Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nat Plants ; 10(2): 240-255, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38278954

RESUMO

We present chromosome-level genome assemblies from representative species of three independently evolved seagrass lineages: Posidonia oceanica, Cymodocea nodosa, Thalassia testudinum and Zostera marina. We also include a draft genome of Potamogeton acutifolius, belonging to a freshwater sister lineage to Zosteraceae. All seagrass species share an ancient whole-genome triplication, while additional whole-genome duplications were uncovered for C. nodosa, Z. marina and P. acutifolius. Comparative analysis of selected gene families suggests that the transition from submerged-freshwater to submerged-marine environments mainly involved fine-tuning of multiple processes (such as osmoregulation, salinity, light capture, carbon acquisition and temperature) that all had to happen in parallel, probably explaining why adaptation to a marine lifestyle has been exceedingly rare. Major gene losses related to stomata, volatiles, defence and lignification are probably a consequence of the return to the sea rather than the cause of it. These new genomes will accelerate functional studies and solutions, as continuing losses of the 'savannahs of the sea' are of major concern in times of climate change and loss of biodiversity.


Assuntos
Alismatales , Zosteraceae , Alismatales/genética , Zosteraceae/genética , Ecossistema
2.
Fitoterapia ; 173: 105817, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176473

RESUMO

The eelgrass Zostera marina L. has several economic roles, from its earlier usage in the insulation industry to protecting the earth from global warming. In this study, we aimed to discover the cosmetic potential of Z. marina. A methanolic extract of Z. marina showed anti-phototoxicity and anti-melanogenesis activity with an IC50 of 17.5 µM, followed by a phytochemical analysis of its phenolic constituents. Ten compounds (1-10) were isolated by several chromatographic techniques and identified by means of nuclear magnetic resonance spectroscopy (NMR) as well as high-resolution mass spectrometry (HR/MS). The identified compounds are caffeic acid (1), 3,4-dihydroxybenzoic acid (protocatechuic acid) (2), luteolin (3), diosmetin (4), 4-coumaroyl-4'-hydroxyl phenyllactic acid (5), rosmarinic acid (6), caffeoyl-4'-hydroxy-phenyllactic acid (isorinic acid) (7), apigenin 7-O-ß-D-glucopyranoside (8), luteolin 7-O-ß-D-glucopyranoside (9), and luteolin 7-sulfate (10). This is the first report to identify compounds 5 and 7 from the family Zosteraceae. The isolated compounds were assessed for their anti-aging abilities and were found to exhibit good anti-phototoxicity and anti-melanogenesis activities by increasing the viability of UVB-irradiated HaCaT cells by 6% to 34% and by inhibiting melanin synthesis in B16 melanoma cells by 44% to 65%.


Assuntos
Lactatos , Zosteraceae , Zosteraceae/química , Luteolina , Estrutura Molecular , Ácido Rosmarínico
3.
Mar Pollut Bull ; 199: 115977, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194824

RESUMO

Frame Transplantation System (FTS) is considered an efficient method for seagrass restoration, but the effect of the rusting of iron frame on seagrass restoration remains unclear. We transplanted Zostera marina plants using iron FTS treated with fluorocarbon paint (painted treatment, PT) and traditional unpainted iron FTS (unpainted treatment, UT) under controlled mesocosm conditions for 24 days. Our results showed that the survival rate of Z. marina under the UT was significantly 31.2 % lower than that of the plants under the PT. Soluble sugar content in Z. marina rhizomes under the UT was significantly 2.19 times higher than that of the plants under the PT. Transcriptome analysis revealed differentially expressed genes (DEGs) involved in photosynthesis, metabolism and signal transduction functions. The results provide valuable data that could prove helpful in the development of efficient restoration techniques for Z. marina beds.


Assuntos
Zosteraceae , Zosteraceae/metabolismo , Perfilação da Expressão Gênica , Ecologia , Plantas , Fotossíntese
4.
Ann Bot ; 133(1): 41-50, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37787519

RESUMO

BACKGROUND AND AIMS: Worldwide, invasive species are spreading through marine systems at an unprecedented rate with both positive and negative consequences for ecosystems and the biological functioning of organisms. Human activities from shipping to habitat damage and modification are known vectors of spread, although biological interactions including epibiosis are increasingly recognized as potentially important to introduction into susceptible habitats. METHODS: We assessed a novel mechanism of spread - limpets as transporters of an invasive alga, Sargassum muticum, into beds of the seagrass Zostera marina - and the physiological impact of its invasion. The association of S. muticum with three limpet species and other habitats was assessed using intertidal surveys on rocky shores and snorkelling at two seagrass sites in the UK. A 4-year field study tested the effect of S. muticum on Z. marina shoot density, dry weight and phenolic compounds (caffeic and tannic acid) content, and a laboratory experiment tested the impact of S. muticum on nutrient partitioning (C/H/N/P/Si), photosynthetic efficiency (Fv/Fm) and growth of Z. marina. RESULTS: On rocky shores 15 % of S. muticum occurrences were attached to the shells of live limpets. In seagrass beds 5 % of S. muticum occurrences were attached to the shells of dead limpets. The remainder were attached to rock, to cobblestones, to the seagrass matrix or embedded within the sand. Z. marina density and phenolics content was lower when S. muticum co-occurred with it. Over 3 years, photosynthetic responses of Z. marina to S. muticum were idiosyncratic, and S. muticum had no effect on nutrient partitioning in Z. marina. CONCLUSIONS: Our results show limpets support S. muticum as an epibiont and may act as a previously unreported transport mechanism introducing invaders into sensitive habitats. S. muticum reduced production of phenolics in Z. marina, which may weaken its defensive capabilities and facilitate proliferation of S. muticum. The effect of S. muticum on Z. marina photosynthesis requires further work but having no effect on the capacity of Z. marina to sequester nutrients suggests a degree of resilience to this invader.


Assuntos
Polifenóis , Alga Marinha , Zosteraceae , Humanos , Ecossistema , Espécies Introduzidas , Zosteraceae/fisiologia
5.
PLoS One ; 18(12): e0295450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38060512

RESUMO

Sulfide poisoning, hypoxia events, and reduced light availability pose threats to marine ecosystems such as seagrass meadows. These threats are projected to intensify globally, largely due to accelerating eutrophication of estuaries and coastal environments. Despite the urgency, our current comprehension of the metabolic pathways that underlie the deleterious effects of sulfide toxicity and hypoxia on seagrasses remains inadequate. To address this knowledge gap, I conducted metabolomic analyses to investigate the impact of sulfide poisoning under dark-hypoxia in vitro conditions on Zostera marina, a vital habitat-forming marine plant. During the initial 45 minutes of dark-hypoxia exposure, I detected an acclimation phase characterized by the activation of anaerobic metabolic pathways and specific biochemical routes that mitigated hypoxia and sulfide toxicity. These pathways served to offset energy imbalances, cytosolic acidosis, and sulfide toxicity. Notably, one such route facilitated the transformation of toxic sulfide into non-toxic organic sulfur compounds, including cysteine and glutathione. However, this sulfide tolerance mechanism exhibited exhaustion post the initial 45-minute acclimation phase. Consequently, after 60 minutes of continuous sulfide exposure, the sulfide toxicity began to inhibit the hypoxia-mitigating pathways, culminating in leaf senescence and tissue degradation. Utilizing metabolomic approaches, I elucidated the intricate metabolic responses of seagrasses to sulfide toxicity under in vitro dark-hypoxic conditions. My findings suggest that future increases in coastal eutrophication will compromise the resilience of seagrass ecosystems to hypoxia, primarily due to the exacerbating influence of sulfide.


Assuntos
Ecossistema , Zosteraceae , Zosteraceae/metabolismo , Meio Ambiente , Sulfetos/toxicidade , Sulfetos/metabolismo , Hipóxia
6.
BMC Plant Biol ; 23(1): 104, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814193

RESUMO

BACKGROUND: Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have evolved to live entirely submerged in marine waters. Thus, these species are ideal for studying plant adaptation to marine environments. Herein, we sequenced the chloroplast (cp) genomes of two seagrass species (Zostera muelleri and Halophila ovalis) and performed a comparative analysis of them with 10 previously published seagrasses, resulting in various novel findings. RESULTS: The cp genomes of the seagrasses ranged in size from 143,877 bp (Zostera marina) to 178,261 bp (Thalassia hemprichii), and also varied in size among different families in the following order: Hydrocharitaceae > Cymodoceaceae > Ruppiaceae > Zosteraceae. The length differences between families were mainly related to the expansion and contraction of the IR region. In addition, we screened out 2,751 simple sequence repeats and 1,757 long repeat sequence types in the cp genome sequences of the 12 seagrass species, ultimately finding seven hot spots in coding regions. Interestingly, we found nine genes with positive selection sites, including two ATP subunit genes (atpA and atpF), three ribosome subunit genes (rps4, rps7, and rpl20), one photosystem subunit gene (psbH), and the ycf2, accD, and rbcL genes. These gene regions may have played critical roles in the adaptation of seagrasses to diverse environments. In addition, phylogenetic analysis strongly supported the division of the 12 seagrass species into four previously recognized major clades. Finally, the divergence time of the seagrasses inferred from the cp genome sequences was generally consistent with previous studies. CONCLUSIONS: In this study, we compared chloroplast genomes from 12 seagrass species, covering the main phylogenetic clades. Our findings will provide valuable genetic data for research into the taxonomy, phylogeny, and species evolution of seagrasses.


Assuntos
Alismatales , Genoma de Cloroplastos , Hydrocharitaceae , Zosteraceae , Filogenia , Alismatales/genética , Zosteraceae/genética , Hydrocharitaceae/genética , Cloroplastos/genética , Genômica , Evolução Molecular
7.
J Nat Prod ; 85(10): 2468-2473, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36261887

RESUMO

The widespread seagrass Zostera marina contains a new diarylheptanoid heterodimer, zosterabisphenone C (1), featuring an unprecedented rearrangement of one of its benzene rings to a cyclopentenecarbonyl unit. The planar structure and absolute configuration of zosterabisphenone C were elucidated by a combination of spectroscopic (MS, ECD, and low-temperature NMR) and computational (DFT-NMR and DFT-ECD) evidence. Consistent with the previously isolated zosterabisphenones, compound 1 was selectively cytotoxic against HCT 116 adenocarcinoma colon cancer cells, reducing their viability by 73% at 10 µM (IC50 of 7.6 ± 1.1 µM). The biosynthetic origin of zosterabisphenone C (1) from an oxidative rearrangement of zosterabisphenone A (4) is proposed.


Assuntos
Antineoplásicos , Neoplasias do Colo , Zosteraceae , Diarileptanoides/farmacologia , Benzeno
8.
Mar Drugs ; 20(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35877719

RESUMO

The global spread of the metabolic syndrome, oncological and viral diseases forces researchers to pay increased attention to the secondary metabolites of marine hydrobionts, which often have a high therapeutic potential in the treatment of these pathologies and are effective components of functional food. The flavone luteolin (LT), as one of the most widely distributed and studied plant metabolites, is distinguished by a diverse spectrum of biological activity and a pleiotropic nature of the mechanism of action at the molecular, cellular and organismal levels. However, there is still practically no information on the spectrum of biological activity of its sulfated derivatives, which are widely represented in seagrasses of the genus Zostera. In the present work, a comparative study of the pharmacological properties of LT and its 7,3'-disulfate was carried out with a brief analysis of the special role of sulfation in the pharmacological activity of flavonoids.


Assuntos
Luteolina , Zosteraceae , Flavonoides/farmacologia , Luteolina/farmacologia
9.
BMC Plant Biol ; 22(1): 63, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120456

RESUMO

BACKGROUND: The polyphyletic group of seagrasses shows an evolutionary history from early monocotyledonous land plants to the marine environment. Seagrasses form important coastal ecosystems worldwide and large amounts of seagrass detritus washed on beaches might also be valuable bioeconomical resources. Despite this importance and potential, little is known about adaptation of these angiosperms to the marine environment and their cell walls. RESULTS: We investigated polysaccharide composition of nine seagrass species from the Mediterranean, Red Sea and eastern Indian Ocean. Sequential extraction revealed a similar seagrass cell wall polysaccharide composition to terrestrial angiosperms: arabinogalactans, pectins and different hemicelluloses, especially xylans and/or xyloglucans. However, the pectic fractions were characterized by the monosaccharide apiose, suggesting unusual apiogalacturonans are a common feature of seagrass cell walls. Detailed analyses of four representative species identified differences between organs and species in their constituent monosaccharide composition and lignin content and structure. Rhizomes were richer in glucosyl units compared to leaves and roots. Enhalus had high apiosyl and arabinosyl abundance, while two Australian species of Amphibolis and Posidonia, were characterized by high amounts of xylosyl residues. Interestingly, the latter two species contained appreciable amounts of lignin, especially in roots and rhizomes whereas Zostera and Enhalus were lignin-free. Lignin structure in Amphibolis was characterized by a higher syringyl content compared to that of Posidonia. CONCLUSIONS: Our investigations give a first comprehensive overview on cell wall composition across seagrass families, which will help understanding adaptation to a marine environment in the evolutionary context and evaluating the potential of seagrass in biorefinery incentives.


Assuntos
Adaptação Biológica/genética , Alismatales/química , Parede Celular/química , Folhas de Planta/química , Raízes de Plantas/química , Polissacarídeos/química , Zosteraceae/química , Alismatales/genética , Parede Celular/genética , Oceano Índico , Biologia Marinha , Mar Mediterrâneo , Folhas de Planta/genética , Raízes de Plantas/genética , Polissacarídeos/genética , Especificidade da Espécie , Zosteraceae/genética
10.
Phytochemistry ; 196: 113099, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35065450

RESUMO

Seasonal variations of phenolic compounds, in leaves of Zostera marina L. from the Baltic Sea near Kiel/Germany were investigated. Dominant compounds were mono- and disulfated flavonoids and phenylpropanoic acids, in particular luteolin 7,3'-O-disulfate and diosmetin 7-O-sulfate as well as rosmarinic acid, a dimeric phenylpropanoid. All detected sulfated flavones showed similar seasonal trends: there were two significant concentration peaks in June and November. Moreover, two geographically distinct flavonoid chemotypes were identified based on their respective main flavonoid; one chemotype was characterized by the prevalence of luteolin 7,3'-O-disulfate (German Baltic Sea), and the other by the prevalence of diosmetin 7-O-sulfate (Norwegian North Sea). Furthermore, an undescribed tetrameric phenylpropanoid, 7'',8''-didehydrosalvianolic acid B, was isolated and its structure was established by extensive NMR, MS, and CD experiments. This compound inhibited activity of Na+/K+-ATPase in the micro-molar range without any cytotoxic effects against human cancer and normal cells.


Assuntos
Zosteraceae , Alemanha , Fenóis/química , Folhas de Planta , Estações do Ano , Zosteraceae/química
11.
Org Lett ; 23(18): 7134-7138, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34491069

RESUMO

Two diarylheptanoid heterodimers, zosterabisphenones A (1) and B (2), were isolated from the seagrass Zostera marina. They feature unprecedented catechol keto tautomers, stable because of steric constraints. Their structure elucidation was based on extensive low-temperature NMR studies and ECD and MS data, with the essential aid of DFT prediction of NMR and ECD spectra. Zosterabisphenone B (2) was selectively cytotoxic against the adenocarcinoma colon cancer cell line HCT116 with IC50 3.6 ± 1.1 µM at 48 h.


Assuntos
Catecóis/química , Diarileptanoides/química , Zosteraceae/química , Isomerismo , Espectroscopia de Ressonância Magnética , Estrutura Molecular
12.
J Environ Manage ; 300: 113657, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509819

RESUMO

Organophosphate pesticides (OPPs) are persistent in the environment, but little information is available on their bioaccumulation in seagrass. In this study, the seagrass - Zostera capensis was collected from Swartkops Estuary in South Africa to investigate the bioaccumulation of OPPs from contaminated sediments and the water column. This plant was chosen because it grows abundantly in the estuary's intertidal zone, making it a viable phytoremediator in the urban environment. Extraction was performed by the QuEChERS method followed by GC-MS analysis. The mean concentration of ∑OPPs ranged from 0.01 to 0.03 µg/L for surface water; 6.20-13.35 µg/kg dw for deep-rooted sediments; 18.79-37.75 µg/kg dw for leaf tissues and 12.14-39.80 µg/kg dw for root tissues of Z. capensis. The biota-sediment accumulation factors (BSAFs) were greater than one, indicating the potential for Z. capensis to bioaccumulate and intercept the targeted pesticides. A weak insignificant correlation observed between log BSAFs and log Kow indicates that the bioaccumulation of OPPs in tissues of Z. capensis were not dependent on the Kow. Eight of the selected pesticides had root-leaf translocation factors (TFr-l) greater than 1, indicating that Z. capensis can transport these chemicals from roots to leaves. The results from this study implies that this plant species can clean up OPP contamination in the environment.


Assuntos
Praguicidas , Poluentes Químicos da Água , Zosteraceae , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Organofosfatos , Praguicidas/análise , Poluentes Químicos da Água/análise
13.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920014

RESUMO

Galectins represent ß-galactoside-binding proteins with numerous functions. Due to their role in tumor progression, human galectins-1, -3 and -7 (Gal-1, -3 and -7) are potential targets for cancer therapy. As plant derived glycans might act as galectin inhibitors, we prepared galactans by partial degradation of plant arabinogalactan-proteins. Besides commercially purchased galectins, we produced Gal-1 and -7 in a cell free system and tested binding capacities of the galectins to the galactans by biolayer-interferometry. Results for commercial and cell-free expressed galectins were comparable confirming functionality of the cell-free produced galectins. Our results revealed that galactans from Echinacea purpurea bind to Gal-1 and -7 with KD values of 1-2 µM and to Gal-3 slightly stronger with KD values between 0.36 and 0.70 µM depending on the sensor type. Galactans from the seagrass Zostera marina with higher branching of the galactan and higher content of uronic acids showed stronger binding to Gal-3 (0.08-0.28 µM) compared to galactan from Echinacea. The results contribute to knowledge on interactions between plant polysaccharides and galectins. Arabinogalactan-proteins have been identified as a new source for production of galactans with possible capability to act as galectin inhibitors.


Assuntos
Galectina 1/genética , Galectina 3/genética , Galectinas/genética , Sistema Livre de Células , Galactanos/química , Galactanos/metabolismo , Galectina 1/química , Galectina 3/química , Galectinas/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Ligação Proteica , Zosteraceae/química
14.
Environ Pollut ; 269: 116050, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33272801

RESUMO

Marine canopies formed by seagrass and other coastal vegetated ecosystems could act as sinks of microplastics for being efficient particle traps. Here we investigated for the first time the occurrence of microplastic retention by marine canopies in a hydraulic flume under unidirectional flow velocities from 2 to 30 cm s-1. We used as model canopy-forming species the seagrass Zostera marina with four canopy shoot density (0, 50, 100, 200 shoots m-2), and we used as microplastic particles industrial pristine pellets with specific densities from 0.90 to 1.34 g cm-3 (polypropylene PP; polystyrene PS; polyamide 6 PA; and polyethylene terephthalate PET). Overall, microplastics particles transported with the flow were retained in the seagrass canopies but not in bare sand. While seagrass canopies retained floating microplastics (PP) only at low velocities (<12 cm s-1) due to a barrier created by the canopy touching the water surface, the retention of sinking particles (PS, PA, PET) occurred across a wider range of flow velocities. Our simulations revealed that less dense sinking particles (PS) might escape from the canopy at high velocities, while denser sinking particles can be trapped in scouring areas created by erosive processes around the eelgrass shoots. Our results show that marine canopies might act as potential barriers or sinks for microplastics at certain bio-physical conditions, with the probability of retention generally increasing with the seagrass shoot density and polymer specific density and decreasing with the flow velocity. We conclude that seagrass meadows, and other aquatic canopy-forming ecosystems, should be prioritized habitats in assessment of microplastic exposure and impact on coastal areas since they may accumulate high concentration of microplastic particles that could affect associated fauna.


Assuntos
Microplásticos , Zosteraceae , Ecossistema , Plásticos
15.
Ecotoxicology ; 29(7): 932-940, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32162033

RESUMO

Seagrass meadows are among the four most productive marine natural ecosystems in the world. Zostera japonica (Z. japonica) is the most widely distributed species of seagrass in China. Nucleotide exchange factors (NEFs) promote the release of ADP during heat stress, accelerating the rate-limiting step of Heat shock protein 70 (Hsp70). Although NEFs play an important role in abiotic stress tolerance of plants, NEFs in seagrass have not been studied. In this study, we cloned Fes1 from Z. japonica (ZjFes1) by rapid amplification of the cDNA ends using RACE, and full length ZjFes1 was 1171 bp. It contained an 81 bp 5'-terminal untranslated region (UTR), 109 bp 3'-UTR and 981 bp open reading frame (ORF). The ORF (ZjFes1) was predicted to encode a polypeptide of 326 amino acids with theoretical molecular weight (MW) of 36.10 kDa and pI of 5.22. ZjFes1 shared 89% amino acid identity with Fes1 from Zostera marina (Z. marina). The transcriptional levels of ZjFes1 increased significantly 1 h after heat treatment. ZjFes1 was localized to the cytoplasm. Taken together, we found that ZjFes1 was a stress-inducible gene that may be involved in heat stress response. This study lays the foundation for further studies on the role of ZjFes1 in heat resistance.


Assuntos
Proteínas de Transporte/genética , Expressão Gênica/fisiologia , Resposta ao Choque Térmico , Proteínas de Plantas/genética , Zosteraceae/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência/veterinária , Zosteraceae/genética
16.
Chemosphere ; 244: 125388, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31809928

RESUMO

Measurement of sulfide in pore waters is critical for understanding biogeochemical processes, especially within coastal sediments. Here we report the development of a new colorimetric DET (diffusive equilibration in thin films) technique for determining mm-resolution, two-dimensional sulfide distributions in sediment pore waters. This colorimetric sulfide DET method was based on the standard spectrophotometric methylene blue assay, but modified to allow quantitation of sulfide by computer imaging densitometry. The method detection and effective upper measurement limits of the optimised technique were 3.7 and 1000 µmol L-1, respectively. The optimised sulfide DET method was combined with the colorimetric iron(II) DET method to obtain co-distributions in coastal seagrass (Zostera muelleri) colonised sediment under light and dark conditions. In the dark, seagrass sediments were more reduced than in the light, with large areas being dominated by high porewater sulfide concentrations. These co-distributions were compared with those obtained using the previously described DET-DGT (diffusive gradients in thin films) method for measuring iron(II) and sulfide co-distributions. There was less overlap of iron(II) and sulfide distributions using the sulfide DET as the two DET methods are influenced most by the later hours of deployment, whereas the sulfide-DGT measurement integrates concentrations over the whole deployment period. Overlap was most apparent in very dynamic sediment zones, such as burrow wall sediments.


Assuntos
Monitoramento Ambiental/métodos , Sulfetos/análise , Poluentes Químicos da Água/análise , Colorimetria , DEET , Difusão , Compostos Ferrosos/análise , Sedimentos Geológicos , Ferro/química , Zosteraceae
17.
Mar Pollut Bull ; 150: 110730, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31767204

RESUMO

Iron is recognized as an efficient method to alleviate sulfide stress. This study tested the response of Zostera marina plants to different levels of sedimentary sulfides (100.0-818.7 µmol L-1) and iron inputs (590.0-825.3 µg L-1) in a field experiment performed over an eighty-day period. We measured plant responses in terms of shoot density and plant morphology and productivity. The relationship between the propagation effort (PE, in %) and sulfide content (S, in µmol L-1) was expressed as: PE = -14.01 × ln (S) + 86.86 (R2 = 0.99, p < .01), which indicates that the toxic limit of the pore-water sulfide concentration for the survival of eelgrass is 493 µmol L-1. The addition of iron can reduce the toxicity of sulfides to eelgrass beds, resulting in an increase in plant density and productivity, and can even reverse the decline of eelgrass beds exposed to high sulfide concentrations.


Assuntos
Recuperação e Remediação Ambiental/métodos , Ferro/química , Sulfetos/toxicidade , Poluentes Químicos da Água/toxicidade , Zosteraceae , Ecossistema , Monitoramento Ambiental , Plantas , Sulfetos/química , Poluentes Químicos da Água/química
18.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357380

RESUMO

One of the most important adaptations of seagrasses during sea colonization was the capacity to grow at the low micromolar nitrate concentrations present in the sea. In contrast to terrestrial plants that use H+ symporters for high-affinity NO3- uptake, seagrasses such as Zostera marina L. use a Na+-dependent high-affinity nitrate transporter. Interestingly, in the Z. marina genome, only one gene (Zosma70g00300.1; NRT2.1) is annotated to this function. Analysis of this sequence predicts the presence of 12 transmembrane domains, including the MFS domains of the NNP transporter family and the "nitrate signature" that appears in all members of the NNP family. Phylogenetic analysis shows that this sequence is more related to NRT2.5 than to NRT2.1, sharing a common ancestor with both monocot and dicot plants. Heterologous expression of ZosmaNRT2-GFP together with the high-affinity nitrate transporter accessory protein ZosmaNAR2 (Zosma63g00220.1) in Nicotiana benthamiana leaves displayed four-fold higher fluorescence intensity than single expression of ZosmaNRT2-GFP suggesting the stabilization of NRT2 by NAR2. ZosmaNRT2-GFP signal was present on the Hechtian-strands in the plasmolyzed cells, pointing that ZosmaNRT2 is localized on the plasma membrane and that would be stabilized by ZosmaNAR2. Taken together, these results suggest that Zosma70g00300.1 would encode a high-affinity nitrate transporter located at the plasma membrane, equivalent to NRT2.5 transporters. These molecular data, together with our previous electrophysiological results support that ZosmaNRT2 would have evolved to use Na+ as a driving ion, which might be an essential adaptation of seagrasses to colonize marine environments.


Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sódio/metabolismo , Zosteraceae/genética , Zosteraceae/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte de Ânions/química , Transporte Biológico , Membrana Celular/metabolismo , Transportadores de Nitrato , Filogenia , Proteínas de Plantas/química , Estabilidade Proteica , Transporte Proteico , Relação Estrutura-Atividade , Zosteraceae/classificação
19.
Mol Biol Rep ; 46(4): 3691-3699, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31004301

RESUMO

Detached leaves of Posidonia oceanica and Zostera marina creating nuisance at the shores were extracted by means of supercritical CO2 enriched with a co-solvent, compared with that of soxhlet extraction. The extracts and their active compounds which are phenylpropanoids (chicoric, p-coumaric, rosmarinic, benzoic, ferulic and caffeic acids) were screened for cytotoxicity in cancer cell lines including human breast adenocarcinoma (MCF-7, MDA-MB-231, SK-BR-3), human colon adenocarcinoma (HT-29), human cervix adenocarcinoma (HeLa), human prostate adenocarcinoma (PC-3), Mus musculus neuroblastoma (Neuro 2A) cell lines and African green monkey kidney (VERO) as healthy cell line. Supercritical CO2 extracts proved to be more active than soxhlet counterparts. Particularly, Zostera marina extract obtained by supercritical CO2 at 250 bar, 80 °C, 20% co-solvent and a total flow rate of 15 g/min revealed the best IC50 values of 25, 20, 8 µg/ml in neuroblastoma, colon and cervix cancer cell lines. Among the major compounds tested, p-coumaric acid exhibited the highest cytotoxic against colon and cervix cell lines by with IC50 values of 25, 11 µg/ml. As for the effects on healthy cells, the extract was not cytotoxic indicating a selective cytotoxicity. Obtained supercritical CO2 extracts can be utilized as a supplement for preventive purposes.


Assuntos
Alismatales/química , Antineoplásicos/farmacologia , Extratos Vegetais/farmacologia , Propionatos/farmacologia , Alga Marinha/química , Zosteraceae/química , Animais , Ácido Benzoico/farmacologia , Ácidos Cafeicos/farmacologia , Chlorocebus aethiops , Cinamatos/farmacologia , Ácidos Cumáricos/farmacologia , Depsídeos/farmacologia , Células HeLa , Humanos , Células MCF-7 , Programas de Rastreamento , Células PC-3 , Propionatos/metabolismo , Succinatos/farmacologia , Células Vero , Ácido Rosmarínico
20.
Chemosphere ; 224: 111-119, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30818189

RESUMO

In this investigation, we assessed the effects of Cu and/or Cd excess on physiological and metabolic processes of the widespread seagrass Zostera marina. Adult were exposed to low Cd and Cu (0.89 and 0.8 µM, respectively) and high Cd and Cu (8.9 and 2.4 µM, respectively) for 6 d at: Control conditions; low Cu; high Cu; low Cd; high Cd; low Cd and low Cu; and high Cd and high Cu. Photosynthetic performance decreased under single and combined treatments, although effects were more negative under Cu than Cd. Total Cu accumulation was higher than Cd, under single and combined treatments; however, their accumulation was generally lower when applied together, suggesting competition among them. Levels of glutathione (GSH) and phytochelatins (PCs) followed patterns similar to metal accumulation, with up to PC5, displaying adaptations in tolerance. A metallothionein (MET) gene showed upregulation only at high Cd, low Cu, and high Cu. The expression of the enzymes glutathione reductase (GR), ascorbate peroxidase (APX), and catalase (CAT) was greatest at high Cu, and at high Cd and Cu together; the highest expression was under Cu, alone and combined. Both metals induced upregulation of the DNA methyltransferases CMT3 and DRM2, with the highest expression at single Cu. The DNA demethylation ROS1 was overexpressed in treatments containing high Cu, suggesting epigenetic modifications. The results show that under copper and/or cadmium, Z. marina was still biologically viable; certainly based, at least in part, on the induction of metal chelators, antioxidant defences and methylation/demethylation pathways of gene regulation.


Assuntos
Antioxidantes/metabolismo , Cádmio/farmacologia , Cobre/farmacologia , Metilação de DNA/efeitos dos fármacos , Metais/metabolismo , Fitoquelatinas/metabolismo , Zosteraceae/efeitos dos fármacos , Redes Reguladoras de Genes , Zosteraceae/enzimologia , Zosteraceae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA