Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(3): e0214010, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30889228

RESUMO

The Grapevine Pinot Gris disease (GPG-d) is a novel disease characterized by symptoms such as leaf mottling and deformation, which has been recently reported in grapevines, and mostly in Pinot gris. Plants show obvious symptoms at the beginning of the growing season, while during summer symptom recovery frequently occurs, manifesting as symptomless leaves. A new Trichovirus, named Grapevine Pinot gris virus (GPGV), which belongs to the family Betaflexiviridae was found in association with infected plants. The detection of the virus in asymptomatic grapevines raised doubts about disease aetiology. Therefore, the primary target of this work was to set up a reliable system for the study of the disease in controlled conditions, avoiding interfering factor(s) that could affect symptom development. To this end, two clones of the virus, pRI::GPGV-vir and pRI::GPGV-lat, were generated from total RNA collected from one symptomatic and one asymptomatic Pinot gris grapevine, respectively. The clones, which encompassed the entire genome of the virus, were used in Agrobacterium-mediated inoculation of Vitis vinifera and Nicotiana benthamiana plants. All inoculated plants developed symptoms regardless of their inoculum source, demonstrating a correlation between the presence of GPGV and symptomatic manifestations. Four months post inoculum, the grapevines inoculated with the pRI::GPGV-lat clone developed asymptomatic leaves that were still positive to GPGV detection. Three to four weeks later (i.e. ca. 5 months post inoculum), the same phenomenon was observed in the grapevines inoculated with pRI::GPGV-vir. This observation perfectly matches symptom progression in infected field-grown grapevines, suggesting a possible role for plant antiviral mechanisms, such as RNA silencing, in the recovery process.


Assuntos
Flexiviridae/patogenicidade , Nicotiana/virologia , Doenças das Plantas/virologia , Vitis/virologia , Agrobacterium/virologia , DNA Viral/genética , Flexiviridae/genética , Flexiviridae/ultraestrutura , Genoma Viral , Microscopia Eletrônica de Transmissão , Folhas de Planta/ultraestrutura , Folhas de Planta/virologia , Nicotiana/ultraestrutura , Virulência , Vitis/ultraestrutura
2.
Pestic Biochem Physiol ; 143: 207-213, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29183594

RESUMO

Fluoroglycofen, a post-emergence herbicide used in vineyards to eradicate weeds, has previously been shown to turn grape leaves dark green following its use. Therefore, this study evaluates the relationship of dark green leaves with calcium form and subcellular distribution. To do this, we focused on the Ca2+ distribution and Ca2+-ATPase activity in leaf cells of one-year-old self-rooted Chardonnay grapevines treated with fluoroglycofen. Plants were separated into different treatments when they had seven or eight leaves, and different concentrations of fluoroglycofen were sprayed on the sand. The results showed that all of the soluble calcium content in the grape leaves that were treated with the highest concentration of fluoroglycofen (187.5gaiha-1) increased significantly. Specifically, the water-soluble organic acid calcium, pectate calcium, and calcium oxalate increased by 18.43%, 17.14%, and 31.05%, respectively, in the upper leaves than in the control. The subcellular distribution of Ca2+ in the dark green leaves increased significantly, especially in the cell wall and chloroplast, which increased by 25.54% and 24.10%, respectively. Through the ultrastructure localization of Ca2+ and Ca2+-ATPase contrasted with the control, the extracellular space and chloroplasts in the mesophyll cells of dark green leaves had large calcium pyroantimonate (Ca-PA) deposits. The extracellular space had fewer Ca2+-ATPase precipitation particles, whereas the chloroplasts had more. At the same time, a high concentration of fluoroglycofen decreased Ca2+-ATPase activity in grape leaves, which potentially might be due to disrupted regulation of calcium homeostatic mechanisms inside and outside of cells, resulting in a large number of Ca2+ accumulation in cells. The Ca2+ accumulation not only hindered the various cellular physiological reactions, but also caused leaves to become dark green in color.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Herbicidas/toxicidade , Hidrocarbonetos Halogenados/toxicidade , Nitrobenzoatos/toxicidade , Folhas de Planta/efeitos dos fármacos , Vitis/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Organelas/efeitos dos fármacos , Organelas/metabolismo , Organelas/ultraestrutura , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Vitis/metabolismo , Vitis/ultraestrutura
3.
Plant Sci ; 234: 38-49, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25804808

RESUMO

Gall forming phylloxera may compete for nutrients with meristematic tissues and develop heterotrophic structures that act as carbon sinks. In this work, we studied the underlying starch metabolism, sink-source translocation of soluble sugars towards and within root galls. We demonstrated that nodosities store carbohydrates by starch accumulation and monitored the expression of genes involved in the starch metabolic. Thereby we proved that the nodosity is symplastically connected to the source tissues through its development and that the starch metabolism is significantly affected to synthesize and degrade starch within the gall. Genes required for starch biosynthesis and degradation are up-regulated. Among the carbohydrate transporters the expression of a glucose-6-phosphate translocater, one sucrose transporter and two SWEET proteins were increases, whereas hexose transporters, tonoplast monosaccharide transporter and Erd6-like sugar transporters were decreased. We found general evidence for plant response to osmotic stress in the nodosity as previously suggested for gall induction processes. We conclude that nodosities are heterogenous plant organs that accumulate starch to serve as temporary storage structure that is gradually withdrawn by phylloxera. Phylloxera transcriptionally reprograms gall tissues beyond primary metabolism and included downstream secondary processes, including response to osmotic stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Hemípteros/fisiologia , Interações Hospedeiro-Parasita , Vitis/parasitologia , Animais , Metabolismo dos Carboidratos , Perfilação da Expressão Gênica , Hemípteros/ultraestrutura , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Raízes de Plantas/ultraestrutura , Tumores de Planta/genética , Tumores de Planta/parasitologia , Amido/metabolismo , Vitis/genética , Vitis/metabolismo , Vitis/ultraestrutura
4.
J Sci Food Agric ; 91(11): 1963-76, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21480272

RESUMO

BACKGROUND: Several studies have investigated the composition of phenolics in grape skin during grape maturation under various conditions of light exposure, water stress, nitrogen supply and mineral nutrition, but their localisation during berry development is not well known. In this study the composition and localisation of proanthocyanidins were monitored for three years on four plots known to induce a distinctive behaviour of the vine (Cabernet Franc). The composition of phenolics was determined by spectrophotometry; also, in one year, proanthocyanidins were determined by high-performance liquid chromatography. Further information was obtained histochemically by means of toluidine blue O staining and image analysis. RESULTS: The results indicated that clear differences in phenolic quantification existed between the biochemical and histochemical approaches; the proportion of cells without phenolics was not linked with the quantity determined by the analytical methods used. The histochemical method showed the evolution of the localisation and typology of cells with and without phenolics during ripening. The number of cells without any phenolic compounds appeared to be very dependent on the mesoclimatic conditions and only slightly dependent on the site water status. CONCLUSION: Clear differences in phenolic quantification existed between the biochemical and histochemical approaches; the proportion of cells with phenolics was not linked with the quantity determined by biochemistry. The histochemical method showed an evolution of the localisation and typology of cells with and without phenolics in which mesoclimatic conditions were the most influential factor. Finally, the study showed some advantages of the histochemical approach: it gives information about the anatomy of the tissue as well as the nature and distribution of some of the large macromolecules and allows reconstruction of the three-dimensional plant structure.


Assuntos
Clima , Produtos Agrícolas/química , Frutas/química , Epiderme Vegetal/química , Polifenóis/análise , Vitis/química , Água/metabolismo , Cromatografia Líquida de Alta Pressão , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/ultraestrutura , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/ultraestrutura , Carboidratos da Dieta/análise , França , Frutas/crescimento & desenvolvimento , Frutas/ultraestrutura , Histocitoquímica , Concentração de Íons de Hidrogênio , Cinética , Pigmentação , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/ultraestrutura , Extratos Vegetais/química , Proantocianidinas/análise , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta , Vitis/crescimento & desenvolvimento , Vitis/ultraestrutura
5.
J Hazard Mater ; 133(1-3): 203-11, 2006 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-16310940

RESUMO

The sorption of lead and cadmium from aqueous solutions by grape stalk waste (a by-product of wine production) was investigated. The effects of the contact time, pH of the solution, ionic medium, initial metal concentration, other metal ions present and ligands were studied in batch experiments at 20 degrees C. Maximum sorption for both metals was found to occur at an initial pH of around 5.5. The equilibrium process was described well by the Langmuir isotherm model, with maximum grape stalk sorption capacities of 0.241 and 0.248 mmol g(-1) for Pb(II) and Cd(II), respectively, at pH around 5.5. Kinetic studies showed good correlation coefficients for a pseudo-second-order kinetic model. The presence of NaCl and NaClO(4) in the solution caused a reduction in Pb and Cd sorption, the latter being more strongly suppressed. The presence of other metals in the uptake process did not affect the removal of Pb, while the Cd uptake was much reduced. HCl or EDTA solutions were able to desorb lead from the grape stalks completely, while an approximately 65% desorption yield was obtained for cadmium. From the results obtained it seems that other mechanisms, such as surface complexation and electrostatic interactions, must be involved in the metal sorption in addition to ion exchange.


Assuntos
Cádmio/química , Cádmio/isolamento & purificação , Resíduos Industriais , Chumbo/química , Chumbo/isolamento & purificação , Caules de Planta/metabolismo , Vitis/química , Adsorção , Indústria Alimentícia , Concentração de Íons de Hidrogênio , Íons/química , Microscopia Eletrônica de Varredura , Caules de Planta/química , Caules de Planta/ultraestrutura , Soluções/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo , Vitis/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA