Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Cereb Cortex ; 30(3): 913-928, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298263

RESUMO

Neural progenitor proliferation, neuronal migration, areal organization, and pioneer axon wiring are critical events during early forebrain development, yet remain incompletely understood, especially in human. Here, we studied forebrain development in human embryos aged 5 to 8 postconceptional weeks (WPC5-8), stages that correspond to the neuroepithelium/early marginal zone (WPC5), telencephalic preplate (WPC6 & 7), and incipient cortical plate (WPC8). We show that early telencephalic neurons are formed at the neuroepithelial stage; the most precocious ones originate from local telencephalic neuroepithelium and possibly from the olfactory placode. At the preplate stage, forebrain organization is quite similar in human and mouse in terms of areal organization and of differentiation of Cajal-Retzius cells, pioneer neurons, and axons. Like in mice, axons from pioneer neurons in prethalamus, ventral telencephalon, and cortical preplate cross the diencephalon-telencephalon junction and the pallial-subpallial boundary, forming scaffolds that could guide thalamic and cortical axons at later stages. In accord with this model, at the early cortical plate stage, corticofugal axons run in ventral telencephalon in close contact with scaffold neurons, which express CELSR3 and FZD3, two molecules that regulates formation of similar scaffolds in mice.


Assuntos
Axônios/fisiologia , Neurônios/fisiologia , Prosencéfalo/embriologia , Moléculas de Adesão Celular Neuronais/metabolismo , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Idade Gestacional , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/embriologia , Vias Neurais/metabolismo , Neurônios/metabolismo , Prosencéfalo/metabolismo , Proteína Reelina , Serina Endopeptidases/metabolismo
2.
Elife ; 52016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27648578

RESUMO

The regulation of protein degradation is essential for maintaining the appropriate environment to coordinate complex cell signaling events and to promote cellular remodeling. The Autophagy linked FYVE protein (Alfy), previously identified as a molecular scaffold between the ubiquitinated cargo and the autophagic machinery, is highly expressed in the developing central nervous system, indicating that this pathway may have yet unexplored roles in neurodevelopment. To examine this possibility, we used mouse genetics to eliminate Alfy expression. We report that this evolutionarily conserved protein is required for the formation of axonal tracts throughout the brain and spinal cord, including the formation of the major forebrain commissures. Consistent with a phenotype reflecting a failure in axon guidance, the loss of Alfy in mice disrupts localization of glial guidepost cells, and attenuates axon outgrowth in response to Netrin-1. These findings further support the growing indication that macroautophagy plays a key role in the developing CNS.


Assuntos
Encéfalo/embriologia , Vias Neurais/embriologia , Neurônios/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Relacionadas à Autofagia , Técnicas de Inativação de Genes , Camundongos Endogâmicos C57BL
3.
Cereb Cortex ; 26(5): 2257-2270, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25882037

RESUMO

Excitatory cortical neurons project to various subcortical and intracortical regions, and exhibit diversity in their axonal connections. Although this diversity may develop from primary axons, how many types of axons initially occur remains unknown. Using a sparse-labeling in utero electroporation method, we investigated the axonal outgrowth of these neurons in mice and correlated the data with axonal projections in adults. Examination of lateral cortex neurons labeled during the main period of cortical neurogenesis (E11.5-E15.5) indicated that axonal outgrowth commonly occurs in the intermediate zone. Conversely, the axonal direction varied; neurons labeled before E12.5 and the earliest cortical plate neurons labeled at E12.5 projected laterally, whereas neurons labeled thereafter projected medially. The expression of Ctip2 and Satb2 and the layer destinations of these neurons support the view that lateral and medial projection neurons are groups of prospective subcortical and callosal projection neurons, respectively. Consistently, birthdating experiments demonstrated that presumptive lateral projection neurons were generated earlier than medial projection neurons, even within the same layer. These results suggest that the divergent axonal connections of excitatory cortical neurons begin from two types of primary axons, which originate from two sequentially generated distinct subpopulations: early-born lateral (subcortical) and later-born medial (callosal) projection neuron groups.


Assuntos
Axônios/fisiologia , Córtex Cerebral/embriologia , Córtex Cerebral/fisiologia , Neurogênese , Neurônios/fisiologia , Animais , Córtex Cerebral/metabolismo , Eletroporação , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Vias Neurais/embriologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Neurônios/metabolismo , Proteínas Repressoras , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor
4.
Neuroscience ; 314: 134-44, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26642808

RESUMO

Fibroblast growth factors (FGFs) regulate development and maintenance, and reduce vulnerability of neurons. FGF-2 is essential for survival of midbrain dopaminergic (DA) neurons and is responsible for their dysplasia and disease-related degeneration. We previously reported that FGF-2 is involved in adequate forebrain (FB) target innervation by these neurons in an organotypic co-culture model. It remains unclear, how this ex-vivo phenotype relates to the in vivo situation, and which FGF-related signaling pathway is involved in this process. Here, we demonstrate that lack of FGF-2 results in an increased volume of the striatal target area in mice. We further add evidence that the low molecular weight (LMW) FGF-2 isoform is responsible for this phenotype, as this isoform is predominantly expressed in the embryonic ventral midbrain (VM) as well as in postnatal striatum (STR) and known to act via canonical transmembrane FGF receptor (FGFR) activation. Additionally, we confirm that the phenotype with an enlarged FB-target area by DA neurons can be mimicked in an ex-vivo explant model by inhibiting the canonical FGFR signaling, which resulted in decreased extracellular signal-regulated kinase (ERK) activation, while AKT activation remained unchanged.


Assuntos
Corpo Estriado/citologia , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/citologia , Fator 2 de Crescimento de Fibroblastos/fisiologia , Substância Negra/citologia , Substância Negra/metabolismo , Animais , Corpo Estriado/embriologia , Neurônios Dopaminérgicos/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/citologia , Vias Neurais/embriologia , Vias Neurais/metabolismo , Prosencéfalo , Isoformas de Proteínas/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Substância Negra/embriologia , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Exp Neurol ; 271: 215-27, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26079645

RESUMO

LIS1 is one of principal genes related with Type I lissencephaly, a severe human brain malformation characterized by abnormal neuronal migration in the cortex. The LIS1 gene encodes a brain-specific 45kDa non-catalytic subunit of platelet-activating factor (PAF) acetylhydrolase-1b (PAFAH1b), an enzyme that inactivates the PAF. We have studied the role of Lis1 using a Lis1/sLis1 murine model, which has deleted the first coding exon from Lis1 gene. Homozygous mice are not viable but heterozygous have shown a delayed corticogenesis and neuronal dysplasia, with enhanced cortical excitability. Lis1/sLis1 embryos also exhibited a delay of cortical innervation by the thalamocortical fibers. We have explored in Lis1/sLis1 mice anomalies in forebrain cholinergic neuron development, which migrate from pallium to subpallium, and functionally represent the main cholinergic input to the cerebral cortex, modulating cortical activity and facilitating attention, learning, and memory. We hypothesized that primary migration anomalies and/or disorganized cortex could affect cholinergic projections from the basal forebrain and septum in Lis1/sLis1 mouse. To accomplish our objective we have first studied basal forebrain neurons in Lis1/sLis1 mice during development, and described structural and hodological differences between wild-type and Lis1/sLis1 embryos. In addition, septohippocampal projections showed altered development in mutant embryos. Basal forebrain abnormalities could contribute to hippocampal excitability anomalies secondary to Lis1 mutations and may explain the cognitive symptoms associated to cortical displasia-related mental diseases and epileptogenic syndromes.


Assuntos
Acetilcolinesterase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo , Lisencefalia/patologia , Mutação/genética , Proteínas do Tecido Nervoso/genética , Septo do Cérebro , Fatores Etários , Animais , Animais Recém-Nascidos , Contagem de Células , Proliferação de Células/genética , Modelos Animais de Doenças , Embrião de Mamíferos , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/genética , Hipocampo/embriologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Lisencefalia/genética , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Vias Neurais/embriologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/patologia , Septo do Cérebro/embriologia , Septo do Cérebro/crescimento & desenvolvimento , Septo do Cérebro/patologia
6.
J Neurochem ; 134(6): 1008-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25913325

RESUMO

As our understanding of motor circuit function increases, our need to understand how circuits form to ensure proper function becomes increasingly important. Recently, deleted in colorectal cancer (DCC) has been shown to be important in the development of spinal circuits necessary for gait. Importantly, humans with mutation in DCC show mirror movement disorders pointing to the significance of DCC in the development of spinal circuits for coordinated movement. Although DCC binds a number of ligands, the intracellular signaling cascade leading to the aberrant spinal circuits remains unknown. Here, we show that the non-catalytic region of tyrosine kinase adaptor (NCK) proteins 1 and 2 are distributed in the developing spinal cord. Using dissociated dorsal spinal neuron cultures we show that NCK proteins are necessary for the outgrowth and growth cone architecture of DCC(+ve) dorsal spinal neurons. Consistent with a role for NCK in DCC signaling, we show that loss of NCK proteins leads to a reduction in the thickness of TAG1(+ve) commissural bundles in the floor plate and loss of DCC mRNA in vivo. We suggest that DCC signaling functions through NCK1 and NCK2 and that both proteins are necessary for the establishment of normal spinal circuits necessary for gait. Reduction in NCK proteins in the developing CNS leads to a reduction in TAG1(+ve) commissural tract thickness, a reduction in growth cone complexity of DCC(+ve) spinal interneurons, and a reduction in DCC mRNA. These are consistent with an in vivo role for NCK in the development of critical DCC spinal circuits, and may be important for the normal development of spinal circuits critical for walking.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vias Neurais/embriologia , Neurogênese/fisiologia , Proteínas Oncogênicas/metabolismo , Receptores de Superfície Celular/metabolismo , Medula Espinal/embriologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Receptor DCC , Cones de Crescimento/metabolismo , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Camundongos Knockout , Vias Neurais/metabolismo , Neurônios/metabolismo , Medula Espinal/metabolismo , Transfecção
7.
Cereb Cortex ; 25(2): 460-71, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24014668

RESUMO

The corticothalamic and thalamocortical tracts play essential roles in the communication between the cortex and thalamus. During development, axons forming these tracts have to follow a complex path to reach their target areas. While much attention has been paid to the mechanisms regulating their passage through the ventral telencephalon, very little is known about how the developing cortex contributes to corticothalamic/thalamocortical tract formation. Gli3 encodes a zinc finger transcription factor widely expressed in telencephalic progenitors which has important roles in corticothalamic and thalamocortical pathfinding. Here, we conditionally inactivated Gli3 in dorsal telencephalic progenitors to determine its role in corticothalamic tract formation. In Emx1Cre;Gli3(fl/fl) mutants, only a few corticothalamic axons enter the striatum in a restricted dorsal domain. This restricted entry correlates with a medial expansion of the piriform cortex. Transplantation experiments showed that the expanded piriform cortex repels corticofugal axons. Moreover, expression of Sema5B, a chemorepellent for corticofugal axons produced by the piriform cortex, is similarly expanded. Finally, time course analysis revealed an expansion of the ventral pallial progenitor domain which gives rise to the piriform cortex. Hence, control of lateral cortical development by Gli3 at the progenitor level is crucial for corticothalamic pathfinding.


Assuntos
Axônios/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Córtex Piriforme/embriologia , Córtex Piriforme/fisiopatologia , Tálamo/embriologia , Tálamo/fisiopatologia , Animais , Axônios/patologia , Corpo Estriado/embriologia , Corpo Estriado/patologia , Corpo Estriado/fisiopatologia , Imuno-Histoquímica , Hibridização In Situ , Fatores de Transcrição Kruppel-Like/genética , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/genética , Vias Neurais/embriologia , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Córtex Piriforme/patologia , Semaforinas/metabolismo , Tálamo/patologia , Técnicas de Cultura de Tecidos , Proteína Gli3 com Dedos de Zinco
8.
Mol Cell Biol ; 34(20): 3895-910, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25113559

RESUMO

The globus pallidus (GP) is a central component of basal ganglia whose malfunctions cause a variety of neuropsychiatric disorders as well as cognitive impairments in neurodegenerative diseases such as Parkinson's disease. Here we report that the protocadherin gene Celsr3 is regulated by the insulator CCCTC-binding factor (CTCF) and the repressor neuron-restrictive silencer factor (NRSF, also known as REST) and is required for the development and connectivity of GP. Specifically, CTCF/cohesin and NRSF inhibit the expression of Celsr3 through specific binding to its promoter. In addition, we found that the Celsr3 promoter interacts with CTCF/cohesin-occupied neighboring promoters. In Celsr3 knockout mice, we found that the ventral GP is occupied by aberrant calbindin-positive cholinergic neurons ectopic from the nucleus basalis of Meynert. Furthermore, the guidepost cells for thalamocortical axonal development are missing in the caudal GP. Finally, axonal connections of GP with striatum, subthalamic nucleus, substantia nigra, and raphe are compromised. These data reveal the essential role of Celsr3 in GP development in the basal forebrain and shed light on the mechanisms of the axonal defects caused by the Celsr3 deletion.


Assuntos
Caderinas/genética , Regulação da Expressão Gênica no Desenvolvimento , Globo Pálido/fisiologia , Receptores de Superfície Celular/genética , Animais , Axônios/metabolismo , Sequência de Bases , Caderinas/metabolismo , Neurônios Colinérgicos/metabolismo , Globo Pálido/citologia , Globo Pálido/embriologia , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout , Vias Neurais/embriologia , Vias Neurais/metabolismo , Regiões Promotoras Genéticas , Receptores de Superfície Celular/metabolismo , Proteínas Repressoras/metabolismo
9.
J Comp Neurol ; 522(1): 6-35, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23749646

RESUMO

During development of the cerebral cortex, neural stem cells divide to expand the progenitor pool and generate basal progenitors, outer radial glia, and cortical neurons. As these newly born neurons differentiate, they must properly migrate toward their final destination in the cortical plate, project axons to appropriate targets, and develop dendrites. However, a complete understanding of the precise genetic mechanisms regulating these steps is lacking. Here we show that a member of the nuclear factor one (NFI) family of transcription factors, NFIB, is essential for many of these processes in mice. We performed a detailed analysis of NFIB expression during cortical development, and investigated defects in cortical neurogenesis, neuronal migration, and differentiation in NfiB(-/-) brains. We found that NFIB is strongly expressed in radial glia and corticofugal neurons throughout cortical development. However, in NfiB(-/-) cortices, radial glia failed to generate outer radial glia, subsequently resulting in a loss of late basal progenitors. In addition, corticofugal neurons showed a severe loss of axonal projections, whereas late-born cortical neurons displayed defects in migration and ectopically expressed the early-born neuronal marker CTIP2. Furthermore, gene expression analysis, by RNA sequencing, revealed a misexpression of genes that regulate the cell cycle, neuronal differentiation and migration in NfiB(-/-) brains. Together these results demonstrate the critical functions of NFIB in regulating cortical development.


Assuntos
Axônios/fisiologia , Córtex Cerebral/fisiologia , Fatores de Transcrição NFI/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese , Neurônios/fisiologia , Animais , Ciclo Celular/fisiologia , Movimento Celular , Córtex Cerebral/embriologia , Feminino , Perfilação da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Fatores de Transcrição NFI/genética , Vias Neurais/embriologia , Vias Neurais/fisiologia , Células-Tronco Neurais/citologia , Neuroglia/citologia , Neuroglia/fisiologia , Neurônios/citologia , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo
10.
Science ; 339(6116): 204-7, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23307742

RESUMO

We investigated the role of histone methyltransferase Ezh2 in tangential migration of mouse precerebellar pontine nuclei, the main relay between neocortex and cerebellum. By counteracting the sonic hedgehog pathway, Ezh2 represses Netrin1 in dorsal hindbrain, which allows normal pontine neuron migration. In Ezh2 mutants, ectopic Netrin1 derepression results in abnormal migration and supernumerary nuclei integrating in brain circuitry. Moreover, intrinsic topographic organization of pontine nuclei according to rostrocaudal progenitor origin is maintained throughout migration and correlates with patterned cortical input. Ezh2 maintains spatially restricted Hox expression, which, in turn, regulates differential expression of the repulsive receptor Unc5b in migrating neurons; together, they generate subsets with distinct responsiveness to environmental Netrin1. Thus, Ezh2-dependent epigenetic regulation of intrinsic and extrinsic transcriptional programs controls topographic neuronal guidance and connectivity in the cortico-ponto-cerebellar pathway.


Assuntos
Cerebelo/embriologia , Vias Neurais/embriologia , Neurônios/fisiologia , Complexo Repressor Polycomb 2/metabolismo , Ponte/embriologia , Animais , Movimento Celular , Cerebelo/citologia , Cerebelo/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Proteínas de Homeodomínio/metabolismo , Metencéfalo/embriologia , Camundongos , Camundongos Transgênicos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Receptores de Netrina , Netrina-1 , Vias Neurais/fisiologia , Complexo Repressor Polycomb 2/genética , Ponte/citologia , Ponte/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Dev Biol ; 367(2): 126-39, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22575706

RESUMO

The development of axon tracts in the early vertebrate brain is controlled by combinations of soluble, membrane-bound and extracellular matrix molecules. How these multiple and sometimes conflicting guidance cues are integrated in order to establish stereotypical pathways remains to be determined. We show here that when interactions between the chemoattractive signal Netrin1a and its receptor Dcc are suppressed using a loss-of-function approach, a novel axon trajectory emerges in the dorsal diencephalon. Axons arising from a subpopulation of telencephalic neurons failed to project rostrally into the anterior commissure in the absence of either Netrin1a or Dcc. Instead these axons inappropriately exited the telencephalon and ectopically coursed caudally into virgin neuroepithelium. This response was highly specific since loss-of-function of Netrin1b, a paralogue of Netrin1a, generated a distinct phenotype in the rostral brain. These results show that a subpopulation of telencephalic neurons, when freed from long-range chemoattraction mediated by Netrin1a-Dcc interactions, follow alternative instructive cues that lead to creation of an ectopic axon bundle in the diencephalon. This work provides insight into how integration of multiple guidance signals defines the initial scaffold of axon tracts in the embryonic vertebrate forebrain.


Assuntos
Axônios/metabolismo , Prosencéfalo/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Fatores Quimiotáticos/genética , Fatores Quimiotáticos/metabolismo , Receptor DCC , DNA Antissenso/genética , Diencéfalo/embriologia , Diencéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Fatores de Crescimento Neural/deficiência , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Netrina-1 , Vias Neurais/embriologia , Vias Neurais/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Prosencéfalo/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
12.
BMC Neurosci ; 13: 20, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22360971

RESUMO

BACKGROUND: The mammalian thalamus relays sensory information from the periphery to the cerebral cortex for cognitive processing via the thalamocortical tract. The thalamocortical tract forms during embryonic development controlled by mechanisms that are not fully understood. ß-catenin is a nuclear and cytosolic protein that transduces signals from secreted signaling molecules to regulate both cell motility via the cytoskeleton and gene expression in the nucleus. In this study we tested whether ß-catenin is likely to play a role in thalamocortical connectivity by examining its expression and activity in developing thalamic neurons and their axons. RESULTS: At embryonic day (E)15.5, the time when thalamocortical axonal projections are forming, we found that the thalamus is a site of particularly high ß-catenin mRNA and protein expression. As well as being expressed at high levels in thalamic cell bodies, ß-catenin protein is enriched in the axons and growth cones of thalamic axons and its growth cone concentration is sensitive to Netrin-1. Using mice carrying the ß-catenin reporter BAT-gal we find high levels of reporter activity in the thalamus. Further, Netrin-1 induces BAT-gal reporter expression and upregulates levels of endogenous transcripts encoding ß-actin and L1 proteins in cultured thalamic cells. We found that ß-catenin mRNA is enriched in thalamic axons and its 3'UTR is phylogenetically conserved and is able to direct heterologous mRNAs along the thalamic axon, where they can be translated. CONCLUSION: We provide evidence that ß-catenin protein is likely to be an important player in thalamocortcial development. It is abundant both in the nucleus and in the growth cones of post-mitotic thalamic cells during the development of thalamocortical connectivity and ß-catenin mRNA is targeted to thalamic axons and growth cones where it could potentially be translated. ß-catenin is involved in transducing the Netrin-1 signal to thalamic cells suggesting a mechanism by which Netrin-1 guides thalamocortical development.


Assuntos
Axônios/metabolismo , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Tálamo/metabolismo , beta Catenina/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Cones de Crescimento/metabolismo , Camundongos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Netrina-1 , Vias Neurais/embriologia , Vias Neurais/metabolismo , Tálamo/embriologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , beta Catenina/genética
13.
J Neurosci ; 32(2): 411-6, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22238077

RESUMO

Down syndrome cell adhesion molecule (DSCAM) has mainly been characterized for its function as an adhesion molecule in axon growth and in self-recognition between dendrites of the same neuron. Recently, it has been shown that DSCAM can bind to Netrin-1 and that downregulation of DSCAM expression by siRNAs in chick and rodent spinal cords leads to impaired growth and turning response of commissural axons to Netrin-1. To investigate the effect of complete genetic ablation of DSCAM on Netrin-1-induced axon guidance, we analyzed spinal commissural neurons in DSCAM-null mice and found that they extend axons that reach and cross the floor plate and express apparently normal levels of the Netrin receptors DCC (deleted in colorectal carcinoma) and Neogenin. In vitro, commissural neurons in dorsal spinal cord explants of DSCAM-null embryos show normal outgrowth in response to Netrin-1. We therefore conclude that DSCAM is not required for Netrin-induced commissural axon outgrowth and guidance in mice.


Assuntos
Moléculas de Adesão Celular/genética , Cones de Crescimento/metabolismo , Fatores de Crescimento Neural/fisiologia , Vias Neurais/embriologia , Medula Espinal/embriologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Moléculas de Adesão Celular/deficiência , Diferenciação Celular/genética , Feminino , Cones de Crescimento/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Netrina-1 , Vias Neurais/fisiologia , Neurogênese/genética , Medula Espinal/fisiologia
14.
J Matern Fetal Neonatal Med ; 25(8): 1203-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22023261

RESUMO

UNLABELLED: Due to the progress in fetal surgery, it is important to acquire data about fetal pain. MATERIAL AND METHODS: We performed a Medline research from 1995, matching the following key words: "pain" and "fetus", with the following: "subplate", "thalamocortical", "myelination", "analgesia", "anesthesia", "brain", "behavioral states", "substance p". We focused on: (a) fetal development of nociceptive pathways; (b) fetal electrophysiological, endocrinological and behavioral reactions to stimuli and pain. RESULTS: We retrieved 217 papers of which 157 were highly informative; some reported similar data or were only case-reports, and were not quoted. Most endocrinological, behavioral and electrophysiological studies of fetal pain are performed in the third trimester, and they seem to agree that the fetus in the 3rd trimester can experience pain. But the presence of fetal pain in the 2nd trimester is less evident. In favor of a 2nd trimester perception of pain is the early development of spino-thalamic pathways (approximately from the 20th week), and the connections of the thalamus with the subplate (approximately from the 23rd week). Against this possibility, some authors report the immaturity of the cortex with the consequent lack of awareness, and the almost continuous state of sleep of the fetus. CONCLUSIONS: Most studies disclose the possibility of fetal pain in the third trimester of gestation. This evidence becomes weaker before this date, though we cannot exclude its increasing presence since the beginning of the second half of the gestation.


Assuntos
Feto/fisiologia , Nociceptividade/fisiologia , Dor/diagnóstico , Comportamento/fisiologia , Feminino , Desenvolvimento Fetal/fisiologia , Doenças Fetais/diagnóstico , Doenças Fetais/epidemiologia , Doenças Fetais/fisiopatologia , Idade Gestacional , Humanos , Vias Neurais/embriologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Dor/epidemiologia , Gravidez , Tálamo/embriologia , Tálamo/fisiologia
15.
Annu Rev Cell Dev Biol ; 27: 697-729, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21740233

RESUMO

The nervous system consists of an ensemble of billions of neurons interconnected in a highly specific pattern that allows proper propagation and integration of neural activities. The organization of these specific connections emerges from sequential developmental events including axon guidance, target selection, and synapse formation. These events critically rely on cell-cell recognition and communication mediated by cell-surface ligands and receptors. Recent studies have uncovered central roles for leucine-rich repeat (LRR) domain-containing proteins, not only in organizing neural connectivity from axon guidance to target selection to synapse formation, but also in various nervous system disorders. Their versatile LRR domains, in particular, serve as key sites for interactions with a wide diversity of binding partners. Here, we focus on a few exquisite examples of secreted or membrane-associated LRR proteins in Drosophila and mammals and review the mechanisms by which they regulate diverse aspects of nervous system development and function.


Assuntos
Rede Nervosa/embriologia , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/fisiologia , Proteínas/metabolismo , Animais , Axônios/metabolismo , Movimento Celular/fisiologia , Dendritos/metabolismo , Humanos , Proteínas de Repetições Ricas em Leucina , Transtornos Mentais/patologia , Transtornos Mentais/fisiopatologia , Modelos Moleculares , Bainha de Mielina/metabolismo , Rede Nervosa/anatomia & histologia , Vias Neurais/anatomia & histologia , Vias Neurais/embriologia , Vias Neurais/crescimento & desenvolvimento , Neurônios/citologia , Neurônios/fisiologia , Conformação Proteica , Proteínas/química , Proteínas/genética , Receptor trkA/genética , Receptor trkA/metabolismo , Sinapses/fisiologia
16.
J Neurosci ; 31(30): 10948-70, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21795545

RESUMO

Although vastly outnumbered, inhibitory interneurons critically pace and synchronize excitatory principal cell populations to coordinate cortical information processing. Precision in this control relies upon a remarkable diversity of interneurons primarily determined during embryogenesis by genetic restriction of neuronal potential at the progenitor stage. Like their neocortical counterparts, hippocampal interneurons arise from medial and caudal ganglionic eminence (MGE and CGE) precursors. However, while studies of the early specification of neocortical interneurons are rapidly advancing, similar lineage analyses of hippocampal interneurons have lagged. A "hippocampocentric" investigation is necessary as several hippocampal interneuron subtypes remain poorly represented in the neocortical literature. Thus, we investigated the spatiotemporal origins of hippocampal interneurons using transgenic mice that specifically report MGE- and CGE-derived interneurons either constitutively or inducibly. We found that hippocampal interneurons are produced in two neurogenic waves between E9-E12 and E12-E16 from MGE and CGE, respectively, and invade the hippocampus by E14. In the mature hippocampus, CGE-derived interneurons primarily localize to superficial layers in strata lacunosum moleculare and deep radiatum, while MGE-derived interneurons readily populate all layers with preference for strata pyramidale and oriens. Combined molecular, anatomical, and electrophysiological interrogation of MGE/CGE-derived interneurons revealed that MGE produces parvalbumin-, somatostatin-, and nitric oxide synthase-expressing interneurons including fast-spiking basket, bistratified, axo-axonic, oriens-lacunosum moleculare, neurogliaform, and ivy cells. In contrast, CGE-derived interneurons contain cholecystokinin, calretinin, vasoactive intestinal peptide, and reelin including non-fast-spiking basket, Schaffer collateral-associated, mossy fiber-associated, trilaminar, and additional neurogliaform cells. Our findings provide a basic blueprint of the developmental origins of hippocampal interneuron diversity.


Assuntos
Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo , Interneurônios/classificação , Interneurônios/metabolismo , Organizadores Embrionários , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/fisiologia , Análise por Conglomerados , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Hipocampo/embriologia , Hipocampo/crescimento & desenvolvimento , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/embriologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Organizadores Embrionários/citologia , Organizadores Embrionários/embriologia , Organizadores Embrionários/crescimento & desenvolvimento , Peptídeos/genética , Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Proteína Reelina , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
18.
J Neurosci Res ; 88(14): 3024-33, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20806407

RESUMO

Inhibition of microtubule dynamic instability prevents growth cone turning in response to guidance cues, yet specific changes in microtubule polymerization as growth cones encounter boundaries have not been investigated. In this study, we examined the rate and direction of microtubule polymerization in response to soluble nerve growth factor (NGF) and immobilized chondroitin sulfate proteoglycans (CSPGs) by expressing enhanced GFP-EB3 in rat pheochromocytoma (PC12) cells. GFP-EB3 comets were monitored in live cells using time-lapse epifluorescent microscopy. With an automated tracking system, the rate of microtubule polymerization was calculated as the frame-to-frame displacement of EB3 comets. Our results demonstrate that the rate of microtubule polymerization is increased following NGF treatment, whereas contact with CSPGs decreases microtubule polymerization rates. This reduction in microtubule polymerization rates was specifically localized to neurites in direct contact with CSPGs and not at noncontacting neurites. Additionally, we found an increase in the percentage of microtubules polymerizing in the retrograde direction in neurites at CSPG boundaries, with a concomitant decrease in the rate of retrograde microtubule polymerization. These results implicate localized changes in microtubule dynamics as an important component of the growth cone response to guidance cues.


Assuntos
Sinais (Psicologia) , Cones de Crescimento/fisiologia , Microtúbulos/fisiologia , Polimerização , Animais , Diferenciação Celular/fisiologia , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/fisiologia , Cones de Crescimento/química , Microtúbulos/química , Fator de Crescimento Neural/química , Fator de Crescimento Neural/fisiologia , Vias Neurais/química , Vias Neurais/citologia , Vias Neurais/embriologia , Neurogênese/fisiologia , Células PC12 , Ratos , Transdução de Sinais/fisiologia
19.
J Neurosci ; 30(26): 8871-81, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20592209

RESUMO

Neurons respond homeostatically to chronic changes in network activity with compensatory changes such as a uniform alteration in the size of miniature postsynaptic current (mPSC) amplitudes termed synaptic scaling. However, little is known about the impact of synaptic scaling on the function of neural networks in vivo. We used the embryonic zebrafish to address the effect of synaptic scaling on the neural network underlying locomotion. Activity was decreased during development by TTX injection to block action potentials or CNQX injection to block glutamatergic transmission. Alternatively TNFalpha was chronically applied. Recordings from spinal neurons showed that glutamatergic mPSCs scaled up approximately 25% after activity reduction and fortuitously scaled down approximately 20% after TNFalpha treatment, and were unchanged following blockade of neuromuscular activity alone with alpha-bungarotoxin. Regardless of the direction of scaling, immediately following reversal of treatment no chronic effect was distinguishable in motoneuron activity patterns or in swimming behavior. We also acutely induced a similar increase of glutamatergic mPSC amplitudes using cyclothiazide to reduce AMPA receptor desensitization or decrease of glutamatergic mPSC amplitudes using a low concentration of CNQX to partially block AMPA receptors. Though the strength of the motor output was altered, neither chronic nor acute treatments disrupted the patterning of synaptic activity or swimming. Our results show, for the first time, that scaling of glutamatergic synapses can be induced in vivo in the zebrafish and that synaptic patterning is less plastic than synaptic strength during development.


Assuntos
Neurônios Motores/fisiologia , Natação/fisiologia , Sinapses/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Ácido Glutâmico/metabolismo , Neurônios Motores/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/embriologia , Músculo Esquelético/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/embriologia , Vias Neurais/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Sinapses/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra
20.
J Comp Neurol ; 518(14): 2818-40, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20506477

RESUMO

The cerebellins are a family of four secreted proteins, two of which, Cbln1 and Cbln3, play an important role in the formation and maintenance of parallel fiber-Purkinje cell synapses. We have identified the chicken homologue of Cbln2 and, through the use of in situ hybridization, shown that it is expressed by specific subsets of neurons in the dorsal root ganglia (DRGs) and spinal cord starting shortly after those neurons are generated. In the developing spinal cord, Cbln2 is highly expressed by dI1, dI3, dI5, and dILB dorsal interneurons and to a lesser extent by dI2, dI4, dI6, and dILA dorsal interneurons, but not by ventral (v0-v3) interneurons. After the spinal cord has matured and neurons have migrated to their final destinations, Cbln2 is abundant in the dorsal horn. In the DRGs, Cbln2 is expressed by TrkB+ and TrkC+ sensory neurons, but not by TrkA+ sensory neurons. Interestingly, regions of the spinal cord where TrkB+ and TrkC+ afferents terminate (i.e., laminae II, III, IV, and VI) exhibit the highest levels of Cbln2 expression. Cbln2 is also expressed by preganglionic sympathetic neurons and their targets in the sympathetic chain ganglia. Thus, the results show that Cbln2 is frequently expressed by synaptically connected neuronal populations. This, in turn, raises the possibility that if Cbln2, like Cbln1, plays a role in the formation and maintenance of synapses, it may somehow mediate bi-directional communication between discrete populations of neurons and their appropriate neuronal targets.


Assuntos
Proteínas Aviárias/metabolismo , Interneurônios/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células do Corno Posterior/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Proteínas Aviárias/genética , Embrião de Galinha , Galinhas , Gânglios Espinais/embriologia , Gânglios Espinais/metabolismo , Proteínas do Tecido Nervoso/genética , Vias Neurais/embriologia , Vias Neurais/metabolismo , Neurônios Aferentes/metabolismo , Células do Corno Posterior/embriologia , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Homologia de Sequência de Aminoácidos , Medula Espinal/embriologia , Medula Espinal/metabolismo , Sistema Nervoso Simpático/embriologia , Sistema Nervoso Simpático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA