Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440679

RESUMO

The concern for implementing bioactive nutraceuticals in antioxidant-related therapies is of great importance for skin homeostasis in benign or malignant diseases. In order to elucidate some novel insights of Lycium barbarum (Goji berry) activity on skin cells, the present study focused on its active compound zeaxanthin. By targeting the stemness markers CD44 and CD105, with deep implications in skin oxidative stress mechanisms, we revealed, for the first time, selectivity in zeaxanthin activity. When applied in vitro on BJ human fibroblast cell line versus the A375 malignant melanoma cells, despite the moderate cytotoxicity, the zeaxanthin-rich extracts 1 and 2 were able to downregulate significantly the CD44 and CD105 membrane expression and extracellular secretion in A375, and to upregulate them in BJ cells. At mechanistic level, the present study is the first to demonstrate that the zeaxanthin-rich Goji extracts are able to influence selectively the mitogen-activated protein kinases (MAPK): ERK, JNK and p38 in normal BJ versus tumor-derived A375 skin cells. These results point out towards the applications of zeaxanthin from L. barbarum as a cytoprotective agent in normal skin and raises questions about its use as an antitumor prodrug alone or in combination with standard therapy.


Assuntos
Adesão Celular/efeitos dos fármacos , Lycium/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Zeaxantinas/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Frutas/química , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Extratos Vegetais/isolamento & purificação , Pele/citologia , Pele/efeitos dos fármacos , Pele/metabolismo , Zeaxantinas/isolamento & purificação
2.
Food Res Int ; 116: 586-591, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716984

RESUMO

In this study, the effect of refining process on the content of phytochemicals, antioxidant capacity and oxidative stability of hazelnut oil was investigated. The oil samples were taken at the consecutive steps of hazelnut refining process and analyzed for some compositional properties along with the antioxidant capacity and oxidative stability. The results have shown that, carotenoid content of the hazelnut oil was decreased during the refining process. The main carotenoids of hazelnut oil were found to be lutein and zeaxanthin and these compounds were lost completely during bleaching step of the refining. On the other hand, phenolic compounds and tocopherols were also partly removed from hazelnut oil to a degree. Loses in antioxidant compounds caused a clear decrease in antioxidant capacity measured in either the oils or polar extract of oils. Oxidative stability of the oil samples was measured by Rancimat method and it was found that neutralization caused an increase in oxidative stability compared to the crude oil. However, deodorization step caused a slight decrease in oxidative stability probably as a result of partial removal of tocopherols at this stage.


Assuntos
Antioxidantes/isolamento & purificação , Corylus/química , Manipulação de Alimentos/métodos , Nozes/química , Compostos Fitoquímicos/isolamento & purificação , Óleos de Plantas/isolamento & purificação , Luteína/isolamento & purificação , Oxirredução , Fenóis/isolamento & purificação , Tocoferóis/isolamento & purificação , Zeaxantinas/isolamento & purificação
3.
J Oleo Sci ; 66(5): 463-468, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28413190

RESUMO

The aim of this work consists of developing a technological process for elaborating a virgin olive oil enriched in lutein-zeaxanthin extracted from spinach, studying different parameters like temperature, time of extraction and different ratios (spinach-oil). It was observed that the amount of carotenoids extracted increased up to a maximum after 24 hours and decreased as the maceration time progressed up to 60 hours, resulting of biological degradation. It was also observed that as more spinach we added, as more lutein-zeaxanthin in the enriched virgin olive oil was obtained. The best results were obtained after 24 hours by using a 75:25 ratio at 30°C. Values of oxidative stability decreased drastically, as well as other parameters such as acidity; peroxides index and Ks were modified when the enriched virgin olive oil was subjected to 45°C for 24 hours of maceration. Thus, the present procedure constitutes a way to achieve an increase in the daily intake of beneficial compounds.


Assuntos
Carotenoides/isolamento & purificação , Alimentos Fortificados , Extração Líquido-Líquido/métodos , Luteína/isolamento & purificação , Azeite de Oliva , Spinacia oleracea/química , Zeaxantinas/isolamento & purificação , Azeite de Oliva/química , Oxirredução , Peróxidos , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA