Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Front Immunol ; 15: 1387329, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119340

RESUMO

Vitiligo, a pigmentary autoimmune disorder, is marked by the selective loss of melanocytes in the skin, leading to the appearance of depigmented patches. The principal pathological mechanism is the melanocyte destruction mediated by CD8+ T cells, modulated by oxidative stress and immune dysregulation. Vitiligo affects both physical health and psychological well-being, diminishing the quality of life. Polyphenols, naturally occurring compounds with diverse pharmacological properties, including antioxidant and anti-inflammatory activities, have demonstrated efficacy in managing various dermatological conditions through multiple pathways. This review provides a comprehensive analysis of vitiligo and the therapeutic potential of natural polyphenolic compounds. We examine the roles of various polyphenols in vitiligo management through antioxidant and immunomodulatory effects, melanogenesis promotion, and apoptosis reduction. The review underscores the need for further investigation into the precise molecular mechanisms of these compounds in vitiligo treatment and the exploration of their combination with current therapies to augment therapeutic outcomes.


Assuntos
Antioxidantes , Polifenóis , Vitiligo , Vitiligo/tratamento farmacológico , Vitiligo/metabolismo , Vitiligo/terapia , Humanos , Polifenóis/uso terapêutico , Polifenóis/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Animais , Estresse Oxidativo/efeitos dos fármacos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Terapia de Alvo Molecular , Apoptose/efeitos dos fármacos , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia
3.
Clin Immunol ; 265: 110300, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950722

RESUMO

A comprehensive analysis of spatial transcriptomics was carried out to better understand the progress of halo nevus. We found that halo nevus was characterized by overactive immune responses, triggered by chemokines and dendritic cells (DCs), T cells, and macrophages. Consequently, we observed abnormal cell death, such as apoptosis and disulfidptosis in halo nevus, some were closely related to immunity. Interestingly, we identified aberrant metabolites such as uridine diphosphate glucose (UDP-G) within the halo nevus. UDP-G, accompanied by the infiltration of DCs and T cells, exhibited correlations with certain forms of cell death. Subsequent experiments confirmed that UDP-G was increased in vitiligo serum and could activate DCs. We also confirmed that oxidative response is an inducer of UDP-G. In summary, the immune response in halo nevus, including DC activation, was accompanied by abnormal cell death and metabolites. Especially, melanocyte-derived UDP-G may play a crucial role in DC activation.


Assuntos
Células Dendríticas , Melanócitos , Nevo com Halo , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Melanócitos/metabolismo , Melanócitos/imunologia , Nevo com Halo/metabolismo , Nevo com Halo/imunologia , Uridina Difosfato Glucose/metabolismo , Vitiligo/imunologia , Vitiligo/metabolismo , Masculino , Feminino , Adulto , Apoptose , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto Jovem , Adolescente
4.
Diagn Pathol ; 19(1): 92, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961434

RESUMO

AIMS: Vitiligo is a chronic dermatological condition characterized by the progressive loss of melanocytes, for which traditional therapy has shown limited efficacy. This study aimed to establish a vitiligo model with easy operability, high repeatability, and stable depigmentation to provide a foundation for studying the pathogenesis and developing novel therapies for vitiligo. METHODS: (1) Establishing vitiligo model: Firstly, deliver B16F10 cells to the back skin of C57BL/6 J via intradermal injection (day 0), and the CD4 depletion antibody was injected intraperitoneally on day 4 and 10. Secondly, the melanoma was surgically removed on day 12. Thirdly, CD8 antibody was administered intraperitoneally every fourth day till day 30. (2) Identification of vitiligo model: H&E staining, immunohistochemistry, and immunofluorescence were used to detect the melanocytes. The melanin was detected by transmission electron microscopy (TEM), Lillie ferrous sulfate staining and L-DOPA staining. RESULTS: (1) The back skin and hair began to appear white on day 30. Melanin loss reached peak on day 60; (2) Hematoxylin and eosin (H&E) staining, immunohistochemistry and immunofluorescence results showed melanocytes were reduced. L-DOPA staining, Lillie ferrous sulfate staining and TEM results showed that melanin decreased in the epidermis. CONCLUSION: We successfully establishment a vitiligo mouse model which can be more capable to simulate the pathogenesis of human vitiligo and provide an important basis for the study of pathogenesis and therapy of vitiligo.


Assuntos
Modelos Animais de Doenças , Melanócitos , Camundongos Endogâmicos C57BL , Vitiligo , Animais , Vitiligo/patologia , Vitiligo/metabolismo , Vitiligo/terapia , Melanócitos/patologia , Melanócitos/metabolismo , Camundongos , Melaninas/metabolismo
5.
Sci Rep ; 14(1): 16580, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020008

RESUMO

Vitiligo and halo nevus are immune-mediated skin diseases that have a similar pathogenesis and involve cellular cytotoxicity mechanisms that are not yet fully understood. In this study, we investigated the expression patterns of the cytolytic molecule granulysin (GNLY) in different cytotoxic cells in skin samples of vitiligo and halo nevus. Skin biopsies were taken from perilesional and lesional skin of ten vitiligo patients, eight patients with halo nevus and ten healthy controls. We analysed the expression of GNLY by immunohistochemistry in CD8+ and CD56+ NK cells. A significantly higher accumulation of GNLY+, CD8+ GNLY+ and fewer CD56+ GNLY+ cells was found in the lesional skin of vitiligo and halo nevus than in the healthy skin. These cells were localised in the basal epidermis and papillary dermis, suggesting that GNLY may be involved in the immune response against melanocytes. Similarly, but to a lesser extent, upregulation of GNLY+ and CD8+ GNLY+ cells was observed in the perilesional skin of vitiligo and halo nevus compared to healthy controls. In this study, we demonstrated for the first time an increased expression of CD8+ GNLY+ T lymphocytes and CD56+ GNLY+ NK cells in lesions of vitiligo and halo nevus, indicating the role of GNLY in the pathogenesis of both diseases.


Assuntos
Antígenos de Diferenciação de Linfócitos T , Células Matadoras Naturais , Nevo com Halo , Vitiligo , Humanos , Vitiligo/metabolismo , Vitiligo/patologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Masculino , Nevo com Halo/metabolismo , Nevo com Halo/patologia , Feminino , Adulto , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Pessoa de Meia-Idade , Pele/metabolismo , Pele/patologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Melanócitos/metabolismo , Melanócitos/patologia , Adulto Jovem , Antígeno CD56/metabolismo , Estudos de Casos e Controles
6.
Chin Med J (Engl) ; 137(15): 1777-1789, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38973265

RESUMO

ABSTRACT: Regulated cell death (RCD) is a critical physiological process essential in maintaining skin homeostasis. Among the various forms of RCD, ferroptosis stands out due to its distinct features of iron accumulation, lipid peroxidation, and involvement of various inhibitory antioxidant systems. In recent years, an expanding body of research has solidly linked ferroptosis to the emergence of skin disorders. Therefore, understanding the mechanisms underlying ferroptosis in skin diseases is crucial for advancing therapy and prevention strategies. This review commences with a succinct elucidation of the mechanisms that underpin ferroptosis, embarks on a thorough exploration of ferroptosis's role across a spectrum of skin conditions, encompassing melanoma, psoriasis, systemic lupus erythematosus (SLE), vitiligo, and dermatological ailments precipitated by ultraviolet (UV) exposure, and scrutinizes the potential therapeutic benefits of pharmacological interventions aimed at modulating ferroptosis for the amelioration of skin diseases.


Assuntos
Ferroptose , Dermatopatias , Ferroptose/fisiologia , Humanos , Dermatopatias/metabolismo , Vitiligo/metabolismo , Vitiligo/terapia , Peroxidação de Lipídeos , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Ferro/metabolismo , Psoríase/metabolismo
7.
Mol Biol Rep ; 51(1): 650, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734811

RESUMO

BACKGROUND: Vitiligo is a common autoimmune skin disease. Capsaicin has been found to exert a positive effect on vitiligo treatment, and mesenchymal stem cells (MSCs) are also confirmed to be an ideal cell type. This study aimed to explore the influence of capsaicin combined with stem cells on the treatment of vitiligo and to confirm the molecular mechanism of capsaicin combined with stem cells in treating vitiligo. METHODS AND RESULTS: PIG3V cell proliferation and apoptosis were detected using CCK-8 and TUNEL assays, MitoSOX Red fluorescence staining was used to measure the mitochondrial ROS level, and JC-1 staining was used to detect the mitochondrial membrane potential. The expression of related genes and proteins was detected using RT‒qPCR and Western blotting. Coimmunoprecipitation was used to analyze the protein interactions between HSP70 and TLR4 or between TLR4 and mTOR. The results showed higher expression of HSP70 in PIG3V cells than in PIG1 cells. The overexpression of HSP70 reduced the proliferation of PIG3V cells, promoted apoptosis, and aggravated mitochondrial dysfunction and autophagy abnormalities. The expression of HSP70 could be inhibited by capsaicin combined with MSCs, which increased the levels of Tyr, Tyrp1 and DCT, promoted the proliferation of PIG3V cells, inhibited apoptosis, activated autophagy, and improved mitochondrial dysfunction. In addition, capsaicin combined with MSCs regulated the expression of TLR4 through HSP70 and subsequently affected the mTOR/FAK signaling pathway CONCLUSIONS: Capsaicin combined with MSCs inhibits TLR4 through HSP70, and the mTOR/FAK signaling pathway is inhibited to alleviate mitochondrial dysfunction and autophagy abnormalities in PIG3V cells.


Assuntos
Apoptose , Capsaicina , Proliferação de Células , Proteínas de Choque Térmico HSP70 , Melanócitos , Mitocôndrias , Transdução de Sinais , Serina-Treonina Quinases TOR , Receptor 4 Toll-Like , Vitiligo , Humanos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Capsaicina/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Melanócitos/metabolismo , Melanócitos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Vitiligo/metabolismo , Vitiligo/tratamento farmacológico , Quinase 1 de Adesão Focal/efeitos dos fármacos , Quinase 1 de Adesão Focal/metabolismo
8.
Exp Dermatol ; 33(5): e15091, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711220

RESUMO

KIT ligand and its associated receptor KIT serve as a master regulatory system for both melanocytes and mast cells controlling survival, migration, proliferation and activation. Blockade of this pathway results in cell depletion, while overactivation leads to mastocytosis or melanoma. Expression defects are associated with pigmentary and mast cell disorders. KIT ligand regulation is complex but efficient targeting of this system would be of significant benefit to those suffering from melanocytic or mast cell disorders. Herein, we review the known associations of this pathway with cutaneous diseases and the regulators of this system both in skin and in the more well-studied germ cell system. Exogenous agents modulating this pathway will also be presented. Ultimately, we will review potential therapeutic opportunities to help our patients with melanocytic and mast cell disease processes potentially including vitiligo, hair greying, melasma, urticaria, mastocytosis and melanoma.


Assuntos
Mastócitos , Mastocitose , Melanócitos , Proteínas Proto-Oncogênicas c-kit , Fator de Células-Tronco , Humanos , Fator de Células-Tronco/metabolismo , Melanócitos/metabolismo , Mastócitos/metabolismo , Mastocitose/tratamento farmacológico , Mastocitose/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Melanoma/metabolismo , Melanoma/tratamento farmacológico , Vitiligo/metabolismo , Vitiligo/tratamento farmacológico , Vitiligo/terapia , Transtornos da Pigmentação/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Animais
9.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673994

RESUMO

Both alopecia areata (AA) and vitiligo are distinct, heterogenous, and complex disease entities, characterized by nonscarring scalp terminal hair loss and skin pigment loss, respectively. In AA, inflammatory cell infiltrates are in the deep reticular dermis close to the hair bulb (swarm of bees), whereas in vitiligo the inflammatory infiltrates are in the epidermis and papillary dermis. Immune privilege collapse has been extensively investigated in AA pathogenesis, including the suppression of immunomodulatory factors (e.g., transforming growth factor-ß (TGF-ß), programmed death-ligand 1 (PDL1), interleukin-10 (IL-10), α-melanocyte-stimulating hormone (α-MSH), and macrophage migration inhibitory factor (MIF)) and enhanced expression of the major histocompatibility complex (MHC) throughout hair follicles. However, immune privilege collapse in vitiligo remains less explored. Both AA and vitiligo are autoimmune diseases that share commonalities in pathogenesis, including the involvement of plasmacytoid dendritic cells (and interferon-α (IFN- α) signaling pathways) and cytotoxic CD8+ T lymphocytes (and activated IFN-γ signaling pathways). Blood chemokine C-X-C motif ligand 9 (CXCL9) and CXCL10 are elevated in both diseases. Common factors that contribute to AA and vitiligo include oxidative stress, autophagy, type 2 cytokines, and the Wnt/ß-catenin pathway (e.g., dickkopf 1 (DKK1)). Here, we summarize the commonalities and differences between AA and vitiligo, focusing on their pathogenesis.


Assuntos
Alopecia em Áreas , Vitiligo , Alopecia em Áreas/imunologia , Alopecia em Áreas/patologia , Alopecia em Áreas/etiologia , Alopecia em Áreas/metabolismo , Humanos , Vitiligo/imunologia , Vitiligo/patologia , Vitiligo/metabolismo , Vitiligo/etiologia , Animais , Privilégio Imunológico , Citocinas/metabolismo
10.
Pigment Cell Melanoma Res ; 37(3): 378-390, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38343115

RESUMO

We have discovered that human vitiligo patients treated with narrow-band UVB (NBUVB) demonstrated localized resistance to repigmentation in skin sites characterized by distinct cellular and molecular pathways. Using immunostaining studies, discovery-stage RNA-Seq analysis, and confirmatory in situ hybridization, we analyzed paired biopsies collected from vitiligo lesions that did not repigment after 6 months of NBUVB treatment (non-responding) and compared them with repigmented (responding) lesions from the same patient. Non-responding lesions exhibited acanthotic epidermis, had low number of total, proliferative, and differentiated melanocyte (MC) populations, and increased number of senescent keratinocytes (KCs) and of cytotoxic CD8+ T cells as compared with responding lesions. The abnormal response in the non-responding lesions was driven by a dysregulated cAMP pathway and of upstream activator PDE4B, and of WNT/ß-catenin repigmentation pathway. Vitiligo-responding lesions expressed high levels of WNT10B ligand, a molecule that may prevent epidermal senescence induced by NBUVB, and that in cultured melanoblasts prevented the pro-melanogenic effect of α-MSH. Understanding the pathways that govern lack of NBUVB-induced vitiligo repigmentation has a great promise in guiding the development of new therapeutic strategies for vitiligo.


Assuntos
Epiderme , Melanócitos , Pigmentação da Pele , Vitiligo , Vitiligo/patologia , Vitiligo/radioterapia , Vitiligo/metabolismo , Humanos , Epiderme/patologia , Epiderme/metabolismo , Epiderme/efeitos da radiação , Pigmentação da Pele/efeitos da radiação , Melanócitos/patologia , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Terapia Ultravioleta/métodos , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Raios Ultravioleta , Feminino , Masculino , Via de Sinalização Wnt , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética
11.
An. bras. dermatol ; 89(3): 461-470, May-Jun/2014. tab
Artigo em Inglês | LILACS | ID: lil-711614

RESUMO

Vitiligo is a chronic stigmatizing disease, already known for millennia, which mainly affects melanocytes from epidermis basal layer, leading to the development of hypochromic and achromic patches. Its estimated prevalence is 0.5% worldwide. The involvement of genetic factors controlling susceptibility to vitiligo has been studied over the last decades, and results of previous studies present vitiligo as a complex, multifactorial and polygenic disease. In this context, a few genes, including DDR1, XBP1 and NLRP1 have been consistently and functionally associated with the disease. Notwithstanding, environmental factors that precipitate or maintain the disease are yet to be described. The pathogenesis of vitiligo has not been totally clarified until now and many theories have been proposed. Of these, the autoimmune hypothesis is now the most cited and studied among experts. Dysfunction in metabolic pathways, which could lead to production of toxic metabolites causing damage to melanocytes, has also been investigated. Melanocytes adhesion deficit in patients with vitiligo is mainly speculated by the appearance of Köebner phenomenon, recently, new genes and proteins involved in this deficit have been found.


Assuntos
Humanos , Vitiligo/genética , Ligação Genética/genética , Doenças Autoimunes/genética , Vitiligo/imunologia , Vitiligo/metabolismo , Predisposição Genética para Doença , Estudos de Associação Genética , Melanócitos/imunologia
12.
Braz. j. med. biol. res ; 46(5): 460-464, maio 2013. graf
Artigo em Inglês | LILACS | ID: lil-675671

RESUMO

Melanocyte loss in vitiligo vulgaris is believed to be an autoimmune process. Macrophage migration inhibitory factor (MIF) is involved in many autoimmune skin diseases. We determined the possible role of MIF in the pathogenesis of vitiligo vulgaris, and describe the relationship between MIF expressions and disease severity and activity. Serum MIF concentrations and mRNA levels in PBMCs were measured in 44 vitiligo vulgaris patients and 32 normal controls, using ELISA and real-time RT-PCR. Skin biopsies from 15 patients and 6 controls were analyzed by real-time RT-PCR. Values are reported as median (25th-75th percentile). Serum MIF concentrations were significantly increased in patients [35.81 (10.98-43.66) ng/mL] compared to controls [7.69 (6.01-9.03) ng/mL]. MIF mRNA levels were significantly higher in PBMCs from patients [7.17 (3.59-8.87)] than controls [1.67 (1.23-2.42)]. There was also a significant difference in MIF mRNA levels in PBMCs between progressive and stable patients [7.86 (5.85-9.13) vs 4.33 (2.23-8.39)] and in serum MIF concentrations [40.47 (27.71-46.79) vs 26.80 (10.55-36.07) ng/mL]. In addition, the vitiligo area severity index scores of patients correlated positively with changes of both serum MIF concentrations (r = 0.488) and MIF mRNA levels in PBMCs (r = 0.426). MIF mRNA levels were significantly higher in lesional than in normal skin [2.43 (2.13-7.59) vs 1.18 (0.94-1.83)] and in patients in the progressive stage than in the stable stage [7.52 (2.43-8.84) vs 2.13 (1.98-2.64)]. These correlations suggest that MIF participates in the pathogenesis of vitiligo vulgaris and may be useful as an index of disease severity and activity.


Assuntos
Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Leucócitos Mononucleares/química , Fatores Inibidores da Migração de Macrófagos/metabolismo , RNA Mensageiro/metabolismo , Vitiligo/metabolismo , Estudos de Casos e Controles , ELISPOT , Fatores Inibidores da Migração de Macrófagos/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Índice de Gravidade de Doença , Vitiligo/etiologia , Vitiligo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA