Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.033
Filtrar
1.
Nutrients ; 16(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732559

RESUMO

(1) Background: Fortifying maize and wheat flours with folic acid has effectively reduced neural tube defect-affected births. However, maize and wheat flours may not be widely consumed in all countries; further reduction in neural tube defect-affected births could benefit from the identification of alternative food vehicles. We aimed to use dietary intake or apparent consumption data to determine alternative food vehicles for large-scale fortification with folic acid in low-income and lower-middle-income countries (LILMICs) and identify current research related to examining the technological feasibility of fortifying alternative foods with folic acid. (2) Methods: We identified 81 LILMICs, defined by the World Bank's (WB) 2018 income classifications. To identify dietary intake or apparent consumption, we reviewed WB's Microdata Library and Global Health Data Exchange for national surveys from 1997-2018. We reviewed survey reports for dietary intake or apparent consumption data and analyzed survey datasets for population coverage of foods. We defined alternative food vehicles as those that may cover/be consumed by ≥30% of the population or households; cereal grains (maize and wheat flours and rice) were included as an alternative food vehicle if a country did not have existing mandatory fortification legislation. To identify current research on fortification with folic acid in foods other than cereal grains, we conducted a systematic review of published literature and unpublished theses, and screened for foods or food products. (3) Results: We extracted or analyzed data from 18 national surveys and countries. The alternative foods most represented in the surveys were oil (n = 16), sugar (n = 16), and salt (n = 14). The coverage of oil ranged from 33.2 to 95.7%, sugar from 32.2 to 98.4%, and salt from 49.8 to 99.9%. We found 34 eligible studies describing research on alternative foods. The most studied alternative foods for fortification with folic acid were dairy products (n = 10), salt (n = 6), and various fruit juices (n = 5). (4) Conclusions: Because of their high coverage, oil, sugar, and salt emerge as potential alternative foods for large-scale fortification with folic acid. However, except for salt, there are limited or no studies examining the technological feasibility of fortifying these foods with folic acid.


Assuntos
Grão Comestível , Ácido Fólico , Alimentos Fortificados , Defeitos do Tubo Neural , Triticum , Ácido Fólico/administração & dosagem , Humanos , Defeitos do Tubo Neural/prevenção & controle , Triticum/química , Grão Comestível/química , Farinha/análise , Zea mays/química , Países em Desenvolvimento
2.
Carbohydr Polym ; 337: 122118, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710546

RESUMO

Chrysin and rutin are natural polyphenols with multifaceted biological activities but their applications face challenges in bioavailability. Encapsulation using starch nanoparticles (SNPs) presents a promising approach to overcome the limitations. In this study, chrysin and rutin were encapsulated into self-assembled SNPs derived from quinoa (Q), maize (M), and waxy maize (WM) starches using enzyme-hydrolysis. Encapsulation efficiencies ranged from 74.3 % to 79.1 %, with QSNPs showing superior performance. Simulated in vitro digestion revealed sustained release and higher antioxidant activity in QSNPs compared to MSNPs and WMSNPs. Variations in encapsulation properties among SNPs from different sources were attributed to the differences in the structural properties of the starches. The encapsulated SNPs exhibited excellent stability, retaining over 90 % of chrysin and 85 % of rutin after 15 days of storage. These findings underscore the potential of SNP encapsulation to enhance the functionalities of chrysin and rutin, facilitating the development of fortified functional foods with enhanced bioavailability and health benefits.


Assuntos
Antioxidantes , Chenopodium quinoa , Flavonoides , Nanopartículas , Rutina , Amido , Zea mays , Flavonoides/química , Rutina/química , Zea mays/química , Nanopartículas/química , Chenopodium quinoa/química , Amido/química , Antioxidantes/química , Antioxidantes/farmacologia , Disponibilidade Biológica , Hidrólise
3.
Food Chem ; 448: 139176, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574719

RESUMO

Using 3D printing technology, a gelatin-polyvinyl alcohol­carbon dots (GPC) layer+corn starch-polyvinyl alcohol-cinnamon essential oil (CPC) layer active bilayer film with an external barrier function and an internal controlled-release effect was successfully produced for food preservation. The GPC film was provided with potent antioxidant and UV blocking properties by the banana peel carbon dots (CDs). The cinnamon essential oil (CEO) had the strongest interaction with the film matrix at 3% (w/w), causing the CPC film having the lowest surface wettability, good integrity, and lowest crystallinity. The CEO's stability and releasing effectiveness were greatly enhanced by the creation of a bilayer film. At 60% filling rate of the CPC layer, the bilayer film showed the highest CEO retention after drying and the best CEO release performance. Finally, the created active bilayer film was found to significantly improve the sensory quality stability of the spicy essential oil microcapsule powders. It also successfully extended the mangoes' shelf life by delaying browning and rot.


Assuntos
Cinnamomum zeylanicum , Embalagem de Alimentos , Gelatina , Musa , Óleos Voláteis , Impressão Tridimensional , Amido , Óleos Voláteis/química , Embalagem de Alimentos/instrumentação , Cinnamomum zeylanicum/química , Gelatina/química , Amido/química , Musa/química , Carbono/química , Conservação de Alimentos/instrumentação , Conservação de Alimentos/métodos , Pontos Quânticos/química , Zea mays/química
4.
J Agric Food Chem ; 72(19): 11164-11173, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564679

RESUMO

This study developed a novel nanocomposite colorimetric sensor array (CSA) to distinguish between fresh and moldy maize. First, the headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) method was used to analyze volatile organic compounds (VOCs) in fresh and moldy maize samples. Then, principal component analysis and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to identify 2-methylbutyric acid and undecane as key VOCs associated with moldy maize. Furthermore, colorimetric sensitive dyes modified with different nanoparticles were employed to enhance the dye properties used in the nanocomposite CSA analysis of key VOCs. This study focused on synthesizing four types of nanoparticles: polystyrene acrylic (PSA), porous silica nanospheres (PSNs), zeolitic imidazolate framework-8 (ZIF-8), and ZIF-8 after etching. Additionally, three types of substrates, qualitative filter paper, polyvinylidene fluoride film, and thin-layer chromatography silica gel, were comparatively used to fabricate nanocomposite CSA combining with linear discriminant analysis (LDA) and K-nearest neighbor (KNN) models for real sample detection. All moldy maize samples were correctly identified and prepared to characterize the properties of the CSA. Through initial testing and nanoenhancement of the chosen dyes, four nanocomposite colorimetric sensitive dyes were confirmed. The accuracy rates for LDA and KNN models in this study reached 100%. This work shows great potential for grain quality control using CSA methods.


Assuntos
Colorimetria , Cromatografia Gasosa-Espectrometria de Massas , Nanocompostos , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Zea mays , Zea mays/química , Zea mays/microbiologia , Nanocompostos/química , Colorimetria/métodos , Colorimetria/instrumentação , Compostos Orgânicos Voláteis/química , Microextração em Fase Sólida/métodos , Microextração em Fase Sólida/instrumentação , Fungos , Contaminação de Alimentos/análise
5.
Bioorg Med Chem Lett ; 105: 129737, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599297

RESUMO

A new monoterpenoid, neoroseoside (1), along with two previously reported compounds, 2″-O-α-l-rhamnosyl-6-C-fucosylluteolin (2) and farobin A (3) were isolated from the Zea mays. The structure of compound 1 was determined through the analysis spectroscopic data, including mass spectrometry (MS), infrared (IR) spectroscopy, and nuclear magnetic resonance (NMR) data. The absolute configurations of 1 were deduced from the comparing the values of optical rotations and from the interpretation of electronic circular dichroism (ECD) spectra. Compounds 2 and 3 displayed moderate antibacterial activity against Streptococcus mutans ATCC 25175 (inhibition rates 24 % and 28 %, respectively) and Streptococcus sobrinus ATCC 33478 (inhibition rate of 26 %), at a concentration of 100 µg/mL, whereas compound 1 did not have any significant antibacterial activities. The compounds 1-3 also showed anti-inflammatory activity on cytokine IL-6 and TNF-α.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Monoterpenos , Zea mays , Zea mays/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Monoterpenos/farmacologia , Monoterpenos/química , Monoterpenos/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Relação Estrutura-Atividade , Estrutura Molecular , Streptococcus mutans/efeitos dos fármacos , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inibidores , Descoberta de Drogas , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Relação Dose-Resposta a Droga , Streptococcus/efeitos dos fármacos
6.
Int J Biol Macromol ; 267(Pt 1): 131470, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599425

RESUMO

Hot air (HA) drying caused quality damage of grains with long treatment time. Radio frequency (RF) heating as an emerging technology was applied to improve drying quality of cereals effectively. The effects of HA-RF drying (50 °C, 70 °C, 90 °C) of corn kernels on the morphology, structure, and physicochemical properties of starch were investigated and compared with HA drying. The surface of treated starch became rough, along with fragments and pores. Drying treatments increased the amylose content from 10.59 % to 23.88 % and the residual protein content of starch from 0.58 % to 1.23 %, and reduced the crystallinity from 31.95 % to 17.15 % and short-range order structures of starch from 0.918 to 0.868. The change of structures in turn resulted in the increase of pasting viscosity, gelatinization temperature, storage modulus and loss modulus. Furthermore, the HA-RF dried starch displayed stronger thermal stability, higher gelatinization degree and better gelation properties than the HA-treated starch at the same temperature. The data proved that the synergistic effects of HA and RF were more effective in modulating the starch structure and improving the functional characteristics of corn starch. This paper would like to provide potential reference for better application of HA-RF technologies to corn.


Assuntos
Temperatura Alta , Amido , Zea mays , Zea mays/química , Amido/química , Amilose/química , Ondas de Rádio , Viscosidade , Dessecação/métodos , Ar
7.
J Agric Food Chem ; 72(12): 6327-6338, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484116

RESUMO

The present work aimed to characterize the phenolic and antioxidant content of the Argentinian purple maize "Moragro" cultivar. Additionally, the INFOGEST simulated in vitro digestion model was used to establish the effect of digestion on bioactive compounds. Finally, digestion samples were used to treat Caco-2 cells in the transwell model to better understand their bioavailability. Twenty-six phenolic compounds were found in purple maize cv. "Moragro", 15 nonanthocyanins and 11 anthocyanins. Several compounds were identified in maize for the first time, such as pyrogallol, citric acid, gallic acid, kaempferol 3-(6″-ferulylglucoside), and kaempferol 3-glucuronide. Anthocyanins accounted for 24.9% of total polyphenols, with the predominant anthocyanin being cyanidin-3-(6″ malonylglucoside). Catechin-(4,8)-cyanidin-3,5-diglucoside and catechin-(4,8)-cyanidin-3-malonylglucoside-5-glucoside were detected as characteristics of this American maize variety. Total polyphenol content (TPC; by the Folin-Ciocalteu method), HPLC-DAD/MSMS, and antioxidant activity [by DPPH and ferric-reducing antioxidant power (FRAP)] were evaluated throughout in vitro digestion. TPC, DPPH, and FRAP results were 2.71 mg gallic acid equivalents (GAE)/g, 24 µmol Trolox equiv/g, and 22 µmol Trolox eq/g, respectively. The in vitro digestion process did not cause significant differences in TPC. However, the antioxidant activity was significantly decreased. Moreover, the bioavailability of anthocyanins was studied, showing that a small fraction of polyphenols in their intact form was conserved at the end of digestion. Finally, a protective effect of digested maize polyphenols was observed in the Caco-2 cell viability. The results suggest that "Moragro" purple maize is a good source of bioavailable anthocyanins in the diet and an interesting source of this group of compounds for the food industry.


Assuntos
Antocianinas , Catequina , Humanos , Antocianinas/química , Zea mays/química , Antioxidantes , Células CACO-2 , Quempferóis , Cromatografia Líquida de Alta Pressão , Fenóis/química , Polifenóis/análise , Ácido Gálico , Digestão
8.
Carbohydr Polym ; 334: 122027, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553226

RESUMO

To investigate the effect of oil additives on improving the water resistance of corn starch straws, corn oil (CO), soybean oil (SO), rapeseed oil (RO), peanut oil (PO), lard (LD) and coconut oil (CCO) were chosen and compared the structure and properties of starch straws with different oil additives. Corn starch straws (CS), and starch straws supplemented with CO, SO, RO, PO, LD and CCO were prepared by thermoplastic extrusion. The results showed that the incorporation of oils effectively enhanced the water resistance of starch straws such as water absorption, water solubility and water swelling performance. Meanwhile, the flexural strength of starch straws significantly increased. There was no significant linear relationship among starch chain length, oil unsaturation and straw performance. Among seven starch straws, S-SO had the strongest hydrogen bond interaction (3289 cm-1) and relaxation time (0.96 ms). The S-CO had the highest relative crystallinity (16.82 %) and degree of double helix (1.535), hence resulting in the lowest water absorption and solubility values, the highest flexural strength (23.43 MPa), the highest ΔT value (9.93 °C) and ΔH value (4.79 J/g). S-RO had the highest thermal transition temperatures.


Assuntos
Amido , Zea mays , Amido/química , Zea mays/química , Água/química , Óleo de Soja , Fenômenos Químicos , Óleo de Brassica napus , Óleo de Milho
9.
Int J Biol Macromol ; 265(Pt 2): 130681, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458285

RESUMO

The corn starch nanoparticles were prepared by incorporating three kinds of polyphenols, including quercetin, proanthocyanidins and tannin acid. The physicochemical and digestive properties of corn starch nanoparticles were researched. The quercetin showed a higher complexation index than proanthocyanidins and tannin acid when they complexed with corn starch. The mean size of corn starch quercetin, proanthocyanidins and tannin acid were 168.5 nm, 179.1 nm and 188.6 nm, respectively. XRD results indicated that all the corn starch-polyphenols complex showed V-type crystalline structure, the crystallinity of corn starch-quercetin complex was 19.31 %, which showed more formation of amylose-quercetin single helical formed than the other two starch-polyphenol complexes. In vitro digestion revealed that polyphenols could resist digestion and quercetin increased the content of resistant starch from 23.32 % to 35.24 % and polyphenols can form complexes with starch through hydrophobic interactions or hydrogen bonding. This study indicated the hydrophobic polyphenols had a more significant effect on the digestibility of corn starch. And the cell toxicity assessments demonstrated that all nanoparticles were nontoxic and biocompatible.


Assuntos
Proantocianidinas , Amido , Amido/química , Zea mays/química , Taninos , Proantocianidinas/química , Quercetina , Amilose/química , Polifenóis
10.
Artigo em Inglês | MEDLINE | ID: mdl-38530071

RESUMO

This review analyzes the occurrence and co-exposure of aflatoxins and fumonisins in conventional and organic corn, and compares the vulnerability to contamination of both. The risks of fungal contamination in corn are real, mainly by the genera Aspergillus and Fusarium, producers of aflatoxins and fumonisins, respectively. Aflatoxins, especially AFB1, are related to a high incidence of liver cancer, and the International Agency Research of Cancer (IARC) classified them in group 1A 'carcinogenic to humans'. The occurrence in conventional corn is reported in many countries, including at higher levels than those established by legislation. IARC classified fumonisins in group 2B 'possibly carcinogenic to humans' due to their link with incidence of esophageal cancer. However, comparing corn and organic and conventional by-products from different regions, different results are observed. The co-occurrence of both mycotoxins is a worldwide problem; nevertheless, there is little data on the comparison of the co-exposure of these mycotoxins in corn and derivatives between both systems. It was found that the agricultural system is not a decisive factor in the final contamination, indicating the necessity of effective strategies to reduce contamination and co-exposure at levels that do not pose health risks.


Assuntos
Aflatoxinas , Contaminação de Alimentos , Fumonisinas , Zea mays , Zea mays/química , Fumonisinas/análise , Aflatoxinas/análise , Contaminação de Alimentos/análise , Humanos , Aspergillus , Fusarium
11.
Food Chem ; 446: 138815, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428087

RESUMO

In this study, we developed a process combining dilute alkali (NaOH or NaHCO3) and physical (disk milling and/or ball milling) treatments to improve the functionality and fermentability of corn fiber. The results showed that combining chemical with physical processes greatly improved the functionality and fermentability of corn fiber. Corn fiber treated with NaOH followed by disk milling (NaOH-DM-CF) had the highest water retention (19.5 g/g), water swelling (38.8 mL/g), and oil holding (15.5 g/g) capacities. Moreover, NaOH-DM-CF produced the largest amount (42.9 mM) of short-chain fatty acid (SCFA) during the 24-hr in vitro fermentation using porcine fecal inoculum. In addition, in vitro fermentation of NaOH-DM-CF led to a targeted microbial shifting to Prevotella (genus level), aligning with a higher fraction of propionic acid. The outstanding functionality and fermentability of NaOH-DM-CF were attributed to its thin and loose structure, decreased ester linkages and acetyl groups, and enriched structural carbohydrate exposure.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Animais , Suínos , Fibras na Dieta/análise , Zea mays/química , Álcalis , Hidróxido de Sódio , Ração Animal/análise , Fezes/química , Ácidos Graxos Voláteis/análise , Água/análise , Fermentação
12.
Food Chem ; 446: 138777, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402763

RESUMO

Seven novel antioxidant peptides (AWF, LWQ, WIY, YLW, LAYW, LPWG, and LYFY) exhibiting a superior activity compared to trolox were identified through in silico screening. Among these, the four peptides (WIY, YLW, LAYW, and LYFY) displayed notably enhanced performance, with ABTS activity 2.58-3.26 times and ORAC activity 5.19-8.63 times higher than trolox. Quantum chemical calculations revealed that the phenolic hydroxyl group in tyrosine and the nitrogen-hydrogen bond in the indole ring of tryptophan serve as the critical sites for antioxidant activity. These findings likely account for the potent chemical antioxidant activity. The corn peptides also exerted a protective effect against AAPH-induced cytomorphologic changes in human erythrocytes by modulating the antioxidant system. Notably, LAYW exhibited the most pronounced cytoprotective effects, potentially due to its high content of hydrophobic amino acids.


Assuntos
Antioxidantes , Glutens , Humanos , Antioxidantes/química , Glutens/química , Zea mays/química , Peptídeos/química , Fenóis
13.
Molecules ; 29(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398559

RESUMO

Popcorn is a specialty maize variety with popping abilities. Although considered a snack, popcorn flakes provide a variety of benefits for the human diet. To evaluate the change in content of bioactive compounds in response to microwave popping, the kernels and flakes of twelve popcorn hybrids were assayed. Accordingly, the content of phytic acid, glutathione, phenolic compounds, carotenoids, and tocopherols, as well as the antioxidant activity, were evaluated. In all evaluated popcorn hybrids, the most pronounced significant average decrease of 71.94% was observed for GSH content, followed by 57.72% and 16.12% decreases for lutein + zeaxanthin and phytic acid content, respectively. In response to popping, in the majority of the evaluated hybrids, the most pronounced significant average changes of a 63.42% increase and a 27.61% decrease were observed for DPPH, followed by a 51.52% increase and a 24.48% decrease for ß-carotene, as well as, a 48.62% increase and a 16.71% decrease for α-Tocopherol content, respectively. The applied principal component and hierarchical cluster analyses revealed the distinct separation of popcorn hybrids' kernels and flakes, indicating the existence of a unique linkage of changes in bioactive compound content in response to popping.


Assuntos
Carotenoides , Ácido Fítico , Humanos , Antioxidantes , beta Caroteno , Tocoferóis , Zea mays/química , Glutationa
14.
Carbohydr Polym ; 327: 121702, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171666

RESUMO

The chain structure of starch affects its interaction with polyphenol molecules which in turn determines the nutritional function of starch. In this study, starch with different amylose content including waxy maize starch (WMS), normal maize starch (NMS) and G50 high-amylose maize starch (G50) were selected to complex with resveratrol (RA) in high-pressure homogenization (HPH) environment, and structural changes of the complexes, together with their effects on in vitro digestibility and gut microbiota were discussed. The results showed that with increasing amylose content, RA could form more inclusion complex with starch through non-covalent bonds accompanied by the increased single helix structure, V-type crystalline structure, compact nano-aggregates and total ordered structure content, which thus endowed the complex lower digestibility and intestinal probiotic function. Notably, when RA addition reached 3 %, the resistant starch (RS) content of HP-G50-3 % rose to 29.2 %, correspondingly increased the relative abundance of beneficial gut microbiota such as Megamonas and Bifidobacterium, as well as the total short-chain fatty acids (SCFAs) content. Correlation analysis showed that V-type crystalline structure positively correlated with the growth of Pediococcu and Blautia (p < 0.05) for producing SCFAs. These findings provided feasible ideas for the development of personalized nutritional starch-based foods.


Assuntos
Amilose , Microbioma Gastrointestinal , Humanos , Amilose/química , Zea mays/química , Resveratrol , Amido/química , Amilopectina/química , Ácidos Graxos Voláteis
15.
Int J Biol Macromol ; 260(Pt 1): 129408, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228203

RESUMO

This study aimed to investigate the role of amylose and amylopectin in the formation of starch-polyphenol complex and elucidate the interaction mechanisms. Gallic acid (GA) was used to complex with maize starch with various amylose contents. Results showed GA formed V-type crystals with normal maize starch (NMS) and high amylose maize starch (HAMS), while higher relative crystallinity was exhibited in HAMS-GA complexes than NMS counterparts. Molecular structure analysis revealed more amylose in GA-starch complexes than in treated starch counterparts without GA, and this was more apparent in HAMS than NMS, implying amylose is preferred to complex with GA than amylopectin. FTIR detected higher R1047/1022 value in starch-GA complexes than their starch counterparts without GA, suggesting increased short-range ordered structrure of complexes. Typical signatures of hydrophobic interactions were further revealed by isothermal titration calorimetry, indicating the complexation of GA to starch is mainly through hydrophobic bonds. More binding sites were observed for HAMS (72.50) than NMS (11.33), which proves the preferences of amylose to bind with GA. Molecular dynamics simulated the complexation of GA to amylose, and confirmed hydrophobic bond is the main interaction force. These findings would provide guidance for precise design and utilization of starch-polyphenol complexes in functional foods.


Assuntos
Amilose , Amido , Amido/química , Amilose/química , Amilopectina/química , Ácido Gálico/metabolismo , Zea mays/química , Interações Hidrofóbicas e Hidrofílicas , Polifenóis/metabolismo
16.
Int J Biol Macromol ; 261(Pt 1): 129593, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266834

RESUMO

The off-odors of sea cucumber intestinal peptide (SCIP) severely limit its application. In this study, the V-type starches were derived from high amylose maize starch to adsorb odors of SCIP and the adsorption mechanism was explored. The inclusion complexes formed by V-type starches and volatile compounds of SCIP were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The electronic nose results revealed a decreasing trend in response values of SCIP, with significant differences before and after deodorization (p < 0.05). Furthermore, 82 volatiles were identified from SCIP, and six were determined as key volatiles using gas chromatography-mass spectrometry. The V6- and V7-type starches with smaller cavity sizes selectively adsorb butyric acid, isobutyric acid and nonaldehyde, and V8-type starches with a larger cavity size selectively adsorb trimethylamine. This study proved that using V-type starches for deodorization could effectively improve SCIP flavor.


Assuntos
Pepinos-do-Mar , Animais , Adsorção , Odorantes , Zea mays/química , Amido/química , Amilose/química , Difração de Raios X , Peptídeos
17.
J Food Sci ; 89(1): 435-449, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38018266

RESUMO

Vitamin D3 (VD3) and iron-blend granules were blended with corn and lentil composite flour (75/25, w/w) and fed into a pilot-scale twin-screw extruder to produce ready-to-eat snacks. The morphology and microstructure of extruded snacks were examined using scanning electron microscopy with energy-dispersive X-ray (SEM-EDX), X-ray powder diffraction, and FT-IR. Differential scanning calorimetry and thermogravimetric analysis measured the melting temperature and thermal stability of the extrudates. SEM and FT-IR analysis demonstrate that micronutrients are mixed well in formulations used in extrudates at high shear and high temperatures. The SEM-EDX exhibited the presence of iron, whereas high performance liquid chromatography measurements confirmed the significant retention of VD3 in the extruded snacks. The interaction between VD3 and human osteoblast cells was studied using live imaging and the MMT assay. Overall, for the first time, VD3 and Fe2+ blend granules have been used in an extrusion platform, which has significant potential for the intervention of VD3 and iron deficiencies. PRACTICAL APPLICATION: For the first time, we reported the use of VD3/iron-blend granules in extruded products. The findings of this work demonstrated the thermal stability and capability of providing adequate quantities of VD3 and iron in corn flour/lentil flour/VD3-iron blend extruded snacks. Furthermore, the interaction of VD3 with osteoblast cells highlights the potential health benefits of the extrudates.


Assuntos
Colecalciferol , Lens (Planta) , Humanos , Farinha/análise , Zea mays/química , Ferro , Espectroscopia de Infravermelho com Transformada de Fourier , Osteoblastos
18.
Int J Biol Macromol ; 256(Pt 1): 128382, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000598

RESUMO

The use of natural and safe ingredients in green food packaging material is a hot research topic. This study investigated the effect of different emulsifiers on starch film properties. Three types of emulsifiers, including Tween 80 as a small-molecule surfactant, sodium caseinate (CAS), whey protein isolate (WPI), and gelatin (GE) as macromolecule emulsifiers, whey protein isolate fibril (WPIF) as a particle emulsifier, were utilized to prepare Zanthoxylum bungeanum essential oil (ZBO) emulsions. The mechanical, physical, thermal, antibacterial properties, microstructure and essential oil release of starch films were investigated. CAS-ZBO nanoemulsion exhibited the smallest particle size of 198.6 ± 2.2 nm. The film properties changed with different emulsifiers. CAS-ZBO film showed the highest tensile strength value. CAS-ZBO and WPIF-ZBO films exhibited lower water vapor permeability than Tween-ZBO. CAS-ZBO film showed good dispersion of essential oil, the slowest release rate of essential oils in all food simulants, and the best antibacterial effect against Staphylococcus aureus and Listeria monocytogenes. The films composed of CAS-ZBO nanoemulsion, corn starch, and glycerol are considered more suitable for food packaging. This work indicated that natural macromolecule emulsifiers of CAS and WPIF are expected to be used in green food packaging material to offer better film properties.


Assuntos
Óleos Voláteis , Zanthoxylum , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Zea mays/química , Proteínas do Soro do Leite , Amido/química , Antibacterianos/farmacologia , Emulsificantes/química , Embalagem de Alimentos , Polissorbatos , Permeabilidade
19.
J Sci Food Agric ; 104(6): 3477-3486, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38133859

RESUMO

BACKGROUND: Enzymatic modification is an effective means of improving the functional properties, digestive properties, and in vitro digestion product physiological activity of proteins, thus significantly expanding protein uses in various food applications. RESULTS: In this study, the addition of chymotrypsin (CT) at pH 9.0 and 11.0 was found to significantly improve the functional properties (solubility, foaming properties, water holding capacity, oil holding capacity, etc.) and digestive properties of extruded corn gluten meal (ECGM). Similar changes were observed when treating ECGM with glutaminase, protein glutaminase, and papain. These changes were likely due to the increase in number of carboxyl groups and the multiple effects of change in protein net charge and conformation caused by enzymatic deamidation. Of note, ECGM deamidated by CT showed the highest degree of deamidation, solubility, and gastrointestinal digestibility at pH 11.0, up to 44.92%, 43.75%, and 82.22%, respectively. In addition, CT-ECGM digestion product exhibited strong antioxidant activity and potential to promote alcohol metabolism in both a static digestion model and dynamic digestion model, even comparable to commercial corn peptides (CCP), while being inexpensive and of low bitterness compared to CCP. Meanwhile, the physiological activity enhanced as the molecular weight of digestion product decreased with the digested component having strongest activity. CONCLUSION: This study may promote the application of ECGM as a food component in the food industry or even as a substitute for CCP. © 2023 Society of Chemical Industry.


Assuntos
Glutaminase , Glutens , Glutens/química , Zea mays/química , Peptídeos/química , Digestão
20.
Chem Biodivers ; 20(12): e202301505, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37905975

RESUMO

Two undescribed alkaloids, along with seven known compounds, were isolated from the roots of Zea mays (RM). Their chemical structures were elucidated based on extensive analyses of HR-ESI-MS, 1D and 2D NMR, and CD spectra. Two new alkaloids exhibited moderate inhibition of Hep3B (IC50 values of 11.7±2.4 and 14.2±3.6 µM) and SW480 cells (IC50 values of 33.4±8.2 and 47.3±5.8 µM) compared to that of the positive control compound, Oxaliplatin, IC50 value of 8.4±1.7 and 45.8±5.6 µM, respectively.


Assuntos
Alcaloides , Antineoplásicos , Zea mays/química , Estrutura Molecular , Alcaloides/química , Raízes de Plantas/química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA