Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(2)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215800

RESUMO

Mimiviruses are giant viruses of amoeba that can be found in association with virophages. These satellite-like viruses are dependent on the mimivirus viral factory to replicate. Mimiviruses can also be associated with linear DNA molecules called transpovirons. Transpovirons and virophages are important drivers of giant virus evolution although they are still poorly studied elements. Here, we describe the isolation and genomic characterization of a mimivirus/virophage/transpoviron tripartite system from Brazil. We analyzed transmission electron microscopy images and performed genome sequencing and assembly, gene annotation, and phylogenetic analysis. Our data confirm the isolation of a lineage A mimivirus (1.2 Mb/1012 ORFs), called mimivirus argentum, and a sputnik virophage (18,880 bp/20 ORFs). We also detected a third sequence corresponding to a transpoviron from clade A (6365 bp/6 ORFs) that presents small terminal inverted repeats (77 nt). The main genomic features of mimivirus argentum and of its virophage/transpoviron elements corroborates with what is described for other known elements. This highlights that this triple genomic and biological interaction may be ancient and well-conserved. The results expand the basic knowledge about unique and little-known elements and pave the way to future studies that might contribute to a better understanding of this tripartite relationship.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Vírus Gigantes/genética , Mimiviridae/genética , Virófagos/genética , Brasil , Genoma Viral , Genômica , Vírus Gigantes/classificação , Mimiviridae/classificação , Fases de Leitura Aberta , Filogenia , Proteínas Virais/genética , Virófagos/classificação
2.
Pathog Dis ; 79(8)2021 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-34601577

RESUMO

The fascinating discovery of the first giant virus, Acanthamoeba polyphaga mimivirus (APMV), belonging to the family Mimiviridae in 2008, and its associated virophage, Sputnik, have left the world of microbiology awestruck. To date, about 18 virophages have been isolated from different environmental sources. With their unique feature of resisting host cell infection and lysis by giant viruses, analogous to bacteriophage, they have been assigned under the family Lavidaviridae. Genome of T-27, icosahedral-shaped, non-enveloped virophages, consist of dsDNA encoding four proteins, namely, major capsid protein, minor capsid protein, ATPase and cysteine protease, which are essential in the formation and assembly of new virophage particles during replication. A few virophage genomes have been observed to contain additional sequences like PolB, ZnR and S3H. Another interesting characteristic of virophage is that Mimivirus lineage A is immune to infection by the Zamilon virophage through a phenomenon termed MIMIVIRE, resembling the CRISPR-Cas mechanism in bacteria. Based on the fact that giant viruses have been found in clinical samples of hospital-acquired pneumonia and rheumatoid arthritis patients, virophages have opened a novel era in the search for cures of various diseases. This article aims to study the prospective role of virophages in the future of human therapeutics.


Assuntos
Antibiose , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Virófagos/fisiologia , Amoeba/virologia , Evolução Biológica , Genoma Viral , Genômica/métodos , Vírus Gigantes/fisiologia , Humanos , Interações Microbianas , Terapia por Fagos/métodos , Virófagos/classificação , Virófagos/ultraestrutura
3.
Curr Issues Mol Biol ; 40: 1-24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32089519

RESUMO

Double-stranded (ds) DNA viruses of the family Lavidaviridae, commonly known as virophages, are a fascinating group of eukaryotic viruses that depend on a coinfecting giant dsDNA virus of the Mimiviridae for their propagation. Instead of replicating in the nucleus, virophages multiply in the cytoplasmic virion factory of a coinfecting giant virus inside a phototrophic or heterotrophic protistal host cell. Virophages are parasites of giant viruses and can inhibit their replication, which may lead to increased survival rates of the infected host cell population. The genomes of virophages are 17-33 kilobase pairs (kbp) long and encode 16-34 proteins. Genetic signatures of virophages can be found in metagenomic datasets from various saltwater and freshwater environments around the planet. Most virophages share a set of conserved genes that code for a major and a minor capsid protein, a cysteine protease, a genome-packaging ATPase, and a superfamily 3 helicase, although the genomes are otherwise diverse and variable. Lavidaviruses share genes with other mobile genetic elements, suggesting that horizontal gene transfer and recombination have been major forces in shaping these viral genomes. Integrases are occasionally found in virophage genomes and enable these DNA viruses to persist as provirophages in the chromosomes of their viral and cellular hosts. As we watch the genetic diversity of this new viral family unfold through metagenomics, additional isolates are still lacking and critical questions regarding their infection cycle, host range, and ecology remain to be answered.


Assuntos
Variação Genética , Genoma Viral , Metagenoma , Virófagos/classificação , Virófagos/genética , Capsídeo/química , Coinfecção , DNA Viral/genética , Evolução Molecular , Transferência Genética Horizontal , Vírus Gigantes/classificação , Vírus Gigantes/genética , Interações entre Hospedeiro e Microrganismos , Especificidade de Hospedeiro , Metagenômica/métodos , Filogenia , Replicação Viral
4.
Artigo em Inglês | MEDLINE | ID: mdl-29376032

RESUMO

Viral infection had not been observed for amoebae, until the Acanthamoeba polyphaga mimivirus (APMV) was discovered in 2003. APMV belongs to the nucleocytoplasmatic large DNA virus (NCLDV) family and infects not only A. polyphaga, but also other professional phagocytes. Here, we review the Megavirales to give an overview of the current members of the Mimi- and Marseilleviridae families and their structural features during amoebal infection. We summarize the different steps of their infection cycle in A. polyphaga and Acanthamoeba castellani. Furthermore, we dive into the emerging field of virophages, which parasitize upon viral factories of the Megavirales family. The discovery of virophages in 2008 and research in recent years revealed an increasingly complex network of interactions between cell, giant virus, and virophage. Virophages seem to be highly abundant in the environment and occupy the same niches as the Mimiviridae and their hosts. Establishment of metagenomic and co-culture approaches rapidly increased the number of detected virophages over the recent years. Genetic interaction of cell and virophage might constitute a potent defense machinery against giant viruses and seems to be important for survival of the infected cell during mimivirus infections. Nonetheless, the molecular events during co-infection and the interactions of cell, giant virus, and virophage have not been elucidated, yet. However, the genetic interactions of these three, suggest an intricate, multilayered network during amoebal (co-)infections. Understanding these interactions could elucidate molecular events essential for proper viral factory activity and could implicate new ways of treating viruses that form viral factories.


Assuntos
Amoeba/virologia , Vírus Gigantes/classificação , Vírus Gigantes/fisiologia , Interações Hospedeiro-Parasita , Interações Microbianas , Virófagos/classificação , Virófagos/fisiologia , Vírus Gigantes/genética , Vírus Gigantes/ultraestrutura , Virófagos/genética , Virófagos/ultraestrutura
5.
Viruses ; 8(11)2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27886075

RESUMO

Virophages replicate with giant viruses in the same eukaryotic cells. They are a major component of the specific mobilome of mimiviruses. Since their discovery in 2008, five other representatives have been isolated, 18 new genomes have been described, two of which being nearly completely sequenced, and they have been classified in a new viral family, Lavidaviridae. Virophages are small viruses with approximately 35-74 nm large icosahedral capsids and 17-29 kbp large double-stranded DNA genomes with 16-34 genes, among which a very small set is shared with giant viruses. Virophages have been isolated or detected in various locations and in a broad range of habitats worldwide, including the deep ocean and inland. Humans, therefore, could be commonly exposed to virophages, although currently limited evidence exists of their presence in humans based on serology and metagenomics. The distribution of virophages, the consequences of their infection and the interactions with their giant viral hosts within eukaryotic cells deserve further research.


Assuntos
Mimiviridae/classificação , Mimiviridae/isolamento & purificação , Virófagos/classificação , Virófagos/isolamento & purificação , DNA Viral/genética , Eucariotos/virologia , Mimiviridae/ultraestrutura , Vírion/ultraestrutura , Virófagos/genética , Virófagos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA