopatologia , Gânglios Espinais , Humanos , Hiperalgesia/genética , Camundongos , Neurônios Aferentes/patologia , Dor Nociceptiva/genética , Optogenética/métodos , Dor Pélvica/genética , Qualidade de Vida , Canais de Sódio/genética
15.
Neuroscience ; 357: 185-196, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28576729

RESUMO

Newly formed ectopic hair-cell-like cells (EHCLCs) induced by overexpression of atonal homolog 1 (Atoh1) in vitro were found to possess features of endogenous hair cells (HCs) in previous reports and in the present study. However, limited information is available regarding whether EHCLCs and native spiral ganglion neurons (SGNs) form afferent synapses, which are important for the restoration of hearing. In the current study, we focused on the afferent synaptogenesis between EHCLCs and SGN-derived dendrites. Cochlear explants of auditory epithelia with native SGNs retained were cultured in vitro, and human adenovirus serotype 5 (Ad5) vectors encoding Atoh1 were used to overexpress Atoh1 and induce EHCLCs. We observed that the neurites of the original SGNs extended toward the lesser epithelial ridge (LER) and innervated the EHCLCs. Immunohistochemical analyses revealed the expression of presynaptic ribbon C-terminal-binding protein 2 (CtBP2) and postsynaptic density protein (PSD)-95 in the nerve endings of SGN-derived neurons adjacent to EHCLCs. PSD-95 was located directly opposite CtBP2-positive puncta in the terminals of branches of SGNs, demonstrating that the neurites of SGNs formed afferent-like synaptic connections with EHCLCs. However, the expression of glutamate receptor type 2 (GluR2) could not be detected in the terminals of branches of SGNs surrounding EHCLCs. In addition, we found that the presynaptic ribbon (CtBP2) formation in EHCLCs preceded neural innervation. Furthermore, CtBP2-positive puncta increased and then decreased in EHCLCs, similar to the changes observed in endogenous HCs in terms of their number and distribution. Our finding of the generation of cochlear afferent synapses between EHCLCs and original SGNs will lay the foundation for regenerative approaches to restoring hearing after hair cell loss.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Ciliadas Auditivas/metabolismo , Neuritos/metabolismo , Sinapses/metabolismo , Adenovírus Humanos/genética , Vias Aferentes/citologia , Vias Aferentes/metabolismo , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteínas do Olho/metabolismo , Vetores Genéticos , Células Ciliadas Auditivas/citologia , Imuno-Histoquímica , Crescimento Neuronal/fisiologia , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Técnicas de Cultura de Tecidos
16.
Auton Neurosci ; 204: 48-56, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28126464

RESUMO

Presympathetic neurons in the rostral ventrolateral medulla (RVLM) including the adrenergic cell groups play a major role in the modulation of several reflexes required for the control of sympathetic vasomotor tone and blood pressure (BP). Moreover, sympathetic vasomotor drive to the kidneys influence natriuresis and diuresis by inhibiting the cAMP/PKA pathway and redistributing the Na+/H+ exchanger isoform 3 (NHE3) to the body of the microvilli in the proximal tubules. In this study we aimed to evaluate the effects of renal afferents stimulation on (1) the neurochemical phenotype of Fos expressing neurons in the medulla oblongata and (2) the level of abundance and phosphorylation of NHE3 in the renal cortex. We found that electrical stimulation of renal afferents increased heart rate and BP transiently and caused activation of tyrosine hydroxylase (TH)-containing neurons in the RVLM and non-TH neurons in the NTS. Additionally, activation of the inhibitory renorenal reflex over a 30-min period resulted in increased natriuresis and diuresis associated with increased phosphorylation of NHE3 at serine 552, a surrogate for reduced activity of this exchanger, in the contralateral kidney. This effect was not dependent of BP changes considering that no effects on natriuresis or diuresis were found in the ipsilateral-stimulated kidney. Therefore, our data show that renal afferents leads to activation of catecholaminergic and non-catecholaminergic neurons in the medulla oblongata. When renorenal reflex is induced, NHE3 exchanger activity appears to be decreased, resulting in decreased sodium and water reabsorption in the contralateral kidney.


Assuntos
Catecolaminas/metabolismo , Rim/inervação , Rim/metabolismo , Bulbo/metabolismo , Neurônios/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Vias Aferentes/citologia , Vias Aferentes/metabolismo , Animais , Pressão Sanguínea/fisiologia , Estimulação Elétrica , Frequência Cardíaca/fisiologia , Imuno-Histoquímica , Rim/citologia , Masculino , Bulbo/citologia , Neurônios/citologia , Fosforilação , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Reflexo/fisiologia , Trocador 3 de Sódio-Hidrogênio , Tirosina 3-Mono-Oxigenase/metabolismo
17.
J Pharmacol Exp Ther ; 361(1): 151-161, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28115552

RESUMO

Xenin-25, a neurotensin (NT)-related anorexigenic gut hormone generated mostly in the duodenal mucosa, is believed to increase the rate of duodenal ion secretion, because xenin-induced diarrhea is not present after Roux-en-Y gastric bypass surgery. Because the local effects of xenin on duodenal ion secretion have remained uninvestigated, we thus examined the neural pathways underlying xenin-induced duodenal anion secretion. Intravenous infusion of xenin-8, a bioactive C-terminal fragment of xenin-25, dose dependently increased the rate of duodenal HCO3- secretion in perfused duodenal loops of anesthetized rats. Xenin was immunolocalized to a subset of enteroendocrine cells in the rat duodenum. The mRNA of the xenin/NT receptor 1 (NTS1) was predominantly expressed in the enteric plexus, nodose and dorsal root ganglia, and in the lamina propria rather than in the epithelium. The serosal application of xenin-8 or xenin-25 rapidly and transiently increased short-circuit current in Ussing-chambered mucosa-submucosa preparations in a concentration-dependent manner in the duodenum and jejunum, but less so in the ileum and colon. The selective antagonist for NTS1, substance P (SP) receptor (NK1), or 5-hydroxytryptamine (5-HT)3, but not NTS2, inhibited the responses to xenin. Xenin-evoked Cl- secretion was reduced by tetrodotoxin (TTX) or capsaicin-pretreatment, and abolished by the inhibitor of TTX-resistant sodium channel Nav1.8 in combination with TTX, suggesting that peripheral xenin augments duodenal HCO3- and Cl- secretion through NTS1 activation on intrinsic and extrinsic afferent nerves, followed by release of SP and 5-HT. Afferent nerve activation by postprandial, peripherally released xenin may account for its secretory effects in the duodenum.


Assuntos
Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Neurotensina/farmacologia , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/metabolismo , Animais , Relação Dose-Resposta a Droga , Hormônios Gastrointestinais/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
18.
Auton Neurosci ; 204: 35-47, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27717709

RESUMO

In some patients, renal nerve denervation has been reported to be an effective treatment for essential hypertension. Considerable evidence suggests that afferent renal nerves (ARN) and sodium balance play important roles in the development and maintenance of high blood pressure. ARN are sensitive to sodium concentrations in the renal pelvis. To better understand the role of ARN, we infused isotonic or hypertonic NaCl (308 or 500mOsm) into the left renal pelvis of conscious rats for two 2hours while recording arterial pressure and heart rate. Subsequently, brain tissue was analyzed for immunohistochemical detection of the protein Fos, a marker for neuronal activation. Fos-immunoreactive neurons were identified in numerous sites in the forebrain and brainstem. These areas included the nucleus tractus solitarius (NTS), the lateral parabrachial nucleus, the paraventricular nucleus of the hypothalamus (PVH) and the supraoptic nucleus (SON). The most effective stimulus was 500mOsm NaCl. Activation of these sites was attenuated or prevented by administration of benzamil (1µM) or amiloride (10µM) into the renal pelvis concomitantly with hypertonic saline. In anesthetized rats, infusion of hypertonic saline but not isotonic saline into the renal pelvis elevated ARN activity and this increase was attenuated by simultaneous infusion of benzamil or amiloride. We propose that renal pelvic epithelial sodium channels (ENaCs) play a role in activation of ARN and, via central visceral afferent circuits, this system modulates fluid volume and peripheral blood pressure. These pathways may contribute to the development of hypertension.


Assuntos
Encéfalo/metabolismo , Canais Epiteliais de Sódio/metabolismo , Rim/inervação , Rim/metabolismo , Neurônios Aferentes/metabolismo , Solução Salina Hipertônica/administração & dosagem , Vias Aferentes/citologia , Vias Aferentes/metabolismo , Animais , Pressão Sanguínea/fisiologia , Encéfalo/citologia , Frequência Cardíaca/fisiologia , Imuno-Histoquímica , Masculino , Neurônios Aferentes/citologia , Fotomicrografia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Sódio na Dieta/administração & dosagem
19.
Curr Neuropharmacol ; 15(4): 620-636, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27157265

RESUMO

BACKGROUND: Chronic pain is a major symptom that develops in cancer patients, most commonly emerging during advanced stages of the disease. The nature of cancer-induced pain is complex, and the efficacy of current therapeutic interventions is restricted by the dose-limiting sideeffects that accompany common centrally targeted analgesics. METHODS: This review focuses on how up-regulated glutamate production and export by the tumour converge at peripheral afferent nerve terminals to transmit nociceptive signals through the transient receptor cation channel, TRPV1, thereby initiating central sensitization in response to peripheral disease-mediated stimuli. RESULTS: Cancer cells undergo numerous metabolic changes that include increased glutamine catabolism and over-expression of enzymes involved in glutaminolysis, including glutaminase. This mitochondrial enzyme mediates glutaminolysis, producing large pools of intracellular glutamate. Upregulation of the plasma membrane cystine/glutamate antiporter, system xc -, promotes aberrant glutamate release from cancer cells. Increased levels of extracellular glutamate have been associated with the progression of cancer-induced pain and we discuss how this can be mediated by activation of TRPV1. CONCLUSION: With a growing population of patients receiving inadequate treatment for intractable pain, new targets need to be considered to better address this largely unmet clinical need for improving their quality of life. A better understanding of the mechanisms that underlie the unique qualities of cancer pain will help to identify novel targets that are able to limit the initiation of pain from a peripheral source-the tumour.


Assuntos
Dor do Câncer/metabolismo , Ácido Glutâmico/metabolismo , Vias Aferentes/metabolismo , Animais , Humanos , Canais de Cátion TRPV/metabolismo
20.
Hypertension ; 67(4): 783-91, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26883269

RESUMO

This study aims to understand the special expression patterns of angiotensin-II receptor (AT1R and AT2R) in nodose ganglia and nucleus of tractus solitary of baroreflex afferent pathway and their contribution in sex difference of neurocontrol of blood pressure regulation. In this regard, action potentials were recorded in baroreceptor neurons (BRNs) using whole-cell patch techniques; mRNA and protein expression of AT1R and AT2R in nodose ganglia and nucleus of tractus solitary were evaluated using real time-polymerase chain reaction, Western blot, and immunohistochemistry at both tissue and single-cell levels. The in vivo effects of 17ß-estradiol on blood pressure and AT2R expression were also tested. The data showed that AT2R, rather than AT1R, expression was higher in female than age-matched male rats. Moreover, AT2R was downregulated in ovariectomized rats, which was restored by the administration of 17ß-estradiol. Single-cell real time-polymerase chain reaction data indicated that AT2R was uniquely expressed in Ah-type BRNs. Functional study showed that long-term administration of 17ß-estradiol significantly alleviated the blood pressure increase in ovariectomized rats. Electrophysiological recordings showed that angiotensin-II treatment increased the neuroexcitability more in Ah- than C-type BRNs, whereas no such effect was observed in A-types. In addition, angiotensin-II treatment prolonged action potential duration, which was not further changed by iberiotoxin. The density of angiotensin-II-sensitive K(+) currents recorded in Ah-types was equivalent with iberiotoxin-sensitive component. In summary, the unique, sex- and afferent-specific expression of AT2R was identified in Ah-type BRNs, and AT2R-mediated KCa1.1 inhibition in Ah-type BRNs may exert great impacts on baroreflex afferent function and blood pressure regulation in females.


Assuntos
Angiotensina II/farmacologia , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Pressorreceptores/efeitos dos fármacos , Receptor Tipo 2 de Angiotensina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Vias Aferentes/metabolismo , Análise de Variância , Animais , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Feminino , Masculino , Gânglio Nodoso/metabolismo , Ovariectomia/métodos , Pressorreceptores/fisiologia , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA