Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 195(1): 395-409, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38198215

RESUMO

Dwarfism is an important agronomic trait in fruit breeding programs. However, the germplasm resources required to generate dwarf pear (Pyrus spp.) varieties are limited. Moreover, the mechanisms underlying dwarfism remain unclear. In this study, "Yunnan" quince (Cydonia oblonga Mill.) had a dwarfing effect on "Zaosu" pear. Additionally, the dwarfism-related NAC transcription factor gene PbNAC71 was isolated from pear trees comprising "Zaosu" (scion) grafted onto "Yunnan" quince (rootstock). Transgenic Nicotiana benthamiana and pear OHF-333 (Pyrus communis) plants overexpressing PbNAC71 exhibited dwarfism, with a substantially smaller xylem and vessel area relative to the wild-type controls. Yeast one-hybrid, dual-luciferase, chromatin immunoprecipitation-qPCR, and electrophoretic mobility shift assays indicated that PbNAC71 downregulates PbWalls are thin 1 expression by binding to NAC-binding elements in its promoter. Yeast two-hybrid assays showed that PbNAC71 interacts with the E3 ubiquitin ligase PbRING finger protein 217 (PbRNF217). Furthermore, PbRNF217 promotes the ubiquitin-mediated degradation of PbNAC71 by the 26S proteasome, thereby regulating plant height as well as xylem and vessel development. Our findings reveal a mechanism underlying pear dwarfism and expand our understanding of the molecular basis of dwarfism in woody plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Pyrus , Fatores de Transcrição , Xilema , Xilema/metabolismo , Xilema/genética , Pyrus/genética , Pyrus/metabolismo , Pyrus/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética
2.
Plant Physiol ; 192(3): 1821-1835, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37002827

RESUMO

The relationships between aerial organ morpho-anatomy of woody polyploid plants with their functional hydraulics under water stress remain largely understudied. We evaluated growth-associated traits, aerial organ xylem anatomy, and physiological parameters of diploid, triploid, and tetraploid genotypes of atemoyas (Annona cherimola × Annona squamosa), which belong to the woody perennial genus Annona (Annonaceae), testing their performance under long-term soil water reduction. The contrasting phenotypes of vigorous triploids and dwarf tetraploids consistently showed stomatal size-density tradeoff. The vessel elements in aerial organs were ∼1.5 times wider in polyploids compared with diploids, and triploids displayed the lowest vessel density. Plant hydraulic conductance was higher in well-irrigated diploids while their tolerance to drought was lower. The phenotypic disparity of atemoya polyploids associated with contrasting leaf and stem xylem porosity traits that coordinate to regulate water balances between the trees and the belowground and aboveground environments. Polyploid trees displayed better performance under soil water scarcity, and consequently, could present more sustainable agricultural and forestry genotypes to cope with water stress.


Assuntos
Solo , Árvores , Árvores/genética , Triploidia , Desidratação , Folhas de Planta/genética , Xilema/genética , Secas , Tetraploidia
3.
Sci Rep ; 12(1): 258, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997161

RESUMO

The radial change (RC) of tree stem is the process of heartwood formation involved in complex molecular mechanism. Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), an evergreen species, is an important fast-growing timber tree in southern China. In this study, the top four stable genes (IDH, UBC2, RCA and H2B) were selected in RC tissues of 15 years old Chinese fir stem (RC15) and the genes (H2B, 18S, TIP41 and GAPDH) were selected in RC tissues of 30 years old Chinese fir stem (RC30). The stability of the reference genes is higher in RC30 than in RC15. Sixty-one MYB transcripts were obtained on the PacBio Sequel platform from woody tissues of one 30 years old Chinese fir stem. Based on the number of MYB DNA-binding domain and phylogenetic relationships, the ClMYB transcripts contained 21 transcripts of MYB-related proteins (1R-MYB), 39 transcripts of R2R3-MYB proteins (2R-MYB), one transcript of R1R2R3-MYB protein (3R-MYB) belonged to 18 function-annotated clades and two function-unknown clades. In RC woody tissues of 30 years old Chinese fir stem, ClMYB22 was the transcript with the greatest fold change detected by both RNA-seq and qRT-PCR. Reference genes selected in this study will be helpful for further verification of transcript abundance patterns during the heartwood formation of Chinese fir.


Assuntos
Cunninghamia/genética , Genes de Plantas , Genes myb , Proteínas Proto-Oncogênicas c-myb/genética , Transcriptoma , Xilema/genética , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas Proto-Oncogênicas c-myb/metabolismo , RNA-Seq , Xilema/crescimento & desenvolvimento , Xilema/metabolismo
4.
Plant Physiol ; 188(2): 984-996, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34718804

RESUMO

Lignin, a polyphenolic polymer, is a major chemical constituent of the cell walls of terrestrial plants. The biosynthesis of lignin is a highly plastic process, as highlighted by an increasing number of noncanonical monomers that have been successfully identified in an array of plants. Here, we engineered hybrid poplar (Populus alba x grandidentata) to express chalcone synthase 3 (MdCHS3) derived from apple (Malus domestica) in lignifying xylem. Transgenic trees displayed an accumulation of the flavonoid naringenin in xylem methanolic extracts not inherently observed in wild-type trees. Nuclear magnetic resonance analysis revealed the presence of naringenin in the extract-free, cellulase-treated xylem lignin of MdCHS3-poplar, indicating the incorporation of this flavonoid-derived compound into poplar secondary cell wall lignins. The transgenic trees also displayed lower total cell wall lignin content and increased cell wall carbohydrate content and performed significantly better in limited saccharification assays than their wild-type counterparts.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Flavanonas/metabolismo , Lignina/biossíntese , Lignina/genética , Populus/genética , Populus/metabolismo , Xilema/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Flavanonas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Malus/genética , Malus/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Xilema/genética
5.
Plant Cell Rep ; 40(2): 393-403, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33388893

RESUMO

KEY MESSAGE: Resistance conferred by the Cre8 locus of wheat prevents cereal cyst nematode feeding sites from reaching and invading root metaxylem vessels. Cyst nematodes develop syncytial feeding sites within plant roots. The success of these sites is affected by host plant resistance. In wheat (Triticum aestivum L.), 'Cre' loci affect resistance against the cereal cyst nematode (CCN) Heterodera avenae. To investigate how one of these loci (Cre8, on chromosome 6B) confers resistance, CCN-infected root tissue from susceptible (-Cre8) and resistant (+Cre8) wheat plants was examined using confocal microscopy and laser ablation tomography. Confocal analysis of transverse sections showed that feeding sites in the roots of -Cre8 plants were always adjacent to metaxylem vessels, contained many intricate 'web-like' cell walls, and sometimes 'invaded' metaxylem vessels. In contrast, feeding sites in the roots of +Cre8 plants were usually not directly adjacent to metaxylem vessels, had few inner cell walls and did not 'invade' metaxylem vessels. Models based on data from laser ablation tomography confirmed these observations. Confocal analysis of longitudinal sections revealed that CCN-induced xylem modification that had previously been reported for susceptible (-Cre8) wheat plants is less extreme in resistant (+Cre8) plants. Application of a lignin-specific stain revealed that secondary thickening around xylem vessels in CCN-infected roots was greater in +Cre8 plants than in -Cre8 plants. Collectively, these results indicate that Cre8 resistance in wheat acts by preventing cyst nematode feeding sites from reaching and invading root metaxylem vessels.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Triticum/parasitologia , Tylenchida/fisiologia , Animais , Parede Celular/parasitologia , Parede Celular/ultraestrutura , Suscetibilidade a Doenças , Loci Gênicos , Imageamento Tridimensional , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , Raízes de Plantas/ultraestrutura , Triticum/genética , Triticum/ultraestrutura , Xilema/genética , Xilema/parasitologia , Xilema/ultraestrutura
6.
Genome Biol ; 22(1): 22, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413586

RESUMO

There are no comprehensive methods to identify N6-methyladenosine (m6A) at single-base resolution for every single transcript, which is necessary for the estimation of m6A abundance. We develop a new pipeline called Nanom6A for the identification and quantification of m6A modification at single-base resolution using Nanopore direct RNA sequencing based on an XGBoost model. We validate our method using methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and m6A-sensitive RNA-endoribonuclease-facilitated sequencing (m6A-REF-seq), confirming high accuracy. Using this method, we provide a transcriptome-wide quantification of m6A modification in stem-differentiating xylem and reveal that different alternative polyadenylation (APA) usage shows a different ratio of m6A.


Assuntos
Adenosina/análogos & derivados , Adenosina/metabolismo , Sequenciamento por Nanoporos , Nanoporos , Populus/metabolismo , Análise de Sequência de RNA , Xilema/metabolismo , Adenosina/genética , Algoritmos , Sequência de Bases , Diferenciação Celular , Perfilação da Expressão Gênica , Imunoprecipitação , Poliadenilação , Populus/genética , Transcriptoma , Xilema/genética
7.
Tree Physiol ; 41(7): 1289-1305, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33440425

RESUMO

Although conifers have significant ecological and economic value, information on transcriptional regulation of wood formation in conifers is still limited. Here, to gain insight into secondary cell wall (SCW) biosynthesis and tracheid formation in conifers, we performed wood tissue-specific transcriptome analyses of Pinus densiflora (Korean red pine) using RNA sequencing. In addition, to obtain full-length transcriptome information, PacBio single molecule real-time iso-sequencing was carried out using RNAs from 28 tissues of P. densiflora. Subsequent comparative tissue-specific transcriptome analysis successfully pinpointed critical genes encoding key proteins involved in biosynthesis of the major secondary wall components (cellulose, galactoglucomannan, xylan and lignin). Furthermore, we predicted a total of 62 NAC (NAM, ATAF1/2 and CUC2) family transcription factor members and identified seven PdeNAC genes preferentially expressed in developing xylem tissues in P. densiflora. Protoplast-based transcriptional activation analysis found that four PdeNAC genes, homologous to VND, NST and SND/ANAC075, upregulated GUS activity driven by an SCW-specific cellulose synthase promoter. Consistently, transient overexpression of the four PdeNACs induced xylem vessel cell-like SCW deposition in both tobacco (Nicotiana benthamiana) and Arabidopsis leaves. Taken together, our data provide a foundation for further research to unravel transcriptional regulation of wood formation in conifers, especially SCW formation and tracheid differentiation.


Assuntos
Pinus , Madeira , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lignina , Pinus/genética , Pinus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Madeira/genética , Madeira/metabolismo , Xilema/genética , Xilema/metabolismo
8.
Plant Sci ; 301: 110657, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33218627

RESUMO

Secondary cell wall (SCW) has a strong impact on plant growth and adaptation to the environments. Previous studies have shown that NAC (NAM, ATAF1/2, and CUC2) transcription factors act as key regulators of SCW biosynthesis. However, the regulatory network triggered by NAC proteins is largely unknown, especially in cotton, a model plant for SCW development studies. Here, we show that several cotton NAC transcription factors are clustered in the same group with Arabidopsis secondary wall NACs (SWNs), including secondary wall-associated NAC domain protein1 (SND1) and NAC secondary wall thickening promoting factor1/2 (NST1/2), so we name these cotton orthologs as SND1s and NST1s. We found that simultaneous silencing of SND1s and NST1s led to severe xylem and phloem developmental defect in cotton stems, however silencing either SND1s or NST1s alone had no visible phenotype. Silencing both SND1s and NST1s but not one subgroup caused decreased expression of a set of SCW-associated genes, while over-expression of cotton SWNs in tobacco leaves resulted in SCW deposition. SWNs could bind the promoter of MYB46 and MYB83, which are highly expressed in SCW-rich tissues of cotton. In total, our data provide evidence that cotton SWNs positively and coordinately regulate SCW formation.


Assuntos
Gossypium/genética , Fatores de Transcrição/metabolismo , Parede Celular/metabolismo , Gossypium/crescimento & desenvolvimento , Gossypium/fisiologia , Floema/genética , Floema/crescimento & desenvolvimento , Floema/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Xilema/genética , Xilema/crescimento & desenvolvimento , Xilema/fisiologia
9.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344718

RESUMO

Eucalypts are the most planted trees worldwide, but most of them are frost sensitive. Overexpressing transcription factors for CRT-repeat binding factors (CBFs) in transgenic Eucalyptus confer cold resistance both in leaves and stems. While wood plays crucial roles in trees and is affected by environmental cues, its potential role in adaptation to cold stress has been neglected. Here, we addressed this question by investigating the changes occurring in wood in response to the overexpression of two CBFs, taking advantage of available transgenic Eucalyptus lines. We performed histological, biochemical, and transcriptomic analyses on xylem samples. CBF ectopic expression led to a reduction of both primary and secondary growth, and triggered changes in xylem architecture with smaller and more frequent vessels and fibers exhibiting reduced lumens. In addition, lignin content and syringyl/guaiacyl (S/G) ratio increased. Consistently, many genes of the phenylpropanoid and lignin branch pathway were upregulated. Most of the features of xylem remodeling induced by CBF overexpression are reminiscent of those observed after long exposure of Eucalyptus trees to chilling temperatures. Altogether, these results suggest that CBF plays a central role in the cross-talk between response to cold and wood formation and that the remodeling of wood is part of the adaptive strategies to face cold stress.


Assuntos
Resposta ao Choque Frio , Fatores de Ligação ao Core/genética , Eucalyptus/genética , Expressão Gênica , Fatores de Transcrição/genética , Madeira/anatomia & histologia , Madeira/genética , Fatores de Ligação ao Core/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Lignina/metabolismo , Fenótipo , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo , Madeira/química , Xilema/genética , Xilema/metabolismo
10.
Tree Physiol ; 40(6): 704-716, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31821470

RESUMO

Vascular plants have two types of water-conducting cells, xylem vessel cells (in angiosperms) and tracheid cells (in ferns and gymnosperms). These cells are commonly characterized by secondary cell wall (SCW) formation and programmed cell death (PCD), which increase the efficiency of water conduction. The differentiation of xylem vessel cells is regulated by a set of NAC (NAM, ATAF1/2 and CUC2) transcription factors, called the VASCULAR-RELATED NAC-DOMAIN (VND) family, in Arabidopsis thaliana Linne. The VNDs regulate the transcriptional induction of genes required for SCW formation and PCD. However, information on the transcriptional regulation of tracheid cell differentiation is still limited. Here, we performed functional analysis of loblolly pine (Pinus taeda Linne) VND homologs (PtaVNS, for VND, NST/SND, SMB-related protein). We identified five PtaVNS genes in the loblolly pine genome, and four of these PtaVNS genes were highly expressed in tissues with tracheid cells, such as shoot apices and developing xylem. Transient overexpression of PtaVNS genes induced xylem vessel cell-like patterning of SCW deposition in tobacco (Nicotiana benthamiana Domin) leaves, and up-regulated the promoter activities of loblolly pine genes homologous to SCW-related MYB transcription factor genes and cellulose synthase genes, as well as to cysteine protease genes for PCD. Collectively, our data indicated that PtaVNS proteins possess transcriptional activity to induce the molecular programs required for tracheid formation, i.e., SCW formation and PCD. Moreover, these findings suggest that the VNS-MYB-based transcriptional network regulating water-conducting cell differentiation in angiosperm and moss plants is conserved in gymnosperms.


Assuntos
Arabidopsis , Pinus taeda/genética , Parede Celular , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Xilema/genética
11.
Plant Physiol ; 181(1): 276-288, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31331995

RESUMO

Essential metals, such as iron (Fe) and zinc (Zn), in grains are important sources for seed germination and nutritional requirements, but the molecular mechanisms underlying their loading into grains are poorly understood. Recently, nodes in rice (Oryza sativa) were reported to play an important role in the preferential distribution of mineral elements to the grains. In this study, we functionally characterized a rice gene highly expressed in nodes, OsVMT (VACUOLAR MUGINEIC ACID TRANSPORTER), belonging to a major facilitator superfamily. OsVMT is highly expressed in the parenchyma cell bridges of node I, where Fe and Zn are highly deposited. The expression of OsVMT was induced by Fe deficiency in the roots but not in the shoot basal region and uppermost node. OsVMT localized to the tonoplast and showed efflux transport activity for 2'-deoxymugineic acid (DMA). At the vegetative stage, knockout of OsVMT resulted in decreased DMA but increased ferric Fe in the root cell sap. As a result, the concentration of DMA in the xylem sap increased but that of ferric Fe decreased in the xylem sap in the mutants. In the polished rice grain, the mutants accumulated 1.8- to 2.1-fold, 1.5- to 1.6-fold, and 1.4- to 1.5-fold higher Fe, Zn, and DMA, respectively, than the wild type. Taken together, our results indicate that OsVMT is involved in sequestering DMA into the vacuoles and that knockout of this gene enhances the accumulation of Fe and Zn in polished rice grains through DMA-increased solubilization of Fe and Zn deposited in the node.


Assuntos
Ferro/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Sideróforos/metabolismo , Zinco/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Grão Comestível , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Especificidade de Órgãos , Oryza/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transporte Proteico , Sideróforos/genética , Vacúolos/metabolismo , Xilema/genética , Xilema/metabolismo
12.
BMC Plant Biol ; 19(1): 130, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30961523

RESUMO

BACKGROUND: Potassium is a nutrient element necessary for tobacco growth. Tobacco leaves with high potassium content are elastic and tough, rich in oil. And the same time, potassium can also improve the scent and aromatic value of flue-cured tobacco by regulating the synthesis of aromatic hydrocarbons in leaves.. It is an important quality indicator for flue-cured tobacco. However, the potassium concentration in tobacco leaves in most areas of China is generally lower than the global standard for high quality tobacco. Two tobacco genotypes were grafted to each other under different potassium levels to test whether potassium content and plant growth can be improved by grafting in tobacco. RESULTS: The growth of tobacco in all treatments was inhibited under potassium starvation, and grafting significantly alleviated this potassium stress in 'Yunyan 87'. The trends in whole plant K+ uptake and K+ transfer efficiency to the leaves corresponded to the growth results of the different grafts. The nutrient depletion test results showed that the roots of 'Wufeng No.2' had higher K+ absorption potential, K+ affinity, and K+ inward flow rate. K+ enrichment circles appeared at the endoderm of the root section in the energy dispersive X-ray figure, indicating that the formation of Casparian strips may be partly responsible for the lower rate of lateral movement of K+ in the roots of 'Yunyan 87'. Gene expression analysis suggested that energy redistribution at the whole plant level might constitute one strategy for coping with potassium starvation. The feedback regulation effects between scion 'Wufeng No.2' and rootstock 'Yunyan 87' indicated that the transmission of certain signaling substances had occurred during grafting. CONCLUSIONS: 'Wufeng No.2' tobacco rootstock grafting can increase the K+ uptake and transport efficiency of 'Yunyan 87' and enhance plant growth under potassium stress. The physiological mechanism of the improved performance of grafted tobacco is related to higher K+ uptake and utilization ability, improved xylem K+ loading capacity, and up-regulated expression of genes related to energy supply systems.


Assuntos
Nicotiana/fisiologia , Potássio/metabolismo , Estresse Fisiológico , Transporte Biológico , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Regulação para Cima , Xilema/genética , Xilema/crescimento & desenvolvimento , Xilema/fisiologia
13.
J Exp Bot ; 70(1): 205-215, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376110

RESUMO

Both tracheary elements and fiber cells undergo programmed cell death (PCD) during xylem development. In this study we investigated the role of papain-like cysteine protease CEP1 in PCD in the xylem of Arabidopsis. CEP1 was located in the cell wall of xylem cells, and CEP1 expression levels in inflorescence stems increased during stem maturation. cep1 mutant plants exhibited delayed stem growth and reduced xylem cell number compared to wild-type plants. Transmission electron microscopy demonstrated that organelle degradation was delayed during PCD, and thicker secondary walls were present in fiber cells and tracheary elements of the cep1 mutant. Transcriptional analyses of the maturation stage of the inflorescence stem revealed that genes involved in the biosynthesis of secondary wall components, including cellulose, hemicellulose, and lignin, as well as wood-associated transcriptional factors, were up-regulated in the cep1 mutant. These results suggest that CEP1 is directly involved in the clearing of cellular content during PCD and regulates secondary wall thickening during xylem development.


Assuntos
Apoptose/genética , Arabidopsis/fisiologia , Parede Celular/genética , Cisteína Endopeptidases/genética , Xilema/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Parede Celular/metabolismo , Cisteína Endopeptidases/metabolismo , Regulação da Expressão Gênica de Plantas , Xilema/genética
14.
Plant Sci ; 270: 13-22, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29576065

RESUMO

Iron deficiency affects one third of the world population. Most iron biofortification strategies have focused on genes involved in iron uptake and storage but facilitating internal long-distance iron translocation has been understudied for increasing grain iron concentrations. Citrate is a primary iron chelator, and the transporter FERRIC REDUCTASE DEFECTIVE 3 (FRD3) loads citrate into the xylem. We have expressed AtFRD3 in combination with AtNAS1 (NICOTIANAMINE SYNTHASE 1) and PvFER (FERRITIN) or with PvFER alone to facilitate long-distance iron transport together with efficient iron uptake and storage in the rice endosperm. The citrate and iron concentrations in the xylem sap of transgenic plants increased two-fold compared to control plants. Iron and zinc levels increased significantly in polished and unpolished rice grains to more than 70% of the recommended estimated average requirement (EAR) for iron and 140% of the recommended EAR for zinc in polished rice grains. Furthermore, the transformed lines showed normal phenotypic growth, were tolerant to iron deficiency and aluminum toxicity, and had grain cadmium levels similar to control plants. Together, our results demonstrate that deploying FRD for iron biofortification has no obvious anti-nutritive effects and should be considered as an effective strategy for reducing human iron deficiency anemia.


Assuntos
Arabidopsis/genética , Ácido Cítrico/metabolismo , Ferro/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Zinco/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Alumínio/toxicidade , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Cádmio/análise , Ferritinas/genética , Ferritinas/metabolismo , Ferro/análise , Deficiências de Ferro , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/metabolismo , Xilema/genética , Xilema/metabolismo
15.
Plant Cell Physiol ; 59(1): 17-29, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040725

RESUMO

Post-translational modifications of proteins have important roles in the regulation of protein activity. One such modification, S-nitrosylation, involves the covalent binding of nitric oxide (NO)-related species to a cysteine residue. Recent work showed that protein S-nitrosylation has crucial functions in plant development and environmental responses. In the present study, we investigated the importance of protein S-nitrosylation for xylem vessel cell differentiation using a forward genetics approach. We performed ethyl methanesulfonate mutagenesis of a transgenic Arabidopsis 35S::VND7-VP16-GR line in which the activity of VASCULAR-RELATED NAC-DOMAIN7 (VND7), a key transcription factor involved in xylem vessel cell differentiation, can be induced post-translationally by glucocorticoid treatment, with the goal of obtaining suppressor mutants that failed to differentiate ectopic xylem vessel cells; we named these mutants suppressor of ectopic vessel cell differentiation induced by VND7 (seiv) mutants. We found the seiv1 mutant to be a recessive mutant in which ectopic xylem cell differentiation was inhibited, especially in aboveground organs. In seiv1 mutants, a single nucleic acid substitution (G to A) leading to an amino acid substitution (E36K) was present in the gene encoding S-NITROSOGLUTATHIONE REDUCTASE 1 (GSNOR1), which regulates the turnover of the natural NO donor, S-nitrosoglutathione. An in vitro S-nitrosylation assay revealed that VND7 can be S-nitrosylated at Cys264 and Cys320 located near the transactivation activity-related domains, which were shown to be important for transactivation activity of VND7 by transient reporter assay. Our results suggest crucial roles for GSNOR1-regulated protein S-nitrosylation in xylem vessel cell differentiation, partly through the post-translational modification of VND7.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Diferenciação Celular , Óxido Nítrico/metabolismo , Xilema/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cisteína/genética , Cisteína/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Mutação , Plantas Geneticamente Modificadas , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xilema/citologia , Xilema/genética
16.
New Phytol ; 217(4): 1551-1565, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29243818

RESUMO

Metacaspases (MCs) are cysteine proteases that are implicated in programmed cell death of plants. AtMC9 (Arabidopsis thaliana Metacaspase9) is a member of the Arabidopsis MC family that controls the rapid autolysis of the xylem vessel elements, but its downstream targets in xylem remain uncharacterized. PttMC13 and PttMC14 were identified as AtMC9 homologs in hybrid aspen (Populus tremula × tremuloides). A proteomic analysis was conducted in xylem tissues of transgenic hybrid aspen trees which carried either an overexpression or an RNA interference construct for PttMC13 and PttMC14. The proteomic analysis revealed modulation of levels of both previously known targets of metacaspases, such as Tudor staphylococcal nuclease, heat shock proteins and 14-3-3 proteins, as well as novel proteins, such as homologs of the PUTATIVE ASPARTIC PROTEASE3 (PASPA3) and the cysteine protease RD21 by PttMC13 and PttMC14. We identified here the pathways and processes that are modulated by PttMC13 and PttMC14 in xylem tissues. In particular, the results indicate involvement of PttMC13 and/or PttMC14 in downstream proteolytic processes and cell death of xylem elements. This work provides a valuable reference dataset on xylem-specific metacaspase functions for future functional and biochemical analyses.


Assuntos
Caspases/metabolismo , Populus/enzimologia , Árvores/enzimologia , Madeira/enzimologia , Sequência de Aminoácidos , Caspases/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Família Multigênica , Peptídeos/química , Peptídeos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Proteômica , Xilema/citologia , Xilema/genética , Xilema/metabolismo
17.
Transgenic Res ; 26(4): 447-463, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28349287

RESUMO

The expression of cell-wall-targeted Carbohydrate Binding Modules (CBMs) can alter cell wall properties and modulate growth and development in plants such as tobacco and potato. CBM2a identified in xylanase 10A from Cellulomonas fimi is of particular interest for its ability to bind crystalline cellulose. However, its potential for promoting plant growth has not been explored. In this work, we tested the ability of CBM2a to promote growth when expressed using both CaMV35S and a vascular tissue-specific promoter derived from Arabidopsis expansin4 (AtEXP4) in three plant species: Arabidopsis, Nicotiana tabacum and Eucalyptus camaldulensis. In Arabidopsis, the expression of AtEXP4pro:CBM2a showed trends for growth promoting effects including the increase of root and hypocotyl lengths and the enlargements of the vascular xylem area, fiber cells and vessel cells. However, in N. tabacum, the expression of CBM2a under the control of either CaMV35S or AtEXP4 promoter resulted in subtle changes in the plant growth, and the thickness of secondary xylem and vessel and fiber cell sizes were generally reduced in the transgenic lines with AtEXP4pro:CBM2a. In Eucalyptus, while transgenics expressing CaMV35S:CBM2a showed very subtle changes compared to wild type, those transgenics with AtEXP4pro:CBM2a showed increases in plant height, enlargement of xylem areas and xylem fiber and vessel cells. These data provide comparative effects of expressing CBM2a protein in different plant species, and this finding can be applied for plant biomass improvement.


Assuntos
Carboidratos/genética , Endo-1,4-beta-Xilanases/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Xilema/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Parede Celular/genética , Celulose/genética , Eucalyptus/genética , Eucalyptus/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Xilema/crescimento & desenvolvimento
18.
Plant Biotechnol J ; 15(1): 107-121, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27368149

RESUMO

Plant MYB transcription factors control diverse biological processes, such as differentiation, development and abiotic stress responses. In this study, we characterized BplMYB46, an MYB gene from Betula platyphylla (birch) that is involved in both abiotic stress tolerance and secondary wall biosynthesis. BplMYB46 can act as a transcriptional activator in yeast and tobacco. We generated transgenic birch plants with overexpressing or silencing of BplMYB46 and subjected them to gain- or loss-of-function analysis. The results suggest that BplMYB46 improves salt and osmotic tolerance by affecting the expression of genes including SOD, POD and P5CS to increase both reactive oxygen species scavenging and proline levels. In addition, BplMYB46 appears to be involved in controlling stomatal aperture to reduce water loss. Overexpression of BplMYB46 increases lignin deposition, secondary cell wall thickness and the expression of genes in secondary cell wall formation. Further analysis indicated that BplMYB46 binds to MYBCORE and AC-box motifs and may directly activate the expression of genes involved in abiotic stress responses and secondary cell wall biosynthesis whose promoters contain these motifs. The transgenic BplMYB46-overexpressing birch plants, which have improved salt and osmotic stress tolerance, higher lignin and cellulose content and lower hemicellulose content than the control, have potential applications in the forestry industry.


Assuntos
Betula/genética , Parede Celular/química , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Morte Celular , Núcleo Celular , Celulose/metabolismo , Técnicas de Silenciamento de Genes , Inativação Gênica , Vetores Genéticos , Lignina/metabolismo , Cebolas/citologia , Cebolas/genética , Pressão Osmótica , Proteínas de Plantas/genética , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética , Ativação Transcricional/genética , Água , Xilema/citologia , Xilema/genética
19.
Plant Cell Rep ; 35(11): 2353-2367, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27522520

RESUMO

KEY MESSAGE: Functional characterization of two tobacco genes, one involved in xylan synthesis and the other, a positive regulator of secondary cell wall formation, is reported. Lignocellulosic secondary cell walls (SCW) provide essential plant materials for the production of second-generation bioethanol. Therefore, thorough understanding of the process of SCW formation in plants is beneficial for efficient bioethanol production. Recently, we provided the first proof-of-concept for using virus-induced gene silencing (VIGS) approach for rapid functional characterization of nine genes involved in cellulose, hemicellulose and lignin synthesis during SCW formation. Here, we report VIGS-mediated functional characterization of two tobacco genes involved in SCW formation. Stems of VIGS plants silenced for both selected genes showed increased amount of xylem formation but thinner cell walls than controls. These results were further confirmed by production of stable transgenic tobacco plants manipulated in expression of these genes. Stems of stable transgenic tobacco plants silenced for these two genes showed increased xylem proliferation with thinner walls, whereas transgenic tobacco plants overexpressing these two genes showed increased fiber cell wall thickness but no change in xylem proliferation. These two selected genes were later identified as possible members of DUF579 family involved in xylan synthesis and KNAT7 transcription factor family involved in positive regulation of SCW formation, respectively. Glycome analyses of cell walls showed increased polysaccharide extractability in 1 M KOH extracts of both VIGS-NbDUF579 and VIGS-NbKNAT7 lines suggestive of cell wall loosening. Also, VIGS-NbDUF579 and VIGS-NbKNAT7 lines showed increased saccharification rates (74.5 and 40 % higher than controls, respectively). All these properties are highly desirable for producing higher quantities of bioethanol from lignocellulosic materials of bioenergy plants.


Assuntos
Parede Celular/genética , Inativação Gênica , Genes de Plantas , Lignina/metabolismo , Vírus de Plantas/fisiologia , Metabolismo dos Carboidratos/genética , Fluoresceína-5-Isotiocianato/metabolismo , Regulação da Expressão Gênica de Plantas , Vetores Genéticos/metabolismo , Glucose/metabolismo , Glicômica , Glicosilação , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nicotiana/anatomia & histologia , Nicotiana/genética , Nicotiana/virologia , Xilema/genética
20.
Plant Reprod ; 29(3): 265-72, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27349421

RESUMO

KEY MESSAGE: CEP cell death markers. Programmed cell death (PCD) is essential for proper plant growth and development. Plant-specific papain-type KDEL-tailed cysteine endopeptidases (KDEL-CysEPs or CEPs) have been shown to be involved in PCD during vegetative development as executors for the last step in the process. The Arabidopsis genome encodes three KDEL-CysEPs: AtCEP1, AtCEP2 and AtCEP3. With the help of fluorescent fusion reporter lines, we report here a detailed expression analysis of KDEL-CysEP (pro)proteins during reproductive processes, including flower organ and germline development, fertilization and seed development. AtCEP1 is highly expressed in different reproductive tissues including nucellus cells of mature ovule and the connecting edge of anther and filament. After fertilization, AtCEP1 marks integument cell layers of the seeds coat as well as suspensor and columella cells of the developing embryo. Promoter activity of AtCEP2 is detected in the style of immature and mature pistils, in other floral organs including anther, sepal and petal. AtCEP2 mainly localizes to parenchyma cells next to xylem vessels. Although there is no experimental evidence to demonstrate that KDEL-CysEPs are involved in PCD during fertilization, the expression pattern of AtCEPs, which were previously shown to represent cell death markers during vegetative development, opens up new avenues to investigate PCD in plant reproduction.


Assuntos
Apoptose , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cisteína Endopeptidases/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Biomarcadores/metabolismo , Cisteína Endopeptidases/metabolismo , Fertilização , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Reprodução , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Xilema/genética , Xilema/crescimento & desenvolvimento , Xilema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA