Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Cell Rep ; 38(1): 110183, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986357

RESUMO

Candida albicans is a commensal of the urogenital tract and the predominant cause of vulvovaginal candidiasis (VVC). Factors that increase circulatory estrogen levels such as pregnancy, the use of oral contraceptives, and hormone replacement therapy predispose women to VVC, but the reasons for this are largely unknown. Here, we investigate how adaptation of C. albicans to estrogen impacts the fungal host-pathogen interaction. Estrogen promotes fungal virulence by enabling C. albicans to avoid the actions of the innate immune system. Estrogen-induced innate immune evasion is mediated via inhibition of opsonophagocytosis through enhanced acquisition of the human complement regulatory protein, Factor H, on the fungal cell surface. Estrogen-induced accumulation of Factor H is dependent on the fungal cell surface protein Gpd2. The discovery of this hormone-sensing pathway might pave the way in explaining gender biases associated with fungal infections and may provide an alternative approach to improving women's health.


Assuntos
Candida albicans/imunologia , Candidíase Vulvovaginal/patologia , Via Alternativa do Complemento/imunologia , Estrogênios/metabolismo , Evasão da Resposta Imune/imunologia , Fagocitose/imunologia , Candida albicans/patogenicidade , Fator H do Complemento/metabolismo , Feminino , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Humanos , Imunidade Inata/imunologia , Progesterona/metabolismo , Virulência/imunologia
2.
Plant Commun ; 2(6): 100236, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34778749

RESUMO

Plant nucleotide-binding leucine-rich repeat (NLR) receptors mediate immune responses by directly or indirectly sensing pathogen-derived effectors. Despite significant advances in the understanding of NLR-mediated immunity, the mechanisms by which pathogens evolve to suppress NLR activation triggered by cognate effectors and gain virulence remain largely unknown. The agronomically important immune receptor RB recognizes the ubiquitous and highly conserved IPI-O RXLR family members (e.g., IPI-O1) from Phytophthora infestans, and this process is suppressed by the rarely present and homologous effector IPI-O4. Here, we report that self-association of RB via the coiled-coil (CC) domain is required for RB activation and is differentially affected by avirulence and virulence effectors. IPI-O1 moderately reduces the self-association of RB CC, potentially leading to changes in the conformation and equilibrium of RB, whereas IPI-O4 dramatically impairs CC self-association to prevent RB activation. We also found that IPI-O1 associates with itself, whereas IPI-O4 does not. Notably, IPI-O4 interacts with IPI-O1 and disrupts its self-association, therefore probably blocking its avirulence function. Furthermore, IPI-O4 enhances the interaction between RB CC and IPI-O1, possibly sequestering RB and IPI-O1 and subsequently blocking their interactions with signaling components. Taken together, these findings considerably extend our understanding of the underlying mechanisms by which emerging virulent pathogens suppress the NLR-mediated recognition of cognate effectors.


Assuntos
Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/imunologia , Proteínas NLR/genética , Nicotiana/genética , Nicotiana/imunologia , Phytophthora infestans/patogenicidade , Doenças das Plantas/imunologia , Virulência/imunologia , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Proteínas NLR/metabolismo , Doenças das Plantas/genética , Plantas Geneticamente Modificadas , Nicotiana/microbiologia , Virulência/genética
3.
Front Immunol ; 12: 702359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276695

RESUMO

It was previously shown that secretion of PE-PGRS and PPE-MPTR proteins is abolished in clinical M. tuberculosis isolates with a deletion in the ppe38-71 operon, which is associated with increased virulence. Here we investigate the proteins dependent on PPE38 for their secretion and their role in the innate immune response using temporal proteomics and protein turnover analysis in a macrophage infection model. A decreased pro-inflammatory response was observed in macrophages infected with PPE38-deficient M. tuberculosis CDC1551 as compared to wild type bacteria. We could show that dampening of the pro-inflammatory response is associated with activation of a RelB/p50 pathway, while the canonical inflammatory pathway is active during infection with wild type M. tuberculosis CDC1551. These results indicate a molecular mechanism by which M. tuberculosis PE/PPE proteins controlled by PPE38 have an effect on modulating macrophage responses through NF-kB signalling.


Assuntos
Antígenos de Bactérias/imunologia , Macrófagos/imunologia , NF-kappa B/imunologia , Tuberculose/imunologia , Fatores de Virulência/imunologia , Humanos , Inflamação/imunologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Transdução de Sinais/imunologia , Células THP-1 , Virulência/imunologia
4.
Front Biosci (Landmark Ed) ; 26(5): 51-75, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-34027650

RESUMO

In 2020, a novel strain of coronavirus (COVID-19) has led to a significant morbidity and mortality worldwide. As of the date of this writing, a total of 116 M cases has been diagnosed worldwide leading to 2.5 M deaths. The number of mortalities is directly correlated with the rise of innate immune cells (especially macrophages) in the lungs that secrete inflammatory cytokines (IL-1ß and IL-6) leading to the development of "Cytokine Storm Syndrome" (CSS), multi-organ-failure and death. Given that currently the treatment of this condition is rare and release of effective vaccine might be months away, here, we review the plants and their pharmacologically active-compounds as potential phytopharmaceuticals for the virus induced inflammatory response. Experimental validation of the effectiveness of these natural compounds to prevent or reduce the cytokine storm might be beneficial as an adjunct treatment of SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , Síndrome da Liberação de Citocina/prevenção & controle , Fitoterapia/métodos , Extratos Vegetais/uso terapêutico , Plantas Medicinais/química , SARS-CoV-2/efeitos dos fármacos , COVID-19/imunologia , COVID-19/virologia , Síndrome da Liberação de Citocina/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Plantas Medicinais/classificação , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Virulência/efeitos dos fármacos , Virulência/imunologia
5.
Nat Commun ; 12(1): 2790, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986286

RESUMO

SARS-CoV-2 is of zoonotic origin and contains a PRRA polybasic cleavage motif which is considered critical for efficient infection and transmission in humans. We previously reported on a panel of attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction of the spike protein. Here, we characterize pathogenicity, immunogenicity, and protective ability of a further cell-adapted SARS-CoV-2 variant, Ca-DelMut, in in vitro and in vivo systems. Ca-DelMut replicates more efficiently than wild type or parental virus in Vero E6 cells, but causes no apparent disease in hamsters, despite replicating in respiratory tissues. Unlike wild type virus, Ca-DelMut causes no obvious pathological changes and does not induce elevation of proinflammatory cytokines, but still triggers a strong neutralizing antibody and T cell response in hamsters and mice. Ca-DelMut immunized hamsters challenged with wild type SARS-CoV-2 are fully protected, with little sign of virus replication in the upper or lower respiratory tract, demonstrating sterilizing immunity.


Assuntos
COVID-19/diagnóstico , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Replicação Viral/genética , Animais , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Cricetinae , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Humanos , Masculino , Mesocricetus , Camundongos Endogâmicos BALB C , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Vero , Virulência/genética , Virulência/imunologia
6.
PLoS Negl Trop Dis ; 15(4): e0009339, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33857149

RESUMO

BACKGROUND: Scrub typhus is a neglected tropical disease that threatens more than one billion people. If antibiotic therapy is delayed, often due to mis- or late diagnosis, the case fatality rate can increase considerably. Scrub typhus is caused by the obligate intracellular bacterium, Orientia tsutsugamushi, which invades phagocytes and endothelial cells in vivo and diverse tissue culture cell types in vitro. The ability of O. tsutsugamushi to replicate in the cytoplasm indicates that it has evolved to counter eukaryotic host cell immune defense mechanisms. The transcription factor, NF-κB, is a tightly regulated initiator of proinflammatory and antimicrobial responses. Typically, the inhibitory proteins p105 and IκBα sequester the NF-κB p50:p65 heterodimer in the cytoplasm. Canonical activation of NF-κB via TNFα involves IKKß-mediated serine phosphorylation of IκBα and p105, which leads to their degradation and enables NF-κB nuclear translocation. A portion of p105 is also processed into p50. O. tsutsugamushi impairs NF-κB translocation into the nucleus, but how it does so is incompletely defined. PRINCIPAL FINDINGS: Western blot, densitometry, and quantitative RT-PCR analyses of O. tsutsugamushi infected host cells were used to determine if the pathogen's ability to inhibit NF-κB is linked to modulation of p105. Results demonstrate that p105 levels are elevated several-fold in O. tsutsugamushi infected HeLa and RF/6A cells with only a nominal increase in p50. The O. tsutsugamushi-stimulated increase in p105 is bacterial dose- and protein synthesis-dependent, but does not occur at the level of host cell transcription. While TNFα-induced phosphorylation of p105 serine 932 proceeds unhindered in infected cells, p105 levels remain elevated and NF-κB p65 is retained in the cytoplasm. CONCLUSIONS: O. tsutsugamushi specifically stabilizes p105 to inhibit the canonical NF-κB pathway, which advances understanding of how it counters host immunity to establish infection.


Assuntos
Proteínas de Bactérias/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Orientia tsutsugamushi/metabolismo , Orientia tsutsugamushi/patogenicidade , Fator de Transcrição RelA/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Células HeLa , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Orientia tsutsugamushi/imunologia , Tifo por Ácaros/imunologia , Tifo por Ácaros/microbiologia , Ativação Transcricional , Fator de Necrose Tumoral alfa/metabolismo , Virulência/genética , Virulência/imunologia , Virulência/fisiologia
7.
J Gen Virol ; 102(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33843575

RESUMO

Human adenoviruses (Ads), common pathogens that cause upper respiratory and gastrointestinal infections, are blocked by neutralizing antibodies (nAbs). However, Ads are not fully eliminated even in hosts with nAbs. In this study, we assessed the infectivity of progeny Ad serotype 5 (Ad5) in the presence of nAb. The infectivity of Ad5 was evaluated according to the expression of the Ad genome and reporter gene. Infection by wild-type Ad5 and Ad5 vector continued to increase until 3 days after infection even in the presence of nAb. We established an assay for determining the infection levels of progeny Ad5 using a sorting system with magnetic beads and observed little difference in progeny Ad5 counts in the presence and absence of nAb 1 day after infection. Moreover, progeny Ad5 in the presence of nAb more effectively infected coxsackievirus and adenovirus receptor (CAR)-positive cells than CAR-negative cells. We investigated the function of fiber proteins, which are the binding partners of CAR, during secondary infection, observing that fibre proteins spread from infected cells to adjacent cells in a CAR-dependent manner. In conclusion, this study revealed that progeny Ad5 could infect cells even in the presence of nAb, differing from the common features of the Ad5 infection cycle. Our findings may be useful for developing new therapeutic agents against Ad infection.


Assuntos
Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/patogenicidade , Anticorpos Neutralizantes/imunologia , Virulência/imunologia , Genes Reporter , Vetores Genéticos , Células HEK293 , Humanos
8.
Scand J Immunol ; 94(2): e13035, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33655533

RESUMO

INTRODUCTION: The growing incidence of non-tuberculous mycobacteria (NTM) and changes in epidemiological factors have indicated that immune dysregulation may be associated with the emergence of NTM. Minireview entails to acknowledge complex interaction and new ways NTM are evolving around diverse immune status. METHODS: In order to perform this review, we selected peer reviewed, NLM database articles under the terms NTM, mycobacterium complex 'AND' -Host- immune response, immunity regulation, Disease, Single Nucleotide Polymorphism (SNP´s), and -pathogen- followed by a snow ball rolling basis search on immune components and NTM related with diseases distribution. RESULTS: The universal exposure and diversity of NTM are well-documented; however, hospitals seldom establish vigilant control of water quality or immunodeficiencies for patients with NTM infections. Depending on the chemical structures and immune mechanisms presented by various NTM varieties, they can trigger different effects in dendritic and natural killer cells, which release interleukin (IL)-17, tumour necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and rIL-1B. The T helper (Th)2-acquired immune response is responsible for autoimmune responses in patients with NTM infections, and, quite disturbingly, immunocompetent patients have been reported to suffer from NTM infections. CONCLUSION: New technologies and a comprehensive view has taught us; to acknowledge metabolic/immune determinants and trade-offs along transit through mutualism-parasite continuous.


Assuntos
Imunidade Inata/imunologia , Micobactérias não Tuberculosas/imunologia , Virulência/imunologia , Animais , Humanos , Interferon gama/imunologia , Interleucina-17/imunologia , Interleucina-1beta/imunologia , Células Matadoras Naturais/imunologia , Células Th2/imunologia , Fator de Necrose Tumoral alfa/imunologia
9.
Dev Comp Immunol ; 119: 104038, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33548290

RESUMO

At each stage of innate immune response, there are stimulatory and inhibitory signals that modulate the strength and character of the response. RIG-I-like receptor (RLR) signaling pathway plays pivotal roles in antiviral innate immune response. Recent studies have revealed the molecular mechanisms that viral infection leads to the activation of RLRs-mediated downstream signaling cascades and the production of type I interferons (IFNs). However, antiviral immune responses must be tightly regulated in order to prevent detrimental type I IFNs production. Previous reviews have highlighted negative regulation of RLR signaling pathway, which mainly target to directly regulate RIG-I, MDA5, MAVS and TBK1 function in mammals. In this review, we summarize recent advances in our understanding of negative regulators of RLR signaling pathway in teleost, with specific focus on piscine and viral regulatory mechanisms that directly or indirectly inhibit the function of RIG-I, MDA5, LGP2, MAVS, TRAF3, TBK1, IRF3 and IRF7 both in the steady state or upon viral infection. We also further discuss important directions for future studies, especially for non-coding RNAs and post-translational modifications via fish specific TRIM proteins. The knowledge of negative regulators of RLR signaling pathway in teleost will shed new light on the critical information for potential therapeutic purposes.


Assuntos
Proteína DEAD-box 58/imunologia , Proteínas de Peixes/imunologia , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Transdução de Sinais/imunologia , Animais , Proteína DEAD-box 58/genética , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Peixes/genética , Peixes/virologia , Interações Hospedeiro-Patógeno/imunologia , Modelos Genéticos , Modelos Imunológicos , Virulência/imunologia , Vírus/imunologia , Vírus/patogenicidade
10.
Front Immunol ; 12: 784359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095857

RESUMO

Marek's disease virus (MDV), the etiologic agent for Marek's disease (MD), causes a deadly lymphoproliferative disease in chickens. Causes of the well-documented association between genetically defined lines of chicken and resistance to MD remain unknown. Here, the frequencies of IFN-gamma producing pp38 and MEQ-specific T cell responses were determined in line N (B21 haplotype; MD-resistant) and line P2a (B19 haplotype, MD-susceptible) chickens after infection with vaccine and/or virulent (RB1B) strains of MDV using both standard ex vivo and cultured chIFN-gamma ELISPOT assays. Notably, MDV infection of naïve and vaccinated MD-resistant chickens induced higher frequencies of IFN-gamma producing MDV-specific T cell responses using the cultured and ex vivo ELISPOT assay, respectively. Remarkably, vaccination did not induce or boost MEQ-specific effector T cells in the susceptible chickens, while it boosted both pp38-and MEQ-specific response in resistant line. Taken together, our results revealed that there is a direct association between the magnitude of T cell responses to pp38 and MEQ of MDV antigens and resistance to the disease.


Assuntos
Galinhas/imunologia , Haplótipos/imunologia , Antígenos de Histocompatibilidade/imunologia , Interferon gama/imunologia , Mardivirus/imunologia , Doença de Marek/imunologia , Linfócitos T/imunologia , Animais , Galinhas/virologia , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/virologia , Doença de Marek/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Virulência/imunologia
11.
Methods Mol Biol ; 2183: 331-356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32959252

RESUMO

Vaccination was developed by Edward Jenner in 1796. Since then, vaccination and vaccine development research has been a hotspot of research in the scientific community. Various ways of vaccine development are successfully employed in mass production of vaccines. One of the most successful ways to generate vaccines is the method of virulence attenuation in pathogens. The attenuated strains of viruses, bacteria, and parasites are used as vaccines which elicit robust immune response and confers protection against virulent pathogens. This chapter brings together the most common and efficient ways of generating live attenuated vaccine strains in viruses, bacteria, and parasites.


Assuntos
Vacinas Atenuadas/imunologia , Vacinologia/métodos , Animais , Vacinas Bacterianas , Linhagem Celular , Uso do Códon , Feminino , Raios gama , Inativação Gênica , Humanos , Imunização , Imunogenicidade da Vacina , Vírus da Influenza A , Camundongos , MicroRNAs/genética , Modelos Animais , Mutagênese , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas Protozoárias/genética , Vacinas Protozoárias/imunologia , Radiação Ionizante , Vacinas Atenuadas/genética , Virulência/imunologia
12.
Immunology ; 162(2): 220-234, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33020922

RESUMO

TNF signalling through TNFRp55 and TNFRp75, and receptor shedding is important for immune activation and regulation. TNFRp75 deficiency leads to improved control of Mycobacterium tuberculosis (M. tuberculosis) infection, but the effects of early innate immune events in this process are unclear. We investigated the role of TNFRp75 on cell activation and apoptosis of alveolar macrophages and neutrophils during M. tuberculosis and M. bovis BCG infection. We found increased microbicidal activity against M. tuberculosis occurred independently of IFNy and NO generation, and displayed an inverse correlation with alveolar macrophages (AMs) apoptosis. Both M. tuberculosis and M. bovis BCG induced higher expression of MHC-II in TNFRp75-/- AMs; however, M bovis BCG infection did not alter AM apoptosis in the absence of TNFRp75. Pulmonary concentrations of CCL2, CCL3 and IL-1ß were increased in TNFRp75-/- mice during M, bovis BCG infection, but had no effect on neutrophil responses. Thus, TNFRp75-dependent regulation of mycobacterial replication is virulence dependent and occurs independently of early alveolar macrophage apoptosis and neutrophil responses.


Assuntos
Vacina BCG/imunologia , Macrófagos Alveolares/imunologia , Neutrófilos/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Tuberculose Bovina/imunologia , Tuberculose/imunologia , Animais , Apoptose/imunologia , Bovinos , Células Cultivadas , Feminino , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Transdução de Sinais/imunologia , Receptores Chamariz do Fator de Necrose Tumoral/imunologia , Virulência/imunologia
13.
J Drug Target ; 29(4): 430-438, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33183080

RESUMO

The ultimate goal of bacterial based cancer therapy is to achieve non-toxic penetration and colonisation of the tumour microenvironment. To overcome this efficacy-limiting toxicity of anticancer immunotherapy, we have tested a therapy comprised of systemic delivery of a vascular disrupting agent to induce intratumoral necrotic space, cannabidiol to temporarily inhibit angiogenesis and acute inflammation, and a strain of Salmonella Typhimurium that was engineered for non-toxic colonisation and expression of immunomodulators within the tumour microenvironment. This combination treatment strategy was administered to transgenic mice burdened with autochthonous mammary gland tumours and demonstrated a statistically significant 64% slower tumour growth and a 25% increase in mean survival time compared to control animals without treatment. These experiments were accomplished with minimal toxicity as measured by less than 7% weight loss and a return to normal weight gain within three days following intravenous administration of the bacteria. Thus, non-toxic, robust colonisation of the microenvironment was achieved to produce a significant antitumor effect.


Assuntos
Bioengenharia/métodos , Neoplasias da Mama/terapia , Modelos Animais de Doenças , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/biossíntese , Salmonella typhimurium/metabolismo , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Fatores Imunológicos/síntese química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Salmonella typhimurium/química , Salmonella typhimurium/imunologia , Taxa de Sobrevida , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia , Virulência/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
14.
São Paulo; s.n; 2021. 126 p. ilus, graf.
Tese em Português | LILACS, ColecionaSUS, SES-SP, SESSP-CTDPROD, SES-SP, SESSP-TESESESSP, SES-SP | ID: biblio-1358653

RESUMO

Toxoplasma gondii é causador da toxoplasmose, uma das doenças mais prevalentes no mundo. Estudos recentes mostraram que vesículas extracelulares (EVs) liberadas por parasitas participam no processo de invasão e replicação no hospedeiro, porém o mecanismo de infecção ainda não está completamente elucidado. O objetivo desse trabalho foi identificar e caracterizar EVs produzidas por taquizoítos das cepas RH, ME-49 e VEG de T. gondii e a participação na patogênese da toxoplasmose. Purificação de EVs liberadas das três cepas de T. gondii foi realizada por cromatografia de exclusão de tamanho seguida por ELISA. Concentração e tamanho das vesículas isoladas foram analisados por Nanoparticle Tracking Analysis, o qual mostrou que as três cepas possuem perfis de liberação de EVs similares, com maior produção observada pela cepa RH. Quando analisados diferentes tempos de incubação, observou-se que em 2 horas de incubação ocorreu maior liberação de EVs do que em 24 horas de incubação, para as três cepas. A maior parte das vesículas encontradas possuía tamanho entre 100-200 nm, caracterizadas como microvesículas. Observou-se através de imagens capturadas por Microscopia Eletrônica de Varredura que a cepa RH liberou mais EVs do que as cepas VEG e ME-49. Após a análise de taquizoítos da cepa RH por Microscopia Eletrônica de Transmissão, observou-se que no...(AU)


Toxoplasma gondii is the agent of toxoplasmosis, one of the most prevalent diseases in the world. Recent studies show that extracellular vesicles (EVs) released by parasites are involved in the invasion and replication mechanisms in the host, however they are not completely clear. The aim of this study was to identify and characterize EVs released by tachyzoites from RH, ME-49 and VEG strains of T. gondii and their role in toxoplasmosis pathogenesis. EVs purification was performed by size exclusion chromatography followed by ELISA. Size and concentration of EVs was analysed by Nanoparticle Tracking Analysis, which showed similar EVs release profile from the three strains, however RH strain showed higher production of EVs. When analysed different incubation periods, it was observed higher production of EVs in 2 hours rather than 24 hours of incubation, for the three strains. The majority size of EVs found was of 100-200 nm which is classified by microvesicles. Images captured by Scanning Electron Microscopy showed that tachyzoites from RH strain released more EVs than tachyzoites from ME-49 and VEG strains. Also, images captured by Transmission Electron Microscopy of tachyzoites from RH strain showed that in the beginning of incubation period starts the formation of multivesicular bodies with vesicles inside ready to be released in the lumen. After 24 hours, it was able to observe intense release of EVs from the plasmatic membrane, as well as from posterior pore and apical ring. Furthermore, it was found that T. gondii was able to express the same miRNAs found in infected hosts. miR-155-5p, miR-125b-5p e miR-423-3p were the most expressed in tachyzoites as well as in EVs released from them in the three strains. Experiments with laboratory mice infected with tachyzoites of RH strain mixed with EVs, especially for EVs released from RH strain, showed that EVs can enhance parasitemia and virulence, decreasing mice's survival. Protein extracted from EVs of the three strains demonstrated similar electrophoretic profiles, but when EVs were incubated with sera from patients with toxoplasmosis, in Immunoblot analysis, EVs from ME-49 and VEG strains reacted poorly, unlike EVs from RH strains which reacted with sera from patients with gestational and cerebral toxoplasmosis. Stimulus of EVs released form the three strains in mice splenocytes in vitro produced similar concentrations of IL-10 and IFN- after 24 and 48 hours, in the three strains. EVs released from RH strain stimulated the production of more TNF- than EVs released from ME-49 and VEG strains. Finally, these results suggest that EVs released from tachyzoites of three T. gondii strains, especially the ones released from RH strain, were able to stablish communication between host cells and parasites, modulating host immune system, although they unbalance the host immune response since they carry virulence factors. (AU)


Assuntos
Toxoplasma , Virulência/imunologia , Citocinas , MicroRNAs/imunologia , Vesículas Extracelulares
15.
Proc Natl Acad Sci U S A ; 117(47): 29862-29871, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33172989

RESUMO

Organelle remodeling is critical for cellular homeostasis, but host factors that control organelle function during microbial infection remain largely uncharacterized. Here, a genome-scale CRISPR/Cas9 screen in intestinal epithelial cells with the prototypical intracellular bacterial pathogen Salmonella led us to discover that type I IFN (IFN-I) remodels lysosomes. Even in the absence of infection, IFN-I signaling modified the localization, acidification, protease activity, and proteomic profile of lysosomes. Proteomic and genetic analyses revealed that multiple IFN-I-stimulated genes including IFITM3, SLC15A3, and CNP contribute to lysosome acidification. IFN-I-dependent lysosome acidification was associated with elevated intracellular Salmonella virulence gene expression, rupture of the Salmonella-containing vacuole, and host cell death. Moreover, IFN-I signaling promoted in vivo Salmonella pathogenesis in the intestinal epithelium where Salmonella initiates infection, indicating that IFN-I signaling can modify innate defense in the epithelial compartment. We propose that IFN-I control of lysosome function broadly impacts host defense against diverse viral and microbial pathogens.


Assuntos
Células Epiteliais/imunologia , Interferon Tipo I/metabolismo , Mucosa Intestinal/imunologia , Lisossomos/metabolismo , Infecções por Salmonella/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Células Epiteliais/química , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação Bacteriana da Expressão Gênica/imunologia , Células HT29 , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Concentração de Íons de Hidrogênio , Imunidade Inata , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Lisossomos/química , Lisossomos/imunologia , Camundongos , Camundongos Knockout , Necroptose/imunologia , Peptídeo Hidrolases/metabolismo , Proteômica , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Transdução de Sinais/imunologia , Virulência/imunologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
16.
Rev. cuba. invest. bioméd ; 39(3): e868, jul.-set. 2020.
Artigo em Espanhol | CUMED, LILACS | ID: biblio-1138946

RESUMO

Introducción: Los coronavirus infectan al ser humano y pueden causar manifestaciones neurológicas en individuos susceptibles. Objetivo: Describir la patogenia de las manifestaciones neurológicas en pacientes con la COVID-19. Estrategia de búsqueda y criterios de selección: Se realizó una revisión bibliográfica empleando la bibliografía nacional e internacional actualizada. Se realizó la búsqueda en Google Académico, se consultaron artículos de libre acceso en las bases de datos Pubmed y SciELO, desde enero de 2014 hasta el 6 de mayo de 2020. Fueron seleccionados 51 artículos (6 en idioma español, 45 en inglés) y un libro de neuroinmunología. Se utilizaron los términos de búsqueda COVID-19, coronavirus, SARS-CoV-2,manifestaciones neurológicas, sistema nervioso, patogénesis, según el descriptor de Ciencias de la Salud (DeCS). Análisis e integración de la información: El SARS-CoV-2 entra al sistema nervioso por la vía linfática, hematógena, transináptica retrógada, por diseminación local a través del etmoides o por disfunción de la barrera hematoencefálica. La patogenia puede ser por la acción directa del virus o inmunomediada. En la pandemia de COVID-19 se reportan pacientes con manifestaciones neurológicas centrales, periféricas y musculoesqueléticas. Los síntomas más frecuentes son los trastornos del gusto, el olfato, cefaleas, mialgias y mareos. En las formas graves se reportan meningitis, encefalitis, síndrome de Guillain-Barré, ictus y encefalopatías. Conclusiones: El SARS-CoV-2 puede afectar al sistema nervioso central y periférico. Causa principalmente manifestaciones leves y transitorias, aunque pueden ocurrir complicaciones neurológicas. Los mecanismos patogénicos principales son el daño citopático directo o mecanismos indirectos debido a una respuesta inflamatoria(AU)


Introduction: Coronaviruses infect humans and may cause neurological manifestations in susceptible individuals. Objective: Describe the pathogenesis of neurological manifestations in patients with COVID-19. Search strategy and selection criteria: A review was conducted of national and international updated bibliography. The search was carried out in Google Scholar and open access papers were consulted in the databases PubMed and SciELO from January 2014 to 6 May 2020. A total 51 papers (6 in Spanish and 45 in English) and a book on neuroimmunology were selected. The search terms used were COVID-19, coronavirus, SARS-CoV-2, neurological manifestations, nervous system and pathogenesis, in compliance with the Health Sciences Descriptors (DeCS). Data analysis and integration: SARS-CoV-2 enters the nervous system by lymphatic, hematogenous, transynaptic, retrograde routes, by local dissemination through the ethmoid, or by dysfunction of the hematoencephalic barrier. Pathogenesis may be due to direct action by the virus or immunomediated. During the COVID-19 pandemic patients have been reported with central, peripheral and musculoskeletal neurological manifestations. The most common symptoms are taste and smell disorders, headache, myalgia and dizziness. Meningitis, encephalitis, Guillain-Barré syndrome, stroke and encephalopathies have been reported in severe forms of the disease. Conclusions: SARS-CoV-2 may affect the central and the peripheral nervous system. It mainly causes mild, transient manifestations, but neurological complications may also occur. The main pathogenic mechanisms are direct cytophatic damage or indirect mechanisms resulting from an inflammatory response(AU)


Assuntos
Humanos , Virulência/imunologia , Doenças do Sistema Nervoso/complicações , Infecções por Coronavirus/transmissão
17.
PLoS Pathog ; 16(8): e1008327, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32853276

RESUMO

Host resistance to Toxoplasma gondii relies on CD8 T cell IFNγ responses, which if modulated by the host or parasite could influence chronic infection and parasite transmission between hosts. Since host-parasite interactions that govern this response are not fully elucidated, we investigated requirements for eliciting naïve CD8 T cell IFNγ responses to a vacuolar resident antigen of T. gondii, TGD057. Naïve TGD057 antigen-specific CD8 T cells (T57) were isolated from transnuclear mice and responded to parasite-infected bone marrow-derived macrophages (BMDMs) in an antigen-dependent manner, first by producing IL-2 and then IFNγ. T57 IFNγ responses to TGD057 were independent of the parasite's protein export machinery ASP5 and MYR1. Instead, host immunity pathways downstream of the regulatory Immunity-Related GTPases (IRG), including partial dependence on Guanylate-Binding Proteins, are required. Multiple T. gondii ROP5 isoforms and allele types, including 'avirulent' ROP5A from clade A and D parasite strains, were able to suppress CD8 T cell IFNγ responses to parasite-infected BMDMs. Phenotypic variance between clades B, C, D, F, and A strains suggest T57 IFNγ differentiation occurs independently of parasite virulence or any known IRG-ROP5 interaction. Consistent with this, removal of ROP5 is not enough to elicit maximal CD8 T cell IFNγ production to parasite-infected cells. Instead, macrophage expression of the pathogen sensors, NLRP3 and to a large extent NLRP1, were absolute requirements. Other members of the conventional inflammasome cascade are only partially required, as revealed by decreased but not abrogated T57 IFNγ responses to parasite-infected ASC, caspase-1/11, and gasdermin D deficient cells. Moreover, IFNγ production was only partially reduced in the absence of IL-12, IL-18 or IL-1R signaling. In summary, T. gondii effectors and host machinery that modulate parasitophorous vacuolar membranes, as well as NLR-dependent but inflammasome-independent pathways, determine the full commitment of CD8 T cells IFNγ responses to a vacuolar antigen.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Inflamassomos/imunologia , Interferon gama/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Linfócitos T CD8-Positivos/parasitologia , Feminino , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Protozoários/genética , Toxoplasmose Animal/parasitologia , Vacúolos/imunologia , Vacúolos/metabolismo , Vacúolos/parasitologia , Virulência/imunologia
18.
APMIS ; 128(2): 150-161, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32352605

RESUMO

Infection with Helicobacter pylori is associated with the development of gastric cancer. Although the prevalence of gastric cancer has declined throughout years due to improvement in early screening strategy, mortality due to gastric cancer has not changed. Incidence and mortality due to gastric cancer are higher in developing countries as compared to developed countries. Diagnosis and prognosis of gastric cancer are still poor with patients usually diagnosed with cancer at an advanced stage. Eradication of H. pylori is pertinent for the prevention of gastric cancer. However, the rise in antimicrobial resistance among H. pylori isolates has complicated the prevention strategy. H. pylori express multiple virulence factors for survival in the hostile acid gastric environment. The expression of oncogenic protein cytotoxin-associated gene A (CagA), vacuolating cytotoxin A (VacA), and outer inflammatory protein is essential for H. pylori to exert pathogenesis towards the host. Interestingly, <3% of H. pylori-infected subjects develop gastric cancer, suggesting a unique way of interaction between the host's immune response and H. pylori virulence factors. This article is aimed to review the epidemiology and role of H. pylori in gastric carcinogenesis. A better understanding of the interaction between H. pylori virulence factors and host is required for better gastric cancer prevention.


Assuntos
Infecções por Helicobacter/complicações , Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/imunologia , Fatores de Virulência/imunologia , Virulência/imunologia , Carcinogênese/imunologia , Humanos , Prognóstico , Neoplasias Gástricas/microbiologia
19.
Cell Mol Life Sci ; 77(16): 3103-3116, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32080753

RESUMO

Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes deadly T-cell lymphomas and serves as a natural virus-induced tumor model in chickens. Although Marek's disease (MD) is well controlled by current vaccines, the evolution of MDV field viruses towards increasing virulence is concerning as a better vaccine to combat very virulent plus MDV is still lacking. Our understanding of molecular and cellular immunity to MDV and its immunopathogenesis has significantly improved, but those findings about cellular immunity to MDV are largely out-of-date, hampering the development of more effective vaccines against MD. T-cell-mediated cellular immunity was thought to be of paramount importance against MDV. However, MDV also infects macrophages, B cells and T cells, leading to immunosuppression and T-cell lymphoma. Additionally, there is limited information about how uninfected immune cells respond to MDV infection or vaccination, specifically, the mechanisms by which T cells are activated and recognize MDV antigens and how the function and properties of activated T cells correlate with immune protection against MDV or MD tumor. The current review revisits the roles of each immune cell subset and its effector mechanisms in the host immune response to MDV infection or vaccination from the point of view of comparative immunology. We particularly emphasize areas of research requiring further investigation and provide useful information for rational design and development of novel MDV vaccines.


Assuntos
Galinhas/imunologia , Galinhas/virologia , Imunidade Celular/imunologia , Doença de Marek/imunologia , Vírus Oncogênicos/imunologia , Linfócitos T/imunologia , Animais , Herpesvirus Galináceo 2/imunologia , Humanos , Doença de Marek/virologia , Linfócitos T/virologia , Virulência/imunologia
20.
Nature ; 577(7792): 682-688, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942069

RESUMO

Mycobacterium tuberculosis is an intracellular pathogen that uses several strategies to interfere with the signalling functions of host immune molecules. Many other bacterial pathogens exploit the host ubiquitination system to promote pathogenesis1,2, but whether this same system modulates the ubiquitination of M. tuberculosis proteins is unknown. Here we report that the host E3 ubiquitin ligase ANAPC2-a core subunit of the anaphase-promoting complex/cyclosome-interacts with the mycobacterial protein Rv0222 and promotes the attachment of lysine-11-linked ubiquitin chains to lysine 76 of Rv0222 in order to suppress the expression of proinflammatory cytokines. Inhibition of ANAPC2 by specific short hairpin RNA abolishes the inhibitory effect of Rv0222 on proinflammatory responses. Moreover, mutation of the ubiquitination site on Rv0222 impairs the inhibition of proinflammatory cytokines by Rv0222 and reduces virulence during infection in mice. Mechanistically, lysine-11-linked ubiquitination of Rv0222 by ANAPC2 facilitates the recruitment of the protein tyrosine phosphatase SHP1 to the adaptor protein TRAF6, preventing the lysine-63-linked ubiquitination and activation of TRAF6. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Ubiquitinação , Ciclossomo-Complexo Promotor de Anáfase/química , Animais , Subunidade Apc2 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Células Cultivadas , Citocinas/antagonistas & inibidores , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Lisina/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Transcrição AP-1/metabolismo , Tuberculose/microbiologia , Virulência/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA