Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 40(1): 127-142, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33068174

RESUMO

KEY MESSAGE: The HbCAld5H1 gene cloned from Hevea brasiliensis regulates the cambial activity, xylem differentiation, syringyl-guaiacyl ratio, secondary wall structure, lignification pattern and xylan distribution in xylem fibres of transgenic tobacco plants. Molecular characterization of lignin biosynthesis gene coniferaldehyde-5-hydroxylase (CAld5H) from Hevea brasiliensis and its functional validation was performed. Both sense and antisense constructs of HbCAld5H1 gene were introduced into tobacco through Agrobacterium-mediated genetic transformation for over expression and down-regulation of this key enzyme to understand its role affecting structural and cell wall chemistry. The anatomical studies of transgenic tobacco plants revealed the increase of cambial activity leading to xylogenesis in sense lines and considerable reduction in antisense lines. The ultra-structural studies showed that the thickness of secondary wall (S2 layer) of fibre had been decreased with non-homogenous lignin distribution in antisense lines, while sense lines showed an increase in S2 layer thickness. Maule color reaction revealed that syringyl lignin distribution in the xylem elements was increased in sense and decreased in antisense lines. The immunoelectron microscopy revealed a reduction in LM 10 and LM 11 labelling in the secondary wall of antisense tobacco lines. Biochemical studies showed a radical increase in syringyl lignin in sense lines without any significant change in total lignin content, while S/G ratio decreased considerably in antisense lines. Our results suggest that CAld5H gene plays an important role in xylogenesis stages such as cambial cell division, secondary wall thickness, xylan and syringyl lignin distribution in tobacco. Therefore, CAld5H gene could be considered as a promising target for lignin modification essential for timber quality improvement in rubber.


Assuntos
Parede Celular/química , Oxigenases de Função Mista/genética , Nicotiana/genética , Proteínas de Plantas/genética , Xilema/citologia , Acroleína/análogos & derivados , Acroleína/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/genética , Lignina/metabolismo , Oxigenases de Função Mista/metabolismo , Fenótipo , Células Vegetais/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/citologia , Nicotiana/metabolismo , Xilanos/genética , Xilanos/metabolismo , Xilema/metabolismo
2.
Sci Rep ; 10(1): 9025, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493993

RESUMO

Cyst nematodes induce host-plant root cells to form syncytia from which the nematodes feed. Comprehensive histological investigation of these feeding sites is complicated by their variable shape and their positions deep within root tissue. Using tissue clearing and confocal microscopy, we examined thick (up to 150 µm) sections of wheat roots infected by cereal cyst nematodes (Heterodera avenae). This approach provided clear views of feeding sites and surrounding tissues, with resolution sufficient to reveal spatial relationships among nematodes, syncytia and host vascular tissues at the cellular level. Regions of metaxylem vessels near syncytia were found to have deviated from classical developmental patterns. Xylem vessel elements in these regions had failed to elongate but had undergone radial expansion, becoming short and plump rather than long and cylindrical. Further investigation revealed that vessel elements cease to elongate shortly after infection and that they later experience delays in secondary thickening (lignification) of their outer cell walls. Some of these elements were eventually incorporated into syncytial feeding sites. By interfering with a developmental program that normally leads to programmed cell death, H. avenae may permit xylem vessel elements to remain alive for later exploitation by the parasite.


Assuntos
Infecções por Nematoides/metabolismo , Triticum/metabolismo , Xilema/citologia , Animais , Parede Celular/metabolismo , Cistos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Células Gigantes/citologia , Infecções , Microscopia Confocal/métodos , Nematoides/metabolismo , Infecções por Nematoides/fisiopatologia , Doenças das Plantas/parasitologia , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Triticum/parasitologia , Tylenchoidea/parasitologia , Tylenchoidea/fisiologia
4.
Int J Biol Macromol ; 137: 703-711, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31279878

RESUMO

The vacuolar processing enzyme (VPE) plays an important role in PCD and was originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants. We found that γVPE is involved in PCD of xylem fiber cells through the activation of CEP1 proproteases into mature protease in Arabidopsis. The γVPE protein was expressed specifically in cambium cells cambium, the primary phloem and the primary xylem during stem development. The recombinant γVPE appearing as a proenzyme at pH 7.0, and then transforming into a 40-kD mature enzyme at pH 5.5 in vitro by self-cleaving. The mature γVPE protein activated CEP1 maturation in vitro, whereas this activity was inhibited in the γvpe mutant. Transmission electron microscopy showed delayed PCD in fiber cells and thickening of secondary fiber cell walls in the γvpe mutant. Transcriptome analysis showed that the expression of 2001 genes was significantly altered expression in the γvpe mutants, and most of them are important for secondary cell wall formation and PCD. Our results demonstrate that γVPE is a crucial processing enzyme for xylem fiber cells PCD during stem development.


Assuntos
Apoptose , Arabidopsis/citologia , Arabidopsis/enzimologia , Cisteína Endopeptidases/metabolismo , Xilema/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Cisteína Endopeptidases/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Mutação , Biossíntese de Proteínas
5.
New Phytol ; 221(4): 2039-2053, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30220089

RESUMO

Accumulation of reactive oxygen species (ROS) is a general plant basal defense strategy against viruses. In this study, we show that infection by Citrus tristeza virus (CTV) triggered ROS burst in Nicotiana benthamiana and in the natural citrus host, the extent of which was virus-dose dependent. Using Agrobacterium-mediated expression of CTV-encoded proteins in N. benthamiana, we found that p33, a unique viral protein, contributed to the induction of ROS accumulation and programmed cell death. The role of p33 in CTV pathogenicity was assessed based on gene knockout and complementation in N. benthamiana. In the citrus-CTV pathosystem, deletion of the p33 open reading frame in a CTV variant resulted in a significant decrease in ROS production, compared to that of the wild type CTV, which correlated with invasion of the mutant virus into the immature xylem tracheid cells and abnormal differentiation of the vascular system. By contrast, the wild type CTV exhibited phloem-limited distribution with a minor effect on the vasculature. We conclude that the p33 protein is a CTV effector that negatively affects virus pathogenicity and suggest that N. benthamiana recognizes p33 to activate the host immune response to restrict CTV into the phloem tissue and minimize the disease syndrome.


Assuntos
Citrus/virologia , Closterovirus/metabolismo , Closterovirus/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Imunidade Vegetal , Proteínas Virais/metabolismo , Apoptose , Closterovirus/ultraestrutura , Mutação/genética , Doenças das Plantas/virologia , Folhas de Planta/virologia , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/virologia , Árvores/virologia , Xilema/citologia , Xilema/virologia
6.
Plant Cell Physiol ; 59(1): 17-29, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040725

RESUMO

Post-translational modifications of proteins have important roles in the regulation of protein activity. One such modification, S-nitrosylation, involves the covalent binding of nitric oxide (NO)-related species to a cysteine residue. Recent work showed that protein S-nitrosylation has crucial functions in plant development and environmental responses. In the present study, we investigated the importance of protein S-nitrosylation for xylem vessel cell differentiation using a forward genetics approach. We performed ethyl methanesulfonate mutagenesis of a transgenic Arabidopsis 35S::VND7-VP16-GR line in which the activity of VASCULAR-RELATED NAC-DOMAIN7 (VND7), a key transcription factor involved in xylem vessel cell differentiation, can be induced post-translationally by glucocorticoid treatment, with the goal of obtaining suppressor mutants that failed to differentiate ectopic xylem vessel cells; we named these mutants suppressor of ectopic vessel cell differentiation induced by VND7 (seiv) mutants. We found the seiv1 mutant to be a recessive mutant in which ectopic xylem cell differentiation was inhibited, especially in aboveground organs. In seiv1 mutants, a single nucleic acid substitution (G to A) leading to an amino acid substitution (E36K) was present in the gene encoding S-NITROSOGLUTATHIONE REDUCTASE 1 (GSNOR1), which regulates the turnover of the natural NO donor, S-nitrosoglutathione. An in vitro S-nitrosylation assay revealed that VND7 can be S-nitrosylated at Cys264 and Cys320 located near the transactivation activity-related domains, which were shown to be important for transactivation activity of VND7 by transient reporter assay. Our results suggest crucial roles for GSNOR1-regulated protein S-nitrosylation in xylem vessel cell differentiation, partly through the post-translational modification of VND7.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Diferenciação Celular , Óxido Nítrico/metabolismo , Xilema/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cisteína/genética , Cisteína/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Mutação , Plantas Geneticamente Modificadas , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xilema/citologia , Xilema/genética
7.
Planta ; 247(1): 215-228, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28942496

RESUMO

MAIN CONCLUSION: Extensive de novo vascularization of leafy galls emerging upon Rhodococcus fascians infection is achieved by fascicular/interfascicular cambium activity and transdifferentiation of parenchyma cells correlated with increased auxin signaling. A leafy gall consisting of fully developed yet growth-inhibited shoots, induced by the actinomycete Rhodococcus fascians, differs in structure compared to the callus-like galls induced by other bacteria. To get insight into the vascular development accompanying the emergence of the leafy gall, the anatomy of infected axillary regions of the inflorescence stem of wild-type Arabidopsis thaliana accession Col-0 plants and the auxin response in pDR5:GUS-tagged plants were followed in time. Based on our observations, three phases can be discerned during vascularization of the symptomatic tissue. First, existing fascicular cambium becomes activated and interfascicular cambium is formed giving rise to secondary vascular elements in a basipetal direction below the infection site in the main stem and in an acropetal direction in the entire side branch. Then, parenchyma cells in the region between both stems transdifferentiate acropetally towards the surface of the developing symptomatic tissue leading to the formation of xylem and vascularize the hyperplasia as they expand. Finally, parenchyma cells in the developing gall also transdifferentiate to vascular elements without any specific direction resulting in excessive vasculature disorderly distributed in the leafy gall. Prior to any apparent anatomical changes, a strong auxin response is mounted, implying that auxin is the signal that controls the vascular differentiation induced by the infection. To conclude, we propose the "sidetracking gall hypothesis" as we discuss the mechanisms driving the formation of superfluous vasculature of the emerging leafy gall.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Tumores de Planta/microbiologia , Rhodococcus/fisiologia , Transdução de Sinais , Arabidopsis/citologia , Arabidopsis/microbiologia , Câmbio/citologia , Câmbio/crescimento & desenvolvimento , Câmbio/microbiologia , Transdiferenciação Celular , Genes Reporter , Inflorescência/citologia , Inflorescência/crescimento & desenvolvimento , Inflorescência/microbiologia , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Caules de Planta/citologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/microbiologia , Xilema/citologia , Xilema/crescimento & desenvolvimento , Xilema/microbiologia
8.
New Phytol ; 217(4): 1551-1565, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29243818

RESUMO

Metacaspases (MCs) are cysteine proteases that are implicated in programmed cell death of plants. AtMC9 (Arabidopsis thaliana Metacaspase9) is a member of the Arabidopsis MC family that controls the rapid autolysis of the xylem vessel elements, but its downstream targets in xylem remain uncharacterized. PttMC13 and PttMC14 were identified as AtMC9 homologs in hybrid aspen (Populus tremula × tremuloides). A proteomic analysis was conducted in xylem tissues of transgenic hybrid aspen trees which carried either an overexpression or an RNA interference construct for PttMC13 and PttMC14. The proteomic analysis revealed modulation of levels of both previously known targets of metacaspases, such as Tudor staphylococcal nuclease, heat shock proteins and 14-3-3 proteins, as well as novel proteins, such as homologs of the PUTATIVE ASPARTIC PROTEASE3 (PASPA3) and the cysteine protease RD21 by PttMC13 and PttMC14. We identified here the pathways and processes that are modulated by PttMC13 and PttMC14 in xylem tissues. In particular, the results indicate involvement of PttMC13 and/or PttMC14 in downstream proteolytic processes and cell death of xylem elements. This work provides a valuable reference dataset on xylem-specific metacaspase functions for future functional and biochemical analyses.


Assuntos
Caspases/metabolismo , Populus/enzimologia , Árvores/enzimologia , Madeira/enzimologia , Sequência de Aminoácidos , Caspases/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Família Multigênica , Peptídeos/química , Peptídeos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Proteômica , Xilema/citologia , Xilema/genética , Xilema/metabolismo
9.
Development ; 144(19): 3578-3589, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28851711

RESUMO

The plant vascular network consists of specialized phloem and xylem elements that undergo two distinct morphogenetic developmental programs to become transport-functional units. Whereas vacuolar rupture is a determinant step in protoxylem differentiation, protophloem elements never form a big central vacuole. Here, we show that a genetic disturbance of phosphatidylinositol 4,5-bis-phosphate [PtdIns(4,5)P2] homeostasis rewires cell trafficking towards the vacuole in Arabidopsis thaliana roots. Consequently, an enhanced phosphoinositide-mediated vacuolar biogenesis correlates with premature programmed cell death (PCD) and secondary cell wall elaboration in xylem cells. By contrast, vacuolar fusion events in protophloem cells trigger the abnormal formation of big vacuoles, preventing cell clearance and tissue functionality. Removal of the inositol 5' phosphatase COTYLEDON VASCULAR PATTERN 2 from the plasma membrane (PM) by brefeldin A (BFA) treatment increases PtdIns(4,5)P2 content at the PM and disrupts protophloem continuity. Conversely, BFA application abolishes vacuolar fusion events in xylem tissue without preventing PCD, suggesting the existence of additional PtdIns(4,5)P2-dependent cell death mechanisms. Overall, our data indicate that tight PM phosphoinositide homeostasis is required to modulate intracellular trafficking contributing to oppositely regulate vascular differentiation.


Assuntos
Arabidopsis/citologia , Diferenciação Celular , Homeostase , Fosfatidilinositóis/metabolismo , Raízes de Plantas/citologia , Feixe Vascular de Plantas/citologia , Apoptose/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Estradiol/farmacologia , Homeostase/efeitos dos fármacos , Espaço Intracelular/metabolismo , Floema/citologia , Floema/efeitos dos fármacos , Floema/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Xilema/citologia , Xilema/efeitos dos fármacos , Xilema/metabolismo
10.
New Phytol ; 216(1): 76-89, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28742236

RESUMO

The Arabidopsis thaliana gene XYLEM NAC DOMAIN1 (XND1) is upregulated in xylem tracheary elements. Yet overexpression of XND1 blocks differentiation of tracheary elements. The molecular mechanism of XND1 action was investigated. Phylogenetic and motif analyses indicated that XND1 and its homologs are present only in angiosperms and possess a highly conserved C-terminal region containing linear motifs (CKII-acidic, LXCXE, E2FTD -like and LXCXE-mimic) predicted to interact with the cell cycle and differentiation regulator RETINOBLASTOMA-RELATED (RBR). Protein-protein interaction and functional analyses of XND1 deletion mutants were used to test the importance of RBR-interaction motifs. Deletion of either the LXCXE or the LXCXE-mimic motif reduced both the XND1-RBR interaction and XND1 efficacy as a repressor of differentiation, with loss of the LXCXE motif having the strongest negative impacts. The function of the XND1 C-terminal domain could be partially replaced by RBR fused to the N-terminal domain of XND1. XND1 also transactivated gene expression in yeast and plants. The properties of XND1, a transactivator that depends on multiple linear RBR-interaction motifs to inhibit differentiation, have not previously been described for a plant protein. XND1 harbors an apparently angiosperm-specific combination of interaction motifs potentially linking the general differentiation regulator RBR with a xylem-specific pathway for inhibition of differentiation.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Sequência Conservada , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Xilema/citologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis , Fenótipo , Fosforilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Transativadores/metabolismo
11.
Plant Biotechnol J ; 15(1): 107-121, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27368149

RESUMO

Plant MYB transcription factors control diverse biological processes, such as differentiation, development and abiotic stress responses. In this study, we characterized BplMYB46, an MYB gene from Betula platyphylla (birch) that is involved in both abiotic stress tolerance and secondary wall biosynthesis. BplMYB46 can act as a transcriptional activator in yeast and tobacco. We generated transgenic birch plants with overexpressing or silencing of BplMYB46 and subjected them to gain- or loss-of-function analysis. The results suggest that BplMYB46 improves salt and osmotic tolerance by affecting the expression of genes including SOD, POD and P5CS to increase both reactive oxygen species scavenging and proline levels. In addition, BplMYB46 appears to be involved in controlling stomatal aperture to reduce water loss. Overexpression of BplMYB46 increases lignin deposition, secondary cell wall thickness and the expression of genes in secondary cell wall formation. Further analysis indicated that BplMYB46 binds to MYBCORE and AC-box motifs and may directly activate the expression of genes involved in abiotic stress responses and secondary cell wall biosynthesis whose promoters contain these motifs. The transgenic BplMYB46-overexpressing birch plants, which have improved salt and osmotic stress tolerance, higher lignin and cellulose content and lower hemicellulose content than the control, have potential applications in the forestry industry.


Assuntos
Betula/genética , Parede Celular/química , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Morte Celular , Núcleo Celular , Celulose/metabolismo , Técnicas de Silenciamento de Genes , Inativação Gênica , Vetores Genéticos , Lignina/metabolismo , Cebolas/citologia , Cebolas/genética , Pressão Osmótica , Proteínas de Plantas/genética , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética , Ativação Transcricional/genética , Água , Xilema/citologia , Xilema/genética
12.
Plant Cell Physiol ; 56(2): 277-86, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25541219

RESUMO

Xylem vessel cells develop secondary cell walls in distinct patterns. Cortical microtubules are rearranged into distinct patterns and regulate secondary cell wall deposition; however, it is unclear how exocytotic membrane trafficking is linked to cortical microtubules. Here, we show that the novel coiled-coil proteins vesicle tethering 1 (VETH1) and VETH2 recruit EXO70A1, an exocyst subunit essential for correct patterning of secondary cell wall deposition, to cortical microtubules via the conserved oligomeric Golgi complex (COG) 2 protein. VETH1 and VETH2 encode an uncharacterized domain of an unknown function designated DUF869, and were preferentially up-regulated in xylem cells. VETH1-green fluorescent protein (GFP) and VETH2-GFP co-localized at novel vesicle-like small compartments, which exhibited microtubule plus-end-directed and end-tracking dynamics. VETH1 and VETH2 interacted with COG2, and this interaction promoted the association between cortical microtubules and EXO70A1 These results suggest that the VETH-COG2 complex ensures the correct secondary cell wall deposition pattern by recruiting exocyst components to cortical microtubules.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Exocitose , Microtúbulos/metabolismo , Xilema/citologia , Xilema/metabolismo , Arabidopsis/citologia , Biomarcadores/metabolismo , Compartimento Celular , Vesículas Citoplasmáticas/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Nicotiana
13.
Plant Physiol Biochem ; 82: 54-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24907525

RESUMO

In this work, we have investigated the involvement of copper amine oxidase (CuAO; EC 1.4.3.21) in wound healing and xylem differentiation of Nicotiana tabacum plants over-expressing a fungal endopolygalacturonase (PG plants), which show constitutively activated defence responses. In petioles and stems of PG plants, we found higher CuAO activity and lower polyamine (PA) levels, particularly putrescine (Put), with respect to wild-type (WT) plants. Upon wounding, a more intense autofluorescence of cell wall phenolics was observed in correspondence of wound surface, extending to epidermis and cortical parenchima only in PG plants. This response was mostly dependent on CuAO activity, as suggested by the reversion of autofluorescence upon supply of 2-bromoethylamine (2-BrEt), a CuAO specific inhibitor. Moreover, in unwounded plants, histochemical analysis revealed a tissue-specific expression of the enzyme in the vascular cambium and neighboring derivative cells of both petioles and stems of PG plants, whereas the corresponding WT tissues appeared unstained or faintly stained. A higher histochemical CuAO activity was also observed in xylem cells of PG plants as compared to WT xylem tissues suggesting a peculiar role of CuAO activity in xylem differentiation in PG plants. Indeed, roots of PG plants exhibited early xylem differentiation, a phenotype consistent with both the higher CuAO and the lower Put levels observed and supported by the 2-BrEt-mediated reversion of early root xylem differentiation and H2O2 accumulation. These results strongly support the relevance of PA-catabolism derived H2O2 in defence responses, such as those signaled by a compromised status of cell wall pectin integrity.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Proteínas Fúngicas/metabolismo , Nicotiana/enzimologia , Poligalacturonase/metabolismo , Xilema/enzimologia , Amina Oxidase (contendo Cobre)/genética , Proteínas Fúngicas/genética , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Poligalacturonase/genética , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Cicatrização/genética , Cicatrização/fisiologia , Xilema/citologia , Xilema/genética , Xilema/metabolismo
14.
Plant Cell Physiol ; 55(6): 1194-202, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24747953

RESUMO

Microautoradiography (MAR) is a conventional imaging method based on the daguerreotype. The technique is used to visualize the distribution of radionuclide-labeled compounds within a tissue section. However, application of the classical MAR method to plant tissue sections is associated with several difficulties. In this study, we report an MAR method applicable to fresh-frozen plant sections. Our method had two features: (i) the sample was kept frozen from plant tissue collection to radioisotope detection, making it possible to fix solutes without solvent exchange; and (ii) 1.2 µm thick polyphenylene sulfide film was inserted between the fresh-frozen plant section and the photosensitive nuclear emulsion to separate the section from the emulsion before autoradiography was conducted, which significantly improved the quality of the section until microscopic detection, the quality of the MAR image and the success rate. Then, the passage of cadmium (Cd) through vegetative rice stem tissue after 24 h of (109)Cd absorption was described for the first time using the MAR method. MAR clearly revealed the distribution of (109)Cd at the tissue level with high resolution. The (109)Cd concentration in phloem cells was found to be particularly high, whereas the xylem cells contained only small amounts of (109)Cd. The MAR method was also applicable for detecting (109)Cd and [(33)P]phosphate in roots. The MAR method developed here is expected to provide distribution images for a variety of compounds and ions in plant tissue.


Assuntos
Autorradiografia/métodos , Microrradiografia/métodos , Oryza/citologia , Transporte Biológico , Cloreto de Cádmio/metabolismo , Radioisótopos de Cádmio/análise , Secções Congeladas , Oryza/metabolismo , Fosfatos/metabolismo , Radioisótopos de Fósforo/análise , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Brotos de Planta/citologia , Brotos de Planta/metabolismo , Radioisótopos/análise , Xilema/citologia , Xilema/metabolismo
15.
J Exp Bot ; 64(17): 5359-69, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24043854

RESUMO

CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR)-related (CLE) proteins belong to a small peptide family conserved in plants. Recent studies in Arabidopsis and rice have revealed a key role for CLEs in mediating cell-cell communication and stem cell maintenance during plant development, but how CLE signalling controls root development in the rice remains largely unknown. Here it is shown that exogenous application of a synthetic dodeca-amino acid peptide corresponding to the CLE motif of the rice FON2-LIKE CLE PROTEIN2 (FCP2p) protein or overexpression of FCP2 terminates root apical meristem (RAM) activity and impairs late metaxylem formation. FCP2p treatment suppresses the expression of the rice QUIESCENT-CENTER-SPECIFIC HOMEOBOX (QHB) gene, a putative orthologue of Arabidopsis WUSCHEL (WUS)-RELATED HOMEOBOX 5 (WOX5) gene, in both quiescent centre and late metaxylem cells; whereas inducible overexpression of QHB reduces the sensitivity of rice to FCP2p treatment. These results together suggest that in rice RAM maintenance and late metaxylem development are probably controlled by the mutual regulation between FCP2 and QHB. Moreover, a cross-species peptide treatment experiment in Arabidopsis implies that FCP2 has both evolutionarily conserved and species-specific roles in root development.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Peptídeos/farmacologia , Transdução de Sinais , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Comunicação Celular , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema/citologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Oryza/citologia , Oryza/efeitos dos fármacos , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/fisiologia , Plantas Geneticamente Modificadas , Especificidade da Espécie , Xilema/citologia , Xilema/genética , Xilema/crescimento & desenvolvimento , Xilema/fisiologia
16.
Plant Cell Rep ; 32(6): 885-98, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23553557

RESUMO

The radial growth of plant stem is based on the development of cribro-vascular cambium tissues. It affects the transport efficiency of water, mineral nutrients and photoassimilates and, ultimately, also plant height. The rate of cambial cell divisions for the assembly of new xylem and phloem tissue primordia and the rate of differentiation of the primordia into mature tissues determine the amount of biomass produced and, in the case of woody species, the wood quality. These complex physiological processes proceed at a rate which depends on several factors, acting at various levels: growth regulators, resource availability and environmental factors. Several hormonal signals and, more recently, further regulatory molecules, have been shown to be involved in the induction and maintenance of cambium and the formation of secondary vascular tissues. The control of xylem cell patterning is of particular interest, because it determines the diameter of xylem vessels, which is central to the efficiency of water and nutrient transport from roots to leaves through the stem and may strongly influence the growth in height of the tree. Increasing scientific evidence have proved the role of other hormones in cambial cell activities and the study of the hormonal signals and their crosstalking in cambial cells may foster our understanding of the dynamics of xylogenesis and of the mechanism of vessel size control along the stem. In this article, the role of the hormonal signals involved in the control of cambium and xylem development in trees and their crosstalking are reviewed.


Assuntos
Câmbio/fisiologia , Lactonas/metabolismo , Caules de Planta/fisiologia , Poliaminas/metabolismo , Árvores/fisiologia , Xilema/fisiologia , Padronização Corporal , Câmbio/citologia , Câmbio/crescimento & desenvolvimento , Diferenciação Celular , Hormônios Peptídicos/metabolismo , Caules de Planta/citologia , Caules de Planta/crescimento & desenvolvimento , Árvores/citologia , Árvores/crescimento & desenvolvimento , Xilema/citologia , Xilema/crescimento & desenvolvimento
17.
Plant Cell ; 25(4): 1314-28, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23572543

RESUMO

Postmortem lignification of xylem tracheary elements (TEs) has been debated for decades. Here, we provide evidence in Zinnia elegans TE cell cultures, using pharmacological inhibitors and in intact Z. elegans plants using Fourier transform infrared microspectroscopy, that TE lignification occurs postmortem (i.e., after TE programmed cell death). In situ RT-PCR verified expression of the lignin monomer biosynthetic cinnamoyl CoA reductase and cinnamyl alcohol dehydrogenase in not only the lignifying TEs but also in the unlignified non-TE cells of Z. elegans TE cell cultures and in living, parenchymatic xylem cells that surround TEs in stems. These cells were also shown to have the capacity to synthesize and transport lignin monomers and reactive oxygen species to the cell walls of dead TEs. Differential gene expression analysis in Z. elegans TE cell cultures and concomitant functional analysis in Arabidopsis thaliana resulted in identification of several genes that were expressed in the non-TE cells and that affected lignin chemistry on the basis of pyrolysis-gas chromatography/mass spectrometry analysis. These data suggest that living, parenchymatic xylem cells contribute to TE lignification in a non-cell-autonomous manner, thus enabling the postmortem lignification of TEs.


Assuntos
Asteraceae/metabolismo , Lignina/metabolismo , Caules de Planta/metabolismo , Xilema/metabolismo , Acetilcisteína/farmacologia , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Apoptose , Arabidopsis/genética , Arabidopsis/metabolismo , Asteraceae/citologia , Asteraceae/genética , Benzoatos/farmacologia , Parede Celular/metabolismo , Células Cultivadas , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oniocompostos/farmacologia , Caules de Planta/citologia , Caules de Planta/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectroscopia de Infravermelho com Transformada de Fourier , Tiossulfatos/farmacologia , Xilema/citologia , Xilema/genética
18.
J Integr Plant Biol ; 55(4): 389-94, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23473393

RESUMO

The plant vascular system consists of two conductive tissues, phloem and xylem. The vascular meristem, namely the (pro-)cambium, is a stem-cell tissue that gives rise to both xylem and phloem. Recent studies have revealed that CLAVATA3/Embryo Surrounding Region-related (CLE) peptides function in establishing the vascular system through interaction with phytohormones. In particular, TDIF/CLE41/CLE44, phloem-derived CLE peptides, promote the proliferation of vascular cambium cells and prevent them from differentiating into xylem by regulating WOX4 expression through the TDR/PXY receptor. In this review article, we outline recent advances on how CLE peptides function in vascular development in concert with phytohormones through mediating cell-cell communication. The perspective of CLE peptide signaling in vascular development is also discussed.


Assuntos
Peptídeos/metabolismo , Floema/crescimento & desenvolvimento , Floema/metabolismo , Xilema/crescimento & desenvolvimento , Xilema/metabolismo , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Câmbio/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/citologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Floema/citologia , Xilema/citologia
19.
PLoS Genet ; 8(11): e1002997, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166504

RESUMO

The procambium and cambium are meristematic tissues from which vascular tissue is derived. Vascular initials differentiate into phloem towards the outside of the stem and xylem towards the inside. A small peptide derived from CLV-3/ESR1-LIKE 41 (CLE41) is thought to promote cell divisions in vascular meristems by signalling through the PHLOEM INTERCALLATED WITH XYLEM (PXY) receptor kinase. pxy mutants, however, display only small reductions in vascular cell number, suggesting a mechanism exists that allows plants to compensate for the absence of PXY. Consistent with this idea, we identify a large number of genes specifically upregulated in pxy mutants, including several AP2/ERF transcription factors. These transcription factors are required for normal cell division in the cambium and procambium. These same transcription factors are also upregulated by ethylene and in ethylene-overproducing eto1 mutants. eto1 mutants also exhibit an increase in vascular cell division that is dependent upon the function of at least 2 of these ERF genes. Furthermore, blocking ethylene signalling using a variety of ethylene insensitive mutants such as ein2 enhances the cell division defect of pxy. Our results suggest that these factors define a novel pathway that acts in parallel to PXY/CLE41 to regulate cell division in developing vascular tissue. We propose a model whereby vascular cell division is regulated both by PXY signalling and ethylene/ERF signalling. Under normal circumstances, however, PXY signalling acts to repress the ethylene/ERF pathway.


Assuntos
Proteínas de Arabidopsis , Câmbio , Etilenos/metabolismo , Meristema , Proteínas Quinases , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Câmbio/citologia , Câmbio/crescimento & desenvolvimento , Câmbio/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/metabolismo , Mutação , Oligopeptídeos/metabolismo , Floema/citologia , Floema/genética , Floema/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais , Xilema/citologia , Xilema/genética , Xilema/metabolismo
20.
New Phytol ; 196(1): 238-246, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22803660

RESUMO

• Plant-parasitic cyst nematodes form a feeding site, termed a syncytium, through which the nematode obtains nutrients from the host plant to support nematode development. The structural features of cell walls of syncytial cells have yet to be elucidated. • Monoclonal antibodies to defined glycans and a cellulose-binding module were used to determine the cell wall architectures of syncytial and surrounding cells in the roots of Arabidopsis thaliana infected with the cyst nematode Heterodera schachtii. • Fluorescence imaging revealed that the cell walls of syncytia contain cellulose and the hemicelluloses xyloglucan and heteromannan. Heavily methyl-esterified pectic homogalacturonan and arabinan are abundant in syncytial cell walls; galactan could not be detected. This is suggestive of highly flexible syncytial cell walls. • This work provides important information on the structural architecture of the cell walls of this novel cell type and reveals factors that enable the feeding site to perform its functional requirements to support nematode development.


Assuntos
Arabidopsis/citologia , Arabidopsis/parasitologia , Parede Celular/metabolismo , Células Gigantes/parasitologia , Raízes de Plantas/citologia , Raízes de Plantas/parasitologia , Tylenchoidea/fisiologia , Animais , Epitopos/imunologia , Esterificação , Comportamento Alimentar/fisiologia , Feminino , Células Gigantes/citologia , Glucanos/metabolismo , Mananas/imunologia , Pectinas/metabolismo , Doenças das Plantas/parasitologia , Polissacarídeos/metabolismo , Xilanos/metabolismo , Xilema/citologia , Xilema/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA