Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Agric Food Chem ; 72(32): 17953-17963, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39086319

RESUMO

In this study, the transepithelial transport of bioactive peptides derived from faba bean flour gastrointestinal digestates was investigated, in vitro, using a Caco-2 and HT29-MTX-E12 coculture monolayer, in comparison to those of pea and soy. The profile of transported peptides was determined by mass spectrometry, and the residual antioxidant activity was assessed. The ORAC value significantly (p < 0.05) decreased after transepithelial transport (24-36% reduction) for all legumes, while the antioxidant activity in ABTS assay significantly (p < 0.05) increased, as shown by the EC50 decrease of 26-44%. Five of the nine faba bean peptides that crossed the intestinal cell monolayer exhibited antioxidant activity. Two of these peptides, TETWNPNHPEL and TETWNPNHPE, were further hydrolyzed by the cells' brush border peptidases to smaller fragments TETWNPNHP and TWNPNHPE. These metabolized peptides were synthesized, and both maintained high antioxidant activity in both ABTS (EC50 of 1.2 ± 0.2 and 0.4 ± 0.1 mM, respectively) and ORAC (2.5 ± 0.1 and 3.4 ± 0.2 mM of Trolox equivalent/mM, respectively) assays. These results demonstrated for the first time the bioaccessibility of faba bean peptides produced after in vitro gastrointestinal digestion and how their bioactive properties can be modulated during transepithelial transport.


Assuntos
Antioxidantes , Digestão , Glycine max , Peptídeos , Pisum sativum , Vicia faba , Humanos , Células CACO-2 , Antioxidantes/metabolismo , Antioxidantes/química , Peptídeos/metabolismo , Peptídeos/química , Células HT29 , Vicia faba/metabolismo , Vicia faba/química , Transporte Biológico , Glycine max/química , Glycine max/metabolismo , Pisum sativum/química , Pisum sativum/metabolismo , Trato Gastrointestinal/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Disponibilidade Biológica , Modelos Biológicos
2.
Food Res Int ; 192: 114814, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147510

RESUMO

Peruvian fava beans (PFB) are used in traditional cuisine as a nutrient-rich, flavorful, and textural ingredient; however, little is known about their industrial properties. This study evaluated the physicochemical, nutritional, and techno-functional characteristics of PFB varieties: Verde, Quelcao, and Peruanita. PFB exhibited distinct physical characteristics, quality parameters, and morphology. The color patterns of the seed coat and the hardness were the main parameters for distinguishing them. Nutritionally, all three samples exhibited high protein (23.88-24.88 g/100 g), with high proportion of essential amino acids, high dietary fiber (21.74-25.28 g/100 g), and mineral content. They also contain polyphenols (0.79-1.25 mg GAE/g) and flavonoids (0.91-1.06 mg CE/g) with antioxidant potential (16.60-21.01 and 4.68-5.17 µmol TE/g for ABTS and DPPH assays, respectively). Through XRD measurements, the semi-crystalline nature of samples was identified, belonging to the C-type crystalline form. Regarding techno-functionality, PFB flours displayed great foaming capacity, with Verde variety being the most stable. Emulsifying capacity was similar among samples, although Peruanita was more stable during heating. Upon heating with water, PFB flours reached peak viscosities between 175 and 272 cP, and final viscosities between 242 and 384 cP. Quelcao and Verde formed firmer gels after refrigeration. Based on these results, PFB would be useful to developing innovative, nutritious, and healthy products that meet market needs.


Assuntos
Antioxidantes , Valor Nutritivo , Polifenóis , Sementes , Vicia faba , Antioxidantes/análise , Sementes/química , Polifenóis/análise , Vicia faba/química , Fibras na Dieta/análise , Flavonoides/análise , Peru , Cor , Farinha/análise , Manipulação de Alimentos/métodos , Minerais/análise
3.
Molecules ; 29(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39203021

RESUMO

Vicia faba L. is a leguminous plant with seeds rich in nutritional compounds, such as polyphenols and L-dopa, a dopamine precursor and first-line treatment for Parkinson's symptoms. Recently, its by-products have been revalued as a sustainable source of bioactive compounds. In this study, aqueous extracts of Lucan broad bean pod valves (BPs) were characterized to evaluate their potential use as adjuvants in severe Parkinson's disease. L-dopa content, quantified by LC-UV, was much higher in BPs than in seeds (28.65 mg/g dw compared to 0.76 mg/g dw). In addition, vicine and convicine, the metabolites responsible for favism, were not detected in pods. LC-ESI/LTQ-Orbitrap/MS2 allowed the identification of the major polyphenolic compounds, including quercetin and catechin equivalents, that could ensure neuroprotection in Parkinson's disease. ESI(±)-FT-ICR MS was used to build 2D van Krevelen diagrams; polyphenolic compounds and carbohydrates were the most representative classes. The neuroprotective activity of the extracts after MPP+-induced neurotoxicity in SH-SY5Y cells was also investigated. BP extracts were more effective than synthetic L-dopa, even at concentrations up to 100 µg/mL, due to the occurrence of antioxidants able to prevent oxidative stress. The stability and antioxidant component of the extracts were then emphasized by using naturally acidic solutions of Punica granatum L., Ribes rubrum L., and gooseberry (Phyllanthus emblica L.) as extraction solvents.


Assuntos
Doença de Parkinson , Extratos Vegetais , Sementes , Vicia faba , Vicia faba/química , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Sementes/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Antioxidantes/farmacologia , Antioxidantes/química , Linhagem Celular Tumoral , Polifenóis/farmacologia , Polifenóis/química , Levodopa/farmacologia
4.
Poult Sci ; 103(9): 103880, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39094436

RESUMO

Antibiotic overuse in poultry feeds has disastrous implications; consequently, long-term alternatives must be developed. As a result, the current study aims to assess the impact of Aspergillus niger filtrate (ANF) high in organic acids grown on agro-industrial residue of faba bean (AIRFB) on quail diet, as well as their influence on bird productivity, digestion, carcass yield, blood chemistry, and intestinal microbiota. A total of 240 Japanese quails (aged 7 d) were used in this study, divided equally among 5 experimental groups with 48 quails each. Group 1 (G1) received a basal diet without any ANF, group 2 (G2) received a basal diet supplemented with 0.5 mL ANF/kg diet, group 3 (G3) received a basal diet supplemented with 1.0 mL ANF/kg diet, group 4 (G4) received a basal diet supplemented with 1.5 mL ANF/kg diet, and group 5 (G5) received a basal diet supplemented with 2 mL ANF/kg diet. The performance parameters were monitored at 1 to 3, 3 to 5, and 1 to 5 wk. Adding ANF increased body weight at 3 and 5 wk, as well as body weight gain at 1 to 3, 3 to 5, and 1 to 5 wk, compared to the control diet. The ANF fed quails had the highest feed conversion ratio compared to the control group. The addition of ANF to the quail diet had no effect on the weight of the carcass, gizzard, heart, liver, giblets, or dressing; however, it did lower triglycerides, low-density lipoprotein, and very low-density lipoprotein while increasing high-density lipoprotein levels. The quail groups that received ANF had enhanced immunological indices such as IgG, IgM, IgA, and lysozymes. It also increased the levels of superoxide dismutase and total antioxidant contents, as well as catalase, and digestive enzymes such as protease, amylase, and lipase. However, it lowered the blood MDA levels compared to control. It has been demonstrated that the total gut microbiota, Escherichia coli, total coliforms, and the population of Salmonella are all reduced in ANF-fed quails. Histological examination of ANF quails' liver and intestinal sections revealed normal hepatic parenchyma, typical leaf-like intestinal villi, and comparatively short and frequently free lumina. In conclusion, Japanese quail showed improvements in performance, digestive enzymes, antioxidant indices, immunity, and capacity to reduce intestinal pathogenic bacteria after consuming diet supplemented with ANF.


Assuntos
Ração Animal , Antioxidantes , Coturnix , Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Vicia faba , Animais , Coturnix/fisiologia , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Vicia faba/química , Antioxidantes/metabolismo , Fermentação , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Aspergillus niger , Análise Química do Sangue/veterinária , Masculino , Distribuição Aleatória
5.
Ultrason Sonochem ; 109: 107012, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39098098

RESUMO

Ultrasound-assisted extraction (UAE) was evaluated as a green procedure to produce faba beans protein isolates from faba beans. Magnetic stirring was performed as conventional extraction. A three-level five-factor Box-Behnken Design (BBD) was applied to obtain the optimal UAE conditions to concurrently maximize extraction yield and protein content. The response surface methodology (RSM) showed a quadratic curvature for extraction yield and protein. The optimal extraction conditions were determined as: Power of 123 W, solute/solvent ratio of 0.06 (1:15 g/mL), sonication time of 41 min, and total volume of 623 mL with a desirability value of 0.82. Under these conditions, the extraction yield of 19. 75 ± 0.87 % (Protein yield of 67.84 %) and protein content of 92.87 ± 0.53 % were obtained for optimum ultrasound extraction. Control samples using magnetic stirring under similar conditions without ultrasound treatment showed an extraction yield of 16.41 ± 0.02 % (Protein yield of 54.65 %) and a protein content of 89. 88 ± 0.40 %. This shows that BBD can effectively be used to optimize the extraction of proteins from faba beans using optimal extraction conditions, resulting in a higher extraction yield and protein purity.


Assuntos
Fracionamento Químico , Proteínas de Plantas , Vicia faba , Vicia faba/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/química , Fracionamento Químico/métodos , Sonicação/métodos
6.
Food Chem ; 458: 140176, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38959801

RESUMO

Faba bean ingredients are rich in proteins and good sources of calcium (Ca), although containing phytic acid (PA) molecules. PA, a polyphosphate compound, can affect the bioavailability of minerals/proteins through complex formation. This study evaluates the impact of two extraction processes, Alkaline Extraction-IsoElectric Precipitation (AE-IEP) and Sequential Extraction (SE), on the ability of faba bean globulin systems to bind added calcium ions. Increasing concentrations of CaCl2 were introduced into 2.5% (w/v) protein dispersions at pHs 4.5, 5.5, 6.5, and 7.5, and free Ca monitored. Near the isoelectric point of globulin (pH âˆ¼ 4-5), Ca binding capacity was found to be low. At higher pHs, significant Ca chelation occurred, initially attributed to free PA binding sites, resulting in the formation of insoluble complexes and subsequent protein precipitation. The AE-IEP globulin fraction exhibited a higher Ca binding capacity than the SE globulin, attributed to its higher PA and lower initial Ca concentrations.


Assuntos
Cálcio , Globulinas , Proteínas de Plantas , Vicia faba , Cálcio/química , Cálcio/metabolismo , Vicia faba/química , Vicia faba/metabolismo , Concentração de Íons de Hidrogênio , Globulinas/química , Globulinas/metabolismo , Globulinas/isolamento & purificação , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/isolamento & purificação , Ligação Proteica , Fracionamento Químico/métodos
7.
Food Res Int ; 183: 114231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760148

RESUMO

This research assessed how three preprocessing techniques [soaking (S), soaking and reconstitution (SR), and soaking and dehulling (SD)] impact the protein digestibility and bioactivity of faba bean flours when combined with thermoplastic extrusion. Samples were compared against a control (C) of extruded faba bean flour without preprocessing. Applying preprocessing techniques followed by extrusion diminished antinutrient levels while enhancing protein hydrolysis and in vitro bioactivity in higher extent compared to C. Specifically, SD combined with extrusion was the most effective, achieving an 80% rate of protein hydrolysis and uniquely promoting the release of gastric digestion-resistant proteins (50-70 kDa). It also resulted in the highest release of small peptides (<3kDa, 22.51%) and free amino acids (15.50%) during intestinal digestion. Moreover, while all preprocessing techniques increased antioxidant (ABTS radical-scavenging), antidiabetic, and anti-hypertensive activities, SD extruded flour displayed the highest levels of dipeptidyl peptidase inhibition (DPP-IVi, IC50=13.20 µg/mL), pancreatic α-amylase inhibition (IC50=8.59 mg/mL), and angiotensin I-converting enzyme inhibition (ACEi, IC50=1.71 mg protein/mL). As a result, it was selected for further peptide and in silico bioactive analysis. A total of 24 bioactive peptides were identified in intestinal digests from SD extruded flour, all with potential DPP-IVi and ACEi activities, and six were also predicted as antioxidant peptides. VIPAGYPVAIK and GLTETWNPNHPEL were highlighted as resistant bioactive peptides with the highest antidiabetic and antioxidant potential. Our findings demonstrated that combining preprocessing (particularly SD) and thermoplastic extrusion enhances protein digestibility in faba beans and promotes the release of beneficial bioactive peptides in the intestine.


Assuntos
Digestão , Farinha , Manipulação de Alimentos , Peptídeos , Vicia faba , Vicia faba/química , Farinha/análise , Manipulação de Alimentos/métodos , Antioxidantes/análise , Valor Nutritivo , Hidrólise , Aminoácidos/análise , Aminoácidos/metabolismo , Proteínas de Plantas/metabolismo
8.
J Sci Food Agric ; 104(11): 6483-6493, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38507329

RESUMO

BACKGROUND: Plant proteins are being increasingly utilized as functional ingredients in foods because of their potential health, sustainability, and environmental benefits. However, their functionality is often worse than the synthetic or animal-derived ingredients they are meant to replace. The functional performance of plant proteins can be improved by conjugating them with polyphenols. In this study, the formation and stability of oil-in-water emulsions prepared using faba bean protein-grape leaf polyphenol (FP-GLP) conjugates as emulsifiers. Initially, FP-GLP conjugates were formed using an ultrasound-assisted alkali treatment. Then, corn oil-in-water emulsions were prepared using high-intensity sonication (60% amplitude, 10 min) and the impacts of conjugate concentration, pH, ionic strength, freezing-thawing, and heating on their physicochemical properties and stability were determined. RESULTS: Microscopy and light scattering analysis showed that oil-in-water emulsions containing small oil droplets could be formed at conjugate concentrations of 2% and higher. The addition of salt reduced the electrostatic repulsion between the droplets, which increased their susceptibility to aggregation. Indeed, appreciable droplet aggregation was observed at ≥ 50 mmol/L sodium chloride. The freeze-thaw stability of emulsions prepared with protein-polyphenol conjugates was better than those prepared using the proteins alone. In addition, the emulsions stabilized by the conjugates had a higher viscosity than those prepared by proteins alone. CONCLUSION: This study showed that FP-GLP conjugates are effective plant-based emulsifiers for forming and stabilizing oil-in-water emulsions. Indeed, emulsions formed using these conjugates showed improved resistance to pH changes, heating, freezing, and salt addition. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Emulsões , Congelamento , Temperatura Alta , Folhas de Planta , Proteínas de Plantas , Polifenóis , Vicia faba , Emulsões/química , Concentração de Íons de Hidrogênio , Polifenóis/química , Proteínas de Plantas/química , Folhas de Planta/química , Vicia faba/química , Água/química , Cloreto de Sódio/química , Emulsificantes/química , Extratos Vegetais/química
9.
Fish Physiol Biochem ; 50(3): 1157-1169, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38418771

RESUMO

Faba bean has gained attention as a cost-effective protein source with the potential to enhance product quality (texture properties, collagen content, etc.) in fish. However, its anti-nutrition factor, high feed conversion ratio, poor growth performance, etc. limit the widely application as a dietary source, especially in carnivorous fish. The water or alcohol extract of faba bean might resolve the problem. In this study, the juvenile Nibea coibor, known for their high-protein, large-sized, and high-grade swim bladder, were fed with seven isoproteic and isolipid experimental diets with the additive of faba bean water extract (1.25%, 2.5%, and 5%) or faba bean alcohol extract (0.9%, 1.8%, and 3.6%), with a control group without faba bean extract. After the 10-week feeding trail, the growth, antioxidant capacity, textural properties, and collagen deposition of the swim bladder were analyzed. Results showed that the 1.25% faba bean water extract group could significantly promote growth, textural quality of the swim bladder, and have beneficial effects on antioxidant response of fish. Conversely, dietary supplementation of faba bean alcohol extract resulted in reduced growth performance in a dose-dependent manner. Furthermore, fish fed diet with 1.25% faba bean water extract exhibited increased collagen content and upregulated collagen-related gene expression in the swim bladder, which was consistent with the Masson stain analysis for collagen fiber. Our results suggested that the anti-nutrient factor and bioactive component of faba bean may mainly be enriched in alcohol extract and water extract of faba bean, respectively. Besides, the appropriate addition of water extract of faba bean may improve the texture quality of the swim bladder by promoting collagen deposition. This study would provide a theoretical basis for the formulated diets with faba bean extract to promote product quality of marine fish.


Assuntos
Sacos Aéreos , Antioxidantes , Colágeno , Dieta , Extratos Vegetais , Vicia faba , Vicia faba/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Colágeno/metabolismo , Antioxidantes/metabolismo , Dieta/veterinária , Ração Animal/análise , Suplementos Nutricionais
10.
Molecules ; 28(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37513301

RESUMO

The food industry, academia, food technologists, and consumers have become more interested in using faba bean seeds in the formulation of new products because of their nutritional content, accessibility, low costs, environmental advantages, and beneficial impacts on health. In this review, a systematic and up-to-date report on faba bean seeds' antinutrients and bioactive and processing techniques is comprehensively presented. The chemical composition, including the oil composition and carbohydrate constituents, is discussed. Factors influencing the reduction of antinutrients and improvement of bioactive compounds, including processing techniques, are discussed. Thermal treatments (cooking, autoclaving, extrusion, microwaving, high-pressure processing, irradiation) and non-thermal treatments (soaking, germination, extraction, fermentation, and enzymatic treatment) are identified as methods to reduce the levels of antinutrients in faba bean seeds. Appropriate processing methods can reduce the antinutritional factors and enrich the bioactive components, which is useful for the seeds' efficient utilization in developing functional foods. As a result, this evaluation focuses on the technologies that are employed to reduce the amounts of toxins in faba bean seeds. Additionally, a comparison of these methods is performed in terms of their advantages, disadvantages, viability, pharmacological activity, and potential for improvement using emerging technologies. Future research is expected in this area to fill the knowledge gap in exploiting the nutritional and health benefits of faba bean seeds and increase the utilization of faba bean seeds for different applications.


Assuntos
Vicia faba , Vicia faba/química , Culinária , Sementes/química , Fermentação
11.
Food Funct ; 14(11): 5429-5441, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37222454

RESUMO

Iron-fortified broad bean flours were obtained by vacuum impregnation during soaking. The impact of vacuum impregnation and iron fortification on the hydration kinetics of broad beans, as well as the processing (soaking, autoclaving, and dehulling) on the iron-absorption inhibitors (phytic acid and tannins), iron content, iron bioaccessibility, and physicochemical and techno-functional properties of flours was investigated. Results showed that the use of vacuum impregnation during soaking reduced the broad beans' soaking time by 77%, and using iron solution instead of water did not affect the hydration kinetics. After soaking, iron-fortified broad bean flours increased twice (without hull) or more (with hull) the iron and bioaccessible iron content regarding non-fortified flours. Cooking broad beans by autoclaving modified the tannin content, the iron content and its bioaccessible fraction, and the physicochemical and techno-functional properties of the flours. Autoclaving increased the water holding capacity and absorption rate, swelling capacity, bulk density, and particle size, while decreased the solubility index, whiteness index, emulsifying capacity, emulsion stability, and gelling capacity. Finally, dehulling did not practically affect the physicochemical and techno-functional properties of flours, but showed a decrease in iron content, although increased iron bioaccessibility was observed, occurred mainly due to the reduction in tannin concentrations. The results obtained in this study demonstrated that vacuum impregnation is a useful technology for obtaining iron-fortified broad bean flours with different physicochemical and techno-functional properties depending on the production process used.


Assuntos
Fabaceae , Vicia faba , Vicia faba/química , Farinha/análise , Ferro , Vácuo , Manipulação de Alimentos/métodos , Fabaceae/química , Taninos , Água
12.
Molecules ; 27(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558128

RESUMO

High quality and nutritional benefits are ultimately the desirable features that influence the commercial value and market share of broad bean (Vicia faba L.). Different cultivars vary greatly in taste, flavor, and nutrition. However, the molecular basis of these traits remains largely unknown. Here, the grain metabolites of the superior Chinese landrace Cixidabaican (CX) were detected by a widely targeted metabolomics approach and compared with the main cultivar Lingxiyicun (LX) from Japan. The analyses of global metabolic variations revealed a total of 149 differentially abundant metabolites (DAMs) were identified between these two genotypes. Among them, 84 and 65 were up- and down-regulated in CX compared with LX. Most of the DAMs were closely related to healthy eating substances known for their antioxidant and anti-cancer properties, and some others were involved in the taste formation. The KEGG-based classification further revealed that these DAMs were significantly enriched in 21 metabolic pathways, particularly in flavone and flavonol biosynthesis. The differences in key secondary metabolites, including flavonoids, terpenoids, amino acid derivates, and alkaloids, may lead to more nutritional value in a healthy diet and better adaptability for the seed germination of CX. The present results provide important insights into the taste/quality-forming mechanisms and contributes to the conservation and utilization of germplasm resources for breeding broad bean with superior eating quality.


Assuntos
Fabaceae , Vicia faba , Vicia faba/química , Melhoramento Vegetal , Metabolômica , Valor Nutritivo
13.
PeerJ ; 10: e13683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35996664

RESUMO

Background: Pulse crops are considered the major sources of proteins, dietary fiber, micronutrients, and bioactive phytochemicals. Among the numerous pulse crops, broad beans (Vicia faba L.) have received particular attention due to their nutraceutical, functional and economic importance. Our attention was mainly focused on the broad bean pods (VFs), which are the primary by-product of the domestic and industrial processing of broad beans and an attractive source of valuable ingredients. Methods: In order to investigate the VFs properties, the flours from broad beans of three different harvest periods were extracted with acetone, methanol and 70% aqueous ethanol and the dried extracts were analyzed, qualitatively and quantitatively, and tested for their antioxidant through DPPH and ABTS assay and anticancer activities using the MTT assay and immunofluorescence analysis. Results: The VF extracts demonstrated a good in vitro radical scavenging activity from the first stage of collection of all the V. faba L. extracts. Additionally, the extracts were tested for their cytotoxicity against a panel of cancer and normal cells and the outcomes indicated the ethanol extract as the most active against the melanoma cell line Sk-Mel-28, without affecting the viability of the normal cells. Finally, we found out that the ethanol extract interfered with the microtubules organization, leading to the cancer cells death by apoptosis.


Assuntos
Antioxidantes , Vicia faba , Antioxidantes/farmacologia , Vicia faba/química , Extratos Vegetais/farmacologia , Fenóis/análise , Sementes/química , Suplementos Nutricionais/análise , Etanol/análise
14.
Rocz Panstw Zakl Hig ; 73(1): 79-86, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35322960

RESUMO

Background: In Morocco, fava beans are widely used as a main meal or as an ingredient in various traditional recipes, in the form of fresh ripe seeds or dry seeds. In the past, the tender skin of bean pods was also used in certain specific dishes, thus diversifying the diet. However, the peels of the tender bean pods are currently less or not used and considered waste. In Moroccan, fava bean pods peels, traditionally used in food in the past, are today considered as waste. The valorization of fresh fava bean pods could revitalize the use of the specific dishes and diversify the diet. For this reason, the research aimed to assess the nutritional values and biological compounds of the whole fresh fava bean pods (Vicia faba L.). Objective: Evaluate the content of nutrients, total phenolic, flavonoids and tannin contents and antioxidant activity in different extracts of the tender pods of the fava bean (Vicia faba L.). Material and methods: The proximate composition and minerals were determined using AOAC methods. The total phenolic compounds by the Folin-Ciocalteu reagent, the total flavonoids were analyzed using aluminum chloride colorimetric method, the tannins by method of vanillin in an acidic medium and the antioxidant activity was evaluated by DPPH method. Results: The results show that the fresh fava bean pods have a moisture content of 87.31 ± 0.25%, ash 4.67 ± 1.03, and protein 29.11 ± 3.20 g/100 g. The legume samples also contain potassium (1946.8±4.61), phosphorus (483.8 ± 3.14), and calcium (399.6 ±2.25) mg/100 g of dry matter representing at last 40-50% of the RDI. The content of the different extracts of (Vicia faba L) varied from 49.5 to 594.4 mg GAE/ g for the total phenols, from 0.7 mg to 3.4 mg QE/g for flavonoids, and from 4.9 mg to 73.91 mg TAE/g dry weight for tannins. The evaluation of the antioxidant activity in the various extracts revealed a better activity in the methanolic extract (IC50=491.2 µg/mL) compared to others extracts: the MeOH/water extract (IC50=606.61 µg/mL), DCM/ MeOH extract (IC50 = 642.67 µg/mL) and DCM extract below of 50%. Conclusions: This study shows that fava bean pods, traditionally used in food, are rich in macro and micronutrients and bioactive substances, which demonstrates their potential contribution to human food and nutritional security.


Assuntos
Vicia faba , Antioxidantes/análise , Flavonoides/análise , Humanos , Fenóis/análise , Sementes/química , Vicia faba/química
15.
J Chem Ecol ; 47(8-9): 747-754, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34550513

RESUMO

Plant Growth-Promoting Rhizobacteria (PGPR) induce systemic resistance (SR) in plants, decreasing the development of phytopathogens. The FZB42 strain of Bacillus velezensis is known to induce an SR against pathogens in various plant species. Previous studies suggested that it could also influence the interactions between plants and associated pests. However, insects have developed several strategies to counteract plant defenses, including salivary proteins that allow the insect escaping detection, manipulating defensive pathways to its advantage, deactivating early signaling processes, or detoxifying secondary metabolites. Because Brown Marmorated Stink Bug (BMSB) Halyomorpha halys is highly invasive and polyphagous, we hypothesized that it could detect the PGPR-induced systemic defenses in the plant, and efficiently adapt its salivary compounds to counteract them. Therefore, we inoculated a beneficial rhizobacterium on Vicia faba roots and soil, previous to plant infestation with BMSB. Salivary gland proteome of BMSB was analyzed by LC-MS/MS and a label-free quantitative proteomic method. Among the differentially expressed proteins, most were up-regulated in salivary glands of insects exposed to PGPR-treated plants for 24 h. We could confirm that BMSB was confronted with a stress during feeding on PGPR-treated plants. The to-be-confirmed defensive state of the plant would have been rapidly detected by the invasive H. halys pest, which consequently modified its salivary proteins. Among the up-regulated proteins, many could be associated with a role in plant defense counteraction, and more especially in allelochemicals detoxification or sequestration.


Assuntos
Bacillus/crescimento & desenvolvimento , Heterópteros/metabolismo , Proteínas e Peptídeos Salivares/análise , Vicia faba/microbiologia , Animais , Cromatografia Líquida de Alta Pressão , Heterópteros/crescimento & desenvolvimento , Larva/metabolismo , Glândulas Salivares/metabolismo , Estresse Fisiológico , Espectrometria de Massas em Tandem , Regulação para Cima , Vicia faba/química , Vicia faba/parasitologia
16.
Molecules ; 26(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201792

RESUMO

Pulse crop seed coats are a sustainable source of antioxidant polyphenols, but are typically treated as low-value products, partly because some polyphenols reduce iron bioavailability in humans. This study correlates antioxidant/iron chelation capabilities of diverse seed coat types from five major pulse crops (common bean, lentil, pea, chickpea and faba bean) with polyphenol composition using mass spectrometry. Untargeted metabolomics was used to identify key differences and a hierarchical analysis revealed that common beans had the most diverse polyphenol profiles among these pulse crops. The highest antioxidant capacities were found in seed coats of black bean and all tannin lentils, followed by maple pea, however, tannin lentils showed much lower iron chelation among these seed coats. Thus, tannin lentils are more desirable sources as natural antioxidants in food applications, whereas black bean and maple pea are more suitable sources for industrial applications. Regardless of pulse crop, proanthocyanidins were primary contributors to antioxidant capacity, and to a lesser extent, anthocyanins and flavan-3-ols, whereas glycosylated flavonols contributed minimally. Higher iron chelation was primarily attributed to proanthocyanidin composition, and also myricetin 3-O-glucoside in black bean. Seed coats having proanthocyanidins that are primarily prodelphinidins show higher iron chelation compared with those containing procyanidins and/or propelargonidins.


Assuntos
Antioxidantes/análise , Cicer/química , Quelantes de Ferro/química , Lens (Planta)/química , Metabolômica/métodos , Polifenóis/análise , Sementes/química , Vicia faba/química , Antioxidantes/química , Biflavonoides/análise , Disponibilidade Biológica , Catequina/análise , Correlação de Dados , Flavonoides/análise , Flavonóis/análise , Concentração Inibidora 50 , Espectrometria de Massas , Fenóis/análise , Proantocianidinas/análise , Taninos/análise
17.
Cells ; 10(3)2021 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805688

RESUMO

Among heavy metals, cadmium is considered one of the most toxic and dangerous environmental factors, contributing to stress by disturbing the delicate balance between production and scavenging of reactive oxygen species (ROS). To explore possible relationships and linkages between Cd(II)-induced oxidative stress and the consequent damage at the genomic level (followed by DNA replication stress), root apical meristem (RAM) cells in broad bean (V. faba) seedlings exposed to CdCl2 treatment and to post-cadmium recovery water incubations were tested with respect to H2O2 production, DNA double-strand breaks (γ-phosphorylation of H2AX histones), chromatin morphology, histone H3S10 phosphorylation on serine (a marker of chromatin condensation), mitotic activity, and EdU staining (to quantify cells typical of different stages of nuclear DNA replication). In order to evaluate Cd(II)-mediated epigenetic changes involved in transcription and in the assembly of nucleosomes during the S-phase of the cell cycle, the acetylation of histone H3 on lysine 5 (H3K56Ac) was investigated by immunofluorescence. Cellular responses to cadmium (II) toxicity seem to be composed of a series of interlinked biochemical reactions, which, via generation of ROS and DNA damage-induced replication stress, ultimately activate signal factors engaged in cell cycle control pathways, DNA repair systems, and epigenetic adaptations.


Assuntos
Cádmio/química , Núcleo Celular/metabolismo , Epigenômica/métodos , Meristema/química , Estresse Oxidativo/fisiologia , Vicia faba/química
18.
Nutrients ; 12(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751276

RESUMO

Skeletal muscle is the metabolic powerhouse of the body, however, dysregulation of the mechanisms involved in skeletal muscle mass maintenance can have devastating effects leading to many metabolic and physiological diseases. The lack of effective solutions makes finding a validated nutritional intervention an urgent unmet medical need. In vitro testing in murine skeletal muscle cells and human macrophages was carried out to determine the effect of a hydrolysate derived from vicia faba (PeptiStrong: NPN_1) against phosphorylated S6, atrophy gene expression, and tumour necrosis factor alpha (TNF-α) secretion, respectively. Finally, the efficacy of NPN_1 on attenuating muscle waste in vivo was assessed in an atrophy murine model. Treatment of NPN_1 significantly increased the phosphorylation of S6, downregulated muscle atrophy related genes, and reduced lipopolysaccharide-induced TNF-α release in vitro. In a disuse atrophy murine model, following 18 days of NPN_1 treatment, mice exhibited a significant attenuation of muscle loss in the soleus muscle and increased the integrated expression of Type I and Type IIa fibres. At the RNA level, a significant upregulation of protein synthesis-related genes was observed in the soleus muscle following NPN_1 treatment. In vitro and preclinical results suggest that NPN_1 is an effective bioactive ingredient with great potential to prolong muscle health.


Assuntos
Alimento Funcional/análise , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Hidrolisados de Proteína/farmacologia , Vicia faba/química , Animais , Modelos Animais de Doenças , Ingredientes de Alimentos , Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteína S6 Ribossômica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
19.
J Agric Food Chem ; 68(32): 8535-8544, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32678595

RESUMO

Faba bean (Vicia faba L.) holds great importance for human and animal nutrition for its high protein content. However, better understanding of its seed protein composition is required in order to develop cultivars that meet market demands for plant proteins with specific quality attributes. In this study, we screened 35 diverse Vicia faba genotypes by employing the one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (1D SDS-PAGE) method, and 35 major protein bands obtained from three genotypes with contrasting seed protein profiles were further analyzed by mass spectrometry (MS). Twenty-five of these protein bands (MW range: ∼ 9-107 kDa) had significant (p ≤ 0.05) matches to polypeptides in protein databases. MS analysis showed that most of the analyzed protein bands contained more than one protein type and, in total, over 100 proteins were identified. These included major seed storage proteins such as legumin, vicilin, and convicilin, as well as other protein classes like lipoxygenase, heat shock proteins, sucrose-binding proteins, albumin, and defensin. Furthermore, seed protein extracts were separated by size-exclusion high-performance liquid chromatography (SE-HPLC), and percentages of the major protein classes were determined. On average, legumin and vicilin/convicilin accounted for 50 and 27% of the total protein extract, respectively. However, the proportions of these proteins varied considerably among genotypes, with the ratio of legumin:vicilin/convicilin ranging from 1:1 to 1:3. In addition, there was a significant (p < 0.01) negative correlation between the contents of these major fractions (r = -0.83). This study significantly extends the number of identified Vicia faba seed proteins and reveals new qualitative and quantitative variation in seed protein composition, filling a significant gap in the literature. Moreover, the germplasm and screening methods presented here are expected to contribute in selecting varieties with improved protein content and quality.


Assuntos
Proteínas de Plantas/química , Vicia faba/química , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Sementes/química
20.
J Agric Food Chem ; 68(28): 7530-7540, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32628473

RESUMO

Faba bean is a cool season grain legume that produces seeds with a high protein content. Seed coat tannins limit its use in food and feed. A low-tannin phenotype is controlled by either of two unlinked recessive genes zt1 and zt2. Liquid chromatography-mass spectrometry was used to characterize phenolic profiles of seed coat and flower tissue of three faba bean genotypes: CDC Snowdrop (zt1 gene), Disco/2 (zt2 gene), and ILB 938/2 (tannin-containing). For both tissues, clear differences in phenolic profiles of ILB 938/2 were observed in comparison to both low-tannin lines. Although seed coat phenolic profiles of zt1 and zt2 genotypes were similar, distinct differences were evident in flower tissue, suggesting that the gene action results in some different end products of the phenolic biosynthetic pathway. These distinctive compounds could be used as biochemical markers to distinguish between low-tannin phenotypes.


Assuntos
Fenóis/química , Proteínas de Plantas/genética , Sementes/química , Vicia faba/química , Genes Recessivos , Genótipo , Estrutura Molecular , Fenóis/metabolismo , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Taninos/análise , Taninos/metabolismo , Vicia faba/genética , Vicia faba/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA